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Copy number variants are duplications and deletions of the genome that play an important
role in phenotypic changes and human disease. Many software applications have been
developed to detect copy number variants using either whole-genome sequencing or
whole-exome sequencing data. However, there is poor agreement in the results from
these applications. Simulated datasets containing copy number variants allow
comprehensive comparisons of the operating characteristics of existing and novel copy
number variant detection methods. Several software applications have been developed to
simulate copy number variants and other structural variants in whole-genome sequencing
data. However, none of the applications reliably simulate copy number variants in whole-
exome sequencing data. We have developed and tested Simulator of Exome Copy
Number Variants (SECNVs), a fast, robust and customizable software application for
simulating copy number variants and whole-exome sequences from a reference genome.
SECNVs is easy to install, implements a wide range of commands to customize
simulations, can output multiple samples at once, and incorporates a pipeline to output
rearranged genomes, short reads and BAM files in a single command. Variants generated
by SECNVs are detected with high sensitivity and precision by tools commonly used to
detect copy number variants. SECNVs is publicly available at https://github.com/
YJulyXing/SECNVs.

Keywords: copy number variation, simulation, software, whole-exome sequencing, read depth
INTRODUCTION

Copy number variants (CNVs) represent DNA duplications and deletions ranging from a few dozen
base pairs to several million bases that have been associated with phenotypic changes and human
disease (Feuk et al., 2006). There is no precise definition for the minimum length of CNVs in
research, although a minimum length of 1 kb is commonly used for clinical applications. Initially
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discovered by array-based methods (Pinkel et al., 1998), CNVs
have been increasingly detected using next-generation
sequencing (NGS) data (Shen et al., 2019). A substantial
proportion of CNVs encompass protein-coding genes
(Zmienko et al., 2014). Many software applications have been
developed to detect CNVs using either whole-genome
sequencing (WGS) (Bartenhagen and Dugas, 2013; Pattnaik
et al., 2014; Qin et al., 2015; Faust, 2017; Xia et al., 2017) or
whole-exome sequencing (WES) (Sathirapongsasuti et al., 2011;
Fromer et al., 2012; Klambauer et al., 2012; Koboldt et al., 2012a;
Koboldt et al., 2012b; Krumm et al., 2012; Plagnol et al., 2012;
Magi et al., 2013) data.

WES is based on the capture and sequencing of transcribed
regions (exons) of protein coding sequences, which combined
represent approximately 1% of the human genome. Thus, WES
offers a significant benefit in terms of the sequencing costs
compared to WGS. Additionally, WES data are an increasingly
important source to identify genetic variants in non-model
organisms (Lu et al., 2016; Kaur and Gaikwad, 2017). In
species with very large genomes and limited opportunities for
WGS experiments, WES data are expected to represent a critical
source of information to detect CNVs (Hirsch et al., 2014).

