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SUMMARY

Cancers are the result of eco-evolutionary processes fueled by heritable pheno-
typic diversification and driven by environmentally dependent selection. Space
represents a key growth-limiting ecological resource, the ability to explore this
resource is likely under strong selection. Using agent-based modeling, we
explored the interplay between phenotypic strategies centered on gaining ac-
cess to new space through cell-extrinsic degradation of extracellular matrix bar-
riers and the exploitation of this resource through maximizing cell proliferation.
While cell proliferation is a cell-intrinsic property, newly accessed space repre-
sents a public good, which can benefit both producers and non-producers. We
found that this interplay results in ecological succession, enabling emergence
of large, heterogeneous, and highly proliferative populations. Even though in
our simulations both remodeling and proliferation strategies were under strong
positive selection, their interplay led to sub-clonal architecture that could be in-
terpreted as evidence for neutral evolution, warranting cautious interpretation
of inferences from sequencing of cancer genomes.

INTRODUCTION

Cancer starts when a somatic cell breaks away from the rules of homeostatic cooperation imposed bymulti-

cellularity and starts acting as an independent evolutionary entity. As this cell divides, its progeny (clone)

acquires genetic and epigenetic alterations generating novel phenotypic variants (subclones). This subclo-

nal diversification in the context of competition for growth-limiting resources between cancer cells enables

Darwinian evolution, which can lead to the emergence of key tumor phenotypes, defined by hallmarks of

cancers, culminating in lethal malignancies (Axelrod et al., 2006; Greaves and Maley, 2012; Hanahan and

Weinberg, 2000, 2011; Korolev et al., 2014; Nowell, 1976). Consistently, genetic and phenotypic intratumor

heterogeneity (ITH) correlates with poor prognosis and contributes to treatment failure (Gerlinger et al.,

2012; Swanton, 2012). Understanding the basic rules that govern the somatic evolution and how ITH is

maintained in the face of subclonal competition is thus key to a more effective tumor prevention and ther-

apies (Basanta and Anderson, 2013; Sottoriva et al., 2015).

Mathematical modeling has been used to understand the behavior of complex dynamic systems, such as

changes in cell populations in space and time during the emergence and progression of cancers, which are

difficult to intuit without the help from rigorous theoretical frameworks. Properly parameterized and exper-

imentally tested mathematical models can provide a deeper understanding of these complex processes

and also serve as predictive tools for therapy optimization. Ordinary differential equations, the most

commonly used tools to model somatic evolution, typically assume well-mixed populations (Altrock

et al., 2015; Gatenby and Gillies, 2008). This assumption fails to account for heterogeneity in space and tis-

sue architecture as a key growth limiting resource, which has a profound impact on evolutionary dynamics.

Agent-based models (ABMs), which can consider cells as individual agents rather than populations, can be

used to account for space and spatial structures. The importance of space and the applicability of ABMs has

been explored showing that an increase in available space results in higher ITH and can affect evolutionary

mode (Chkhaidze et al., 2019; Noble et al., 2019; West et al., 2019).

Epithelial tissues, which give rise to themajority of human cancers, are organized as layered structures, con-

strained by basal membranes and the extracellular matrix (ECM) (Bissell et al., 2002; Bissell and Radisky,
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2001). Carcinogenesis involves breaking from the growth limitations imposed upon by epithelial layers and

gaining access to the new space through the degradation and remodeling of the ECM (Cawston and Wil-

son, 2006). From an ecological perspective, accessing this new space constitutes niche engineering; thus,

we will refer to the phenotypes of cancer cells which possess the ability to remodel the ECM as ‘‘engineers’’

(Lloyd et al., 2016; Myers et al., 2020). ECM degradation is achieved through the secretion of matrix-de-

grading enzymes, which require a sufficiently high local concentration to achieve their effects. Since the

newly accessed space can benefit not only engineers but also non-engineer cells, the space, unlocked

by engineers, represents a ‘‘common good’’ resource (Kagel and Roth, 1995). Optimization for use of space

can be achieved by the increased consumption of this resource through elevated proliferation rates; thus,

we will refer to the phenotype that optimizes space consumption as ‘‘proliferators’’. To understand eco-

evolutionary dynamics resulting from selection for optimal phenotypic strategies toward creating (engi-

neering) and consuming (proliferating) space, we consider an abstract on lattice grid, where the domain

is divided up into multiple subdomains by degradable ECM barriers.

Using a cellular automaton to implement our ABM, we examined the eco-evolutionary dynamics emerging

under selection pressures that act to optimize mutually exclusive engineering and proliferating phenotypic

strategies within domains with different spatial organization (Gatenbee et al., 2019a; Margolus and Toffoli,

1987; Poleszczuk and Enderling, 2014). We found that gaining access to new space through non-cell auton-

omous effects of engineers can dramatically increase ITH and lead to patterns which, in the context of ecol-

ogy, can be described as ecological succession. Surprisingly, we found that this selection-driven dynamic

could lead, under sampling resolutions commonly used in cancer genomics, to subclonal diversification

patterns that could be misinterpreted as evidence for neutral evolution.

RESULTS

Model description

We initiate simulations with 25 cells with the basic phenotype seeded in a subdomain, surrounded by ECM

barriers. The subdomain itself is located in the center of the large domain, composed of the grid of sub-

domains. Cell growth is constrained to the subdomain, unless the ECM separating the population from

the neighboring subdomain is degraded. ECM barriers can be degraded through action of engineer cells

if a sufficiently high concentration of ECM-degrading enzymes is produced – which is a function of both the

number of engineers, as well as their efficiency (Figure 1A). When a cell divides, it can acquire a ‘‘driver’’

mutation that permanently increases either expression of ECM-degrading enzymes (for the engineer

phenotype) or proliferation rate (for proliferator phenotype). After each division, a check is made to remove

any ECMwhich has met the removal criteria. A cell can die through apoptosis (with a rate of 15% each time-

step), freeing up space that can be explored by its neighbors. There is phenotype plasticity in the model, so

engineers can become proliferators (at a rate of 0.2%) and vice versa. Although these engineering and pro-

liferative phenotypes are mutually exclusive, the mutational history of each cell enables them to start from

the previous rates of engineering and proliferation if they switch back (Figure 1B). Simulations are initialized

within an 601x601 domain, separated into smaller sub-domains, ranging from 25x25 to 301x301 (shown in

Figure 1C), and run for 2500 timesteps, which allows for simulations to run for sufficiently long time so that

the relevant evolutionary dynamics can be examined.

Impact of environmental engineering on phenotypic and mutational diversity

Regardless of the subdomain size, we observed two scenarios characterized by engineering success. In

some simulations, the engineering phenotype was driven to extinction, which left the population confined

within the initial subdomain (failed engineering). In others, the population was capable of accessing the

majority or all of the subdomains of the larger domain (Figure 1C). As a control, we examined the impact

of domain size on phenotypic and clonal heterogeneity in the complete absence of engineering phenotype

(Figure S1A). In the absence of successful engineering, phenotypic diversity peaked early and then

decreased as more effective proliferators were selected. Increase in the subdomain size lead to an increase

in the peak phenotypic diversity. In the presence of successful engineering, phenotypic heterogeneity

peaked at later time points but at significantly higher levels. Similar to the outcome in the absence of

engineering, the phenotypic diversity decreased after reaching its peak, indicating convergent evolution

toward highest proliferation rates (Figures 2A and S1A). Clonal heterogeneity increased directly with sub-

domain size, reflecting an increase in population size (Figures 2B and S1B). After peaking, upon population

reaching carrying capacity within spatial constrains, clonal heterogeneity remained high, with the effect

more easily observed in larger subdomains. Successful engineering led to a delay in reaching maximal
2 iScience 24, 101901, January 22, 2021



Figure 1. Model description

(A) A depiction engineers degrading an ECM barrier in the model. For the ECM to be degraded, a sufficient concentration (~45% enzyme per lattice unit) of

matrix-degrading enzyme is required near the ECM. The top images show the concentration of enzyme and the bottom images show the population of

engineers producing them (with phenotypic color map below).

(B) A depiction of how driver mutations interact with phenotypic switching in the model. The top plot shows the proliferation driver mutation space, and the

bottom plot shows the engineering driver mutation space. For all basic cells, their first driver mutation is randomly selected, which is the only time a mutation

determines the cell’s phenotype (orange box). Afterward, driver mutations will increase the cell’s phenotype at the time of the mutation. However,

phenotypic switches occur at the end of a time frame. The change boxed in blue shows the cell acquiring a proliferative driver (as it was the cell’s phenotype

at the time of division), yet it stochastically switched phenotypes at the end of the timestep. Similarly, the cell acquires an engineering mutation in t = 3 and

again stochastically switches the phenotype at the end of the timestep (boxed in pink). The cell retains a memory of its mutational history, so the fitness does

not reset upon switching phenotypes, yet only one phenotypic characteristic can be expressed at a time.

(C) Images taken from simulations of the four subdomain sizes in the model, showing the two types of characterized simulations. All parameters are the same

except subdomain size. The left column shows simulations, where engineering failed, and the right column shows simulations where engineering succeeded.
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clonal heterogeneity but enabled populations to reach much higher levels of clonal heterogeneity.

Notably, engineering limited reduction in clonal ITH, observed shortly after the peak. Therefore, environ-

mental engineering resulting in production of public goods (space) enabled tumor populations, not only to

gain access to space and achieve larger population size but also to gain increased levels of phenotypic and

clonal heterogeneity.

Successful engineering was associated with noticeable patterns of phenotypic succession. After breaking

the initial ECM barrier, engineers exploited the newly accessed space, growing outward the next barriers.

As engineers continued to degrade the ECM and grow outward, proliferative cells began to outcompete

vestigial engineers near the core of the tumor (Figure 3A, Video S1). Once all of the ECM barriers in the
iScience 24, 101901, January 22, 2021 3



Figure 2. Impact of successful engineering on intra-tumor htheterogeneity

Temporal changes in genetic (A) and phenotypic (B) heterogeneity are captured by the Shannon Index. Green and black lines represent successful and failed

engineering, respectively. Each plot depicts the outcomes of 80 simulations. NS, *, **, ***, and **** represent p values of Kolmogorov-Smirnov tests at the

indicated time points: NS indicates p > 0.05, * indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001, and **** indicates p < 0.0001.
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domain were removed, engineers were succeeded by proliferators, both from the expansion of pre-exist-

ing proliferative sub-clones and mutational conversion of engineers to proliferators (Figures 3B and 3C).

Notably, this phenotypic succession was not accompanied by a clonal one, as while phenotypic strategy

converged toward proliferative phenotype, clonal heterogeneity was maintained at near peak levels.

This result implies high levels of convergent evolution, where identical phenotypic solutions are reached

by different subclonal lineages.

Selection-driven dynamics can lead to clonal architectures consistent with neutral evolution

Since we recorded mutational history for each of the cell within simulation, these data enabled reconstruc-

tion of ‘‘true’’ (within simulations) clonal architecture, in contrast to inferred clonal architecture obtained

from analyses of bulk genome sequencing. We visualized clonal architecture using Muller plots (Gatenbee

et al., 2019b). In this visualization, subclones with sub-threshold frequency (the majority of subclones in our

simulations) are ‘‘invisible’’, instead being grouped with the parental (sub)clone. We chose to visualize

changes in clonal architecture using 10% clonal resolution threshold (Figure 4A), corresponding to a com-

mon 20x genome sequencing depth (assuming near diploid genome), and 1% clonal resolution threshold,

reflecting higher resolution analyses (Figure 4B), and 0.1% threshold (Figure S2) – which provides a more

accurate representation of the ‘‘true’’ clonal architecture.

In the absence of successful engineering, in the smallest subdomain size, we observed patterns of clear

clonal succession (Figure 4). Increase in the subdomain size resulted in tumors with more complex clonal

architecture but still with clear evidence of clonal expansions. Successful engineering dramatically

increased clonal heterogeneity, leading to lower rates of expansion of individual sub-clones, indicative

of increased clonal interference. Noticeably, increase of the analysis resolution revealed more complex

clonal patterns (Figures 4 and S2).

Presence/absence of strong clonal expansions within the Muller plot visualization can be intuitively interpreted

as evidence of selection-driven/neutral evolution. However, as such an interpretation might be misleading, we

asked whether the apparent differences in patterns of clonal expansions observed at different resolution levels

would be interpreted differently when analyzed using quantitative metrics of neutrality. To this end, we exam-

ined the relation between the cumulative number of mutations as a function of the inverse frequency of the mu-

tations. This approach has been used to discriminate between neutral (no fitness differences between subclonal

lineages) and selection-driven evolution in inferences of evolution modes from bulk sequencing data, where a

linear fit between the inverse of the variant allele frequencies (VAFs) of the detected mutations with the cumu-

lative mutation function is interpreted as evidence of evolution neutrality (Williams et al, 2016, 2018). Since we
4 iScience 24, 101901, January 22, 2021



Figure 3. Patterns of ecological succession in the model

(A) Images from the visualization of a simulation outcome showing engineers gaining access to new space and being succeeded by proliferative cells over

time.

(B) Frequencies of basic, proliferative, and engineering cells over time.

(C) Populations of proliferative cells, engineering cells, and total tumor over time. Engineers flourish when they break out initially, and over time, proliferative

cells can grow into the space created by engineers.
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had VAF data recorded from our simulations, we analyzed the goodness of linearity fit of our simulation data at

different sub-domain sizes and resolution levels of 1%, 0.1%, and 0.01%. As a reference point, wegenerated VAF

data from simulations that followed neutral dynamics (no changes in proliferation probability), under a scenario

of no ECMbarriers (lack of subdomains). Strikingly, we found a better linear fit of data from our selection-driven

simulations, compared to the neutral control, at both 1% and 0.1% resolution, with the trend reversed at 0.01%

(Figure 5A). The impact of resolution level on goodness of fit was not limited to our simulations, as we have also

observed marked differences in the goodness of linearity fit within the artificial data set provided with neutra-

litytestr (Williams et al, 2016, 2018) (Figure S3). Interestingly, comparison of the goodness of linearity fit between

simulations with successful and failed engineering revealed significantly higher fit in simulations with successful

engineering across all of the resolution levels, with the differences beingmore pronounced at lower subdomain

size (Figure 5B). These results warrant caution in inferring mode of evolution from genomic sequencing data.
DISCUSSION

Our study examined the eco-evolutionary dynamics of tumor cell populations using an ABM where cells

evolve under explicit pre-defined rules, specifying the impact of mutations and epigenetic switches on

phenotypes that impact Darwinian competition for a limited ecological resource – space. In addition to

the commonly used consideration of evolutionary fitness as a cell-intrinsic proliferation probability, our sim-

ulations included a second evolutionary strategy, which specified the ability of cells to unlock access to the

‘‘public good’’ of new space via non-cell autonomous action of environmental engineering, mediated by

the action of secreted ECM-remodeling enzymes. We found that non-cell autonomous production of com-

mon good had a profound impact on both phenotypic and clonal evolution, leading to higher heteroge-

neity and the emergence of patterns of phenotypic succession, while at the same time producing clonal

architecture that might be consistent with a hypothesis of evolution neutrality.

Consistent with published reports of convergent evolution in cancers, where mutations with similar functional

consequences are observed in distinct subclonal sub-populations (Arda�seva et al., 2020), we observed pheno-

typic convergence in our simulations, as different lineages within computational tumor were capable of finding

optimal phenotypic solutions (Gerlinger et al., 2012). Although consideration of non-cell autonomous environ-

mental engineering increased phenotypic diversity, it did not qualitatively impact convergence.
iScience 24, 101901, January 22, 2021 5



Figure 4. Muller plot visualization of the spatiotemporal clonal dynamics

Two representative simulations for each subdomain size are shown, one where engineering failed and one where

engineering succeeded. The x-axis on each plot is time, and the y-axis is population size. Colors indicate time of clone’s

emergence, with earlier clones presented by dark blue and later clones presented by warmer colors. Only clones with

above-threshold frequency are plotted.

(A) Visualization with a frequency threshold of 10%.

(B) Visualization with a frequency threshold of 1%. Visualization with a frequency threshold of 0.1% is shown in Figure S2.

Plots at different resolution levels represent the same individual simulations.
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The addition of public good-enabled populations of tumor cells led to higher levels of clonal heterogene-

ity. To a large extent, this effect likely reflected the ability of these tumors to reach a much higher popula-

tion size, as it was most pronounced within smaller subdomain size. However, public good engineering

action also enabled a more effective maintenance of clonal ITH (notice the lack of a dip after reaching

the peak in green versus black lines in Figure 2A) – consistent with the report of maintenance of clonal het-

erogeneity in a mouse model of non-cell autonomous driver of tumor growth (Marusyk et al., 2014).

The inclusion of producers of public good leads to more complex ecological dynamics, involving local

and global phenotypic successions. The ability to degrade ECM barriers can, in some cases, lead to

strong selection for engineering phenotypes, as they were capable of getting priority access to the newly

available space – making the engineering strategy more effective at the growing edge of a tumor. How-

ever, as proliferative phenotypes were more successful in utilizing space, they eventually outcompeted

engineers, leading to robustly reproducible patterns of phenotypic succession, which parallels ecological

succession.

Even though the dynamic behavior in our simulations was designed to be governed by strong selection for

competing phenotypic strategies, it produced patterns of clonal architecture that could be interpreted as

indicative of neutral evolution patterns within current approaches toward inferences of evolution mode

from genomic sequencing data. Most likely, this result reflects a lack of mutational record of history of

phenotypic switching. Surprisingly, inferences of neutrality based on goodness of fit between the inverse

of VAF and cumulative numbers of mutations showed higher consistency of the outcomes of our selection-

driven simulations compared to simulations with explicitly neutral dynamics. Although increased resolution

of mutation sampling led to superior fit in neutral simulations, the effect was only observed at resolution

levels that exceed those employed in typical mutational analyses studies, with the exception of analyses

of single crypts in colorectal cancers. Although our results do not disprove recent reports of neutral

evolution in many cancers (Williams et al, 2016, 2018), they do warrant a more cautious interpretation of

evolutionary inferences based on mutational analyses.
6 iScience 24, 101901, January 22, 2021



Figure 5. Consistency of clonal architecture with metrics of evolution neutrality

Goodness of fit to a linear regression between the cumulative mutation function and the inverse VAFs (M(f)f 1/f) is used as a metrics of evolution neutrality.

(A) Goodness of feet for the in-silico growth simulations from Figure 2 with the indicated domain size and simulations with neutral growth dynamics.

Statistical comparisons are made between simulations with successful engineering and the neutral simulations.

(B) Impact of engineering success on the goodness of fit. Statistical comparisons are made between the success and failure (indicated by + and –

respectively) of each subdomain size. NS, *, **, ***, and **** represent p values of Kolmogorov-Smirnov between two distributions: NS indicates p > 0.05, *

indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001, and **** indicates p < 0.0001.
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Limitations of the study

Although mathematical and computational modeling enables quantitative analysis of evolutionary dy-

namics in space in time, modeling deals with abstraction and simplification of biological reality. Moreover,

the use of computational modeling depends on the accuracy of model assumptions and parameters, which

are specified explicitly. While tumor growth requires gaining access to new space, this access is mediated

not only by the action of tumor cells but also by complex networks of microenvironmental interactions

involving non-tumor cells, such as fibroblasts, macrophages, etc (Janiszewska et al., 2019; Marusyk et al.,

2014). A concrete understanding of the underlying biology at this level, permitting adequate capture in

a mathematical model, is still missing. Even if such knowledge were available, quantitatively specifying

all of relevant interactions would not be feasible. While primary tumors might be simpler than natural eco-

systems, their ecological complexity is certainly higher than what can be captured in our models (Brown,

2016). Further, two-dimensional lattices considered in our work do not faithfully recapitulate three-dimen-

sional tissue structures within primary or experimental tumors. On the other hand, computational modeling

enables the examination of outcomes when the key ecological and evolutionary drivers of population dy-

namics are considered – something which is not accessible not only to inferences from analyses of clinical

samples but also to experimental studies. Therefore, while quantitative results of our simulations might not

be directly applicable to understanding of tumor biology, qualitative finding of the impact of ecological

engineering on tumor heterogeneity and phenotypic succession is likely to be relevant to real tumors.

Non-cell autonomous actions, including public goods, appear to be common in tumor ecosystems,

including access to vasculature nutrients, immune invasion, etc (Tabassum and Polyak, 2015). Although

our simulations only considered non-cell autonomous effects in terms of accessing spatial resources, re-

sults from our simulations are likely to be generalizable to other scenarios involving other public goods.

We posit that consideration of ecological aspects of cancer evolution, the presence of non-cell autono-

mous effects, as well as integration of mathematical modeling with experimental studies, and analyses
iScience 24, 101901, January 22, 2021 7
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of clinical samples will be essential to better understand clonal evolution – which is a prerequisite to the

development of successful strategies to prevent and eradicate advanced cancers.

Resource availability
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Materials availability

This study did not utilize any physical materials nor does it contain any biological data.

Data and code availability

The model is publicly available on GitHub at CE_ABM: https://github.com/jackedwards1/CE_ABM.

The accession number for the data used to produce the figures reported in this paper is available on Men-

deley: https://dx.doi.org/10.17632/5wpcrnkvc7.1.

METHODS
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Supplemental Figures 

 

Supplemental Figure 1: Control data and population data. Relates to Figure 2. a) Phenotypic 
heterogeneity (top) and clonal heterogeneity (bottom) for simulations over time when the engineering 
phenotype was disabled. There are 30 simulations per plot, each run for 3000 timesteps. b) Total tumor 
population over time in simulations with the same parameters as Figure 2. Black lines represent failed 
engineering, green lines represent successful engineering. The failed engineering tumor carrying capacity 
is dependent on what the subdomain size is.  

 

  



 

Supplemental Figure 2: Muller plot visualization of the spatiotemporal clonal dynamics at 0.1% 
resolution. Relates to Figure 4. Two representative simulations for each subdomain size are shown (same 
simulations as in Figure 4), one where engineering failed, and one where engineering succeeded. The x-
axis on each plot is time, and the y-axis is population size. Colors indicate time of clone’s emergence, with 
earlier clones presented by dark blue, and later clones presented by warmer colors. Only clones with above-
threshold frequency are plotted.  

 

  



 

Supplemental Figure 3: Examining the effect of frequency on the inverse allelic frequency metric 
for neutrality. Relates to Figure 5. Artificial data that comes with the R package neutralitytestr (Williams et 
al., 2018, 2016). The plots show the cumulative number of mutations as a function of the inverse allelic 
frequency, and the goodness of fit to a linear distribution, as a metrics for a neutral mode of evolution. a) 
The selective data plotted from frequencies of 25% to 10%. b) The neutral data plotted from frequencies of 
25% to 1%.  

  



Transparent Methods 

The model uses a 2D on-lattice agent-based model, where each grid point is either unoccupied, blocked 
by ECM, or is occupied by a living cell. There are three cell phenotypes: basic, proliferative, and 
engineering. Cells with the basic phenotype (basic) are capable of proliferating while ignoring homeostatic 
signaling constraints, as long as space is available, but are incapable of accessing new space through 
degradation of matrix. Cells with the engineering phenotype (engineers) proliferate at the same rates as 
basic cells but can provide access to new space by degrading ECM barriers through secretion of matrix 
degrading enzymes. No single engineer can produce enough of the enzyme on its own to degrade the 
ECM; a substantial population of engineers local to the ECM must secrete enzymes at the same time to 
access new space. Cells with a proliferative phenotype (proliferators) can divide at higher rates than basic 
and engineer cells, thus they are more effective at claiming available space, but they cannot gain access 
to new space on their own.  

The CA uses a Moore neighborhood to define the cells in direct contact with each other (Margolus, n.d.). 
Cells are iterated over stochastically as to avoid artifacts or giving preference to cells in specific spatial 
locations. Each cell determines if it has the ability (fitness) and resources (space) to divide during that 
timestep. Cells have a potential proliferation rate which defines its ability to proliferate if space is available. 
For instance, a cell with a potential proliferation rate of 75% has a 75% probability to divide at each time 
step, provided there is space. Potential proliferation starts at 50% within the basic phenotype and can be 
increased by mutations that optimize proliferative phenotype – up to 100% (dividing at each time step given 
space availability). At any given timestep, a cell has a 15% probability of dying, which leaves an empty 
space in the next timestep, enabling cell turnover within the core of the tumor.  

At each cell division, one of the following two types of driver mutations might occur at a total probability of 
0.07%. First, a proliferation-driving mutation (0.07% probability), can increase cell proliferation with a 
randomly chosen increment of 0.01% between 10 and 20%. Second, engineering-driving mutation, 
occurring at 0.07% probability, bestows a cell with an engineering phenotype, enabling the mutated cell to 
produce a matrix-degrading enzyme at 50% probability per time step. The enzyme-production ability of 
engineering phenotypes can be further increased by additional engineering mutations, through increments 
of 0.01% in the 10 - 20% range. In addition to driver mutations, passenger mutations, occurring with 0.5% 
per time step probability, could be either entirely neutral (no impact on cell fitness), or slightly deleterious 
by decreasing probability of proliferation in the range 0 to 0.5%, with 0.01% increment. If no mutations 
occur, a cell retains its current phenotype, which is inherited upon cell division. 

When a basic cell first acquires a driver mutation, it will randomly become either a proliferator cell or an 
engineer. Further driver mutations will be chosen dependent on the cell’s current phenotype; proliferative 
cells will always acquire proliferative drivers, and engineering cells will always acquire engineering drivers. 
Based on the principle of evolutionary tradeoff, we consider engineer (ECM-degrading) or proliferative 
phenotypes to be mutually exclusive (Townsend et al., 2009). However, a cell can switch its phenotype 
from engineer to proliferator and vice versa at a probability of 0.2% at the end of each timestep. This type 
of stochastic phenotypic switching among cancer cell has been described in the literature (Gupta et al., 
2011; Zhou et al., 2014). When a phenotypic switch occurs, we assume that the cell loses the expression 
of improved abilities related to the pre-switch phenotype. If this cell or its clonal progeny undergo a reverse 
switch, it will recover these abilities at the levels that preceded the first switch. As an example, an engineer 
cell that undergoes phenotypic switch toward proliferator will stop degrading ECM and will proliferate at a 
rate that would correspond to be basal one if it never had a proliferative phenotype before. If it subsequently 
undergoes a mutation that transforms it into a cell with an engineer phenotype, the ability to degrade ECM 
will be restored to the level it had previously as an engineer.  

In order to interrogate the accumulation of genetic ITH, we record mutational history for each cell. Each 
driver mutation or any successive four passenger mutations were used in the analyses as a mutational 
branching point, marking a new sub-clone. Phenotypic strategies and mutational history were tracked for 
all the lineages over time. To define phenotypic ITH, we binned cells based on their proliferation and 
enzyme-producing phenotypes, with increments of 1%. Thus, for example, two proliferator cells 
representing different genetic subclonal branches, with proliferation probabilities of 59.1% and 59.7% would 
be counted as belonging to the same phenotypic subpopulation. Based on this definition of phenotypic 



subpopulations, there were 103 possible distinct phenotypic groups: 51 proliferative, 51 engineering, and 1 
basic. To visualize outcomes of the simulations, we map a color to a cell’s phenotype and fitness as 
described by the aforementioned rules. This map is visible in Figure 1a.  

A concentration of ~45% enzyme per unit lattice is required local to a point of ECM to remove it in the 
model. The enzyme produced by engineers is considered to be a diffusible molecule that decays over time. 
In order for an ECM barrier to be degraded successfully, there needs to be at least 5 engineers producing 
enzyme immediately next to the barrier, and the minimum number of engineers increases with distance 
away from the ECM. The maximum diffusion range on the enzyme is a radius of 3 cells out from the grid 
point where the engineer sits, and the effectiveness follows a simple linear decay in effectiveness (as 
opposed to an inverse square law). Successful destruction of ECM unlocks the space within the empty 
subdomain. The newly accessed space resource can be exploited by all cell types. 

The parameters chosen for these simulations were selected with the goal that they would lead to realistic 
looking simulations. A wide variety of parameters were tested, both during and after model development 
and yielded similar outcomes, convincing us that our results are not just an artifact of the chose parameters. 
We varied mutation rate [0.005% - 1%], impact of driver mutations [2.5% - 25%], death rate [5% - 50%], 
and enzyme strength [~20% - ~80%]. The parameters used in the simulations we show are optimal for 
ensuring all of the relevant eco-evolutionary dynamics play out within a reasonable timeframe, as well as 
consistently getting a roughly even split of engineering fails and successes in order to make comparisons 
between the two simulations. The specific parameters used in the reported simulations are: a total 
simulation length of 2500 timesteps, a mutation bias of 0 (engineering and proliferation mutations are 
equally likely), a passenger mutation rate of 0.5%, a driver mutation rate of 0.07%, a switching frequency 
of 0.2%, a driver impact range of 10.5% to 20%, a death rate of 15%, an enzyme radius of 2, and an integer 
enzyme threshold for degradation of 10 (a strength of 10 enzymes must be present local to a piece of ECM 
in order for it to be removed).  

When computing heterogeneity for both the phenotypic groups and the clonal groups, the Shannon index 
was used (Shannon, n.d.). The model takes the proportion of each of the phenotypic populations, pi, and 
calculates the Shannon Index as follows: 

𝐻 =	−%𝑝' ∗ ln	(𝑝')
-

'./

 

H was calculated for the phenotypic groups and the clones to measure the differences in clonal 
heterogeneity and the phenotypic diversity of the tumor. A Kolmogorov-Smirnov test was performed to 
examine the quantitative differences in the heterogeneity distributions between simulations characterized 
by successful and failed engineering. During the simulation, a list of all clones and their ancestry is recorded 
and output. From this master list, muller plots can be constructed and most non-spatial neutrality statistics 
can be computed. In the data processing, we used the master list for each simulation to create a long-
format output of the clonal architecture, which is readable by EvoFreq, an R package designed for 
visualizing clonal dynamics (Gatenbee et al., 2019). We also used the master list to calculate the variant 
allelic frequencies (VAFs). For our neutrality metric, we compared the cumulative mutations as function of 
the inverse frequency to a linear model, which is theoretically a neutral mode of growth (Williams et al., 
2018, 2016). It is shown that the cumulative amount of distributions, M(f), is described by the following 
equation in a neutral model of evolution: 

𝑀(𝑓) =	
𝜇
𝛽 (
1
𝑓 −

1
𝑓567

) 

where f is the variant allelic frequency of a given mutation, fmax is the maximum frequency of a mutation, µ 
is the mutation rate, and β is the cell division rate in which both lineages survive (Williams et al., 2016). The 
parameters and derivation of this model are detailed explicitly by Williams et al. in 2016. We examined the 
goodness of fit of our data to a linear (neutral) model, and also compared our data to both an explicitly 
neutral simulation in our model as well as the artificial data provided in an R package, neutralitytestr, that 
is designed to test VAF data using the linear fit method described (Williams et al., 2018, 2016). Again, a 



Kolmogorov-Smirnov test was performed to quantify the differences between the distributions of our model 
data and explicitly neutral simulations. 
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