Detection strategies for CNVs from next-generation
sequencing data consist of four different approaches based on
read depth, physical distance between read pairs (or paired-end
mapping), detection of split reads, and comparison of de novo
and reference genome assemblies (Alkan et al., 2011; Pirooznia
et al., 2015). Because each of these approaches have limitations,
programs that combine multiple strategies to detect CNVs based
on WGS datasets have also been developed [see (Pirooznia et al.,
2015)]. In WES data, the approaches based on the distance
between read pairs and detection of split reads have limited
efficacy because the boundaries of the CNV region must fall
completely within a target region for a CNV to be detected
(Fromer et al., 2012; Alkodsi et al., 2014). However, the target
regions only span a sparse 1% of the whole genome, therefore
most of the breakpoints of CNVs are not located in the captured
target regions (Tan et al., 2014; Yao et al., 2017). In addition, read
pair and split read methods both rely on paired-end reads across
a CNV region or reads mapped across CNV breakpoints (Tan
et al., 2014). In read pair-based methods, shorter insert size
compared to diploid individuals indicate deletions, whereas
longer insert size compared to diploid individuals indicate
duplications; in split read based methods, the split of reads is
used to identify CNV and CNV breakpoints (Pirooznia et al.,
2015). Because of the average size of exons and introns, most
target regions in WES data fall between 100 and 300 bps, which
makes detection of CNVs from WES data using read pair and
split read methods practically impossible. Therefore, most
available WGS-based CNV detection methods relying on
paired-end reads cannot be successfully applied to WES data
(Tan et al., 2014). Conversely, read depth-based methods rely on
the number of sequenced reads aligned to each target region to
calculate the average read depth over each base (Fromer et al.,
2012), and it is assumed that read depth signal is proportional to
copy number. Thus, read depth represents the only effective
Frontiers in Genetics | www.frontiersin.org 2
strategy to detect CNVs from WES datasets and has been
implemented in several programs (reviewed in Tan et al.,
2014). Because these programs are built using different
implementations and statistical models, they tend to produce
datasets of CNVs with relatively little overlap (Magi et al., 2013;
Kadalayil et al., 2014; Tan et al., 2014; Nam et al., 2016; Yao et al.,
2017; Zare et al., 2017; Pounraja et al., 2019). WES data tend to
have higher levels of noise and specific biases compared to WGS
data (Zare et al., 2017), making detection of CNVs from WES
data less accurate overall. In addition, there are limitations of the
read depth method that make CNV detection in WES data less
accurate (Tan et al., 2014). These limitations include poor
resolution, systematic group effects, GC bias and difficulty in
prediction of breakpoints in WES datasets (Tan et al., 2014).
Therefore, benchmark analyses are necessary to evaluate the
performance of CNV detection programs that utilize exome-
sequencing datasets. Both simulated exome data and data from
either arrays or WGS have enabled the assessment of CNV
detection tools for WES datasets (Magi et al., 2013; Kadalayil
et al., 2014; Tan et al., 2014; Nam et al., 2016; Yao et al., 2017;
Zare et al., 2017). Simulations allow a more comprehensive
assessment of the accuracy and power of these tools.

Most software applications developed to simulate CNVs fall
short of generating the required outputs for WES datasets and
are difficult to implement or cannot be applied to certain datasets
(Table 1). Here, we introduce Simulator of Exome Copy Number
Variants (SECNVs), a fast, robust and customizable software
application for simulating CNV datasets usingWES data. It relies
upon a completely new approach to simulate test genomes and
target regions to overcome some of the limitations of other WGS
CNV simulation tools, and is the first ready-to-use WES CNV
simulator. The simulator can be easily installed and used on
Linux and MAC OS systems to facilitate comparison of the
performance of different CNV detection methods and to test the
most appropriate parameter settings for CNV identification.
METHODS

Characteristics Needed for a Simulator of
Copy Number Variants
To generate WES reads, specific regions of a reference genome,
called “target regions,” are captured and sequenced (Goh and
Choi, 2012). To reproduce a realistic distribution of structural
variants, a CNV simulator for WES data should generate variants
that overlap partly or entirely with one or more target regions
(Figure 1). The WES CNV detection tools require a list of target
regions (exons) (Sathirapongsasuti et al., 2011; Fromer et al.,
2012; Klambauer et al., 2012; Koboldt et al., 2012a; Koboldt et al.,
2012b; Krumm et al., 2012; Plagnol et al., 2012; Magi et al., 2013),
which can be obtained from public databases, and so this list
could be used as the input to simulate short reads for those
regions (Koboldt et al., 2009; Sathirapongsasuti et al., 2011;
Koboldt et al., 2012a; Plagnol et al., 2012; Tan et al., 2014).
Short reads would be simulated from a control genome (same as
the reference genome) and test genomes (with simulated CNVs,
February 2020 | Volume 11 | Article 82
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SNPs, and indels) and aligned back to the control genome. In the
read alignment file for the test genome, simulated CNVs
(duplications and deletions) would ideally appear as increased
read coverage or reduced read coverage, respectively (Figure 1).
Options to generate short reads rearranged according to
customized length, type (duplication or deletion) and copy
number of CNVs within the genomic coordinates of target
regions (whole exons and, potentially, regions upstream and
downstream of exons) should be available in such a program
(Figure 1). To mimic real data, it would be desirable to introduce
SNPs and indels during this step as well.
Frontiers in Genetics | www.frontiersin.org 3
These characteristics were incorporated into the program
SECNVs, which we designed to solve the issue of how to
reliably simulate CNVs for WES datasets. The Python-based
SECNVs pipeline copies the FASTA reference genome (control)
and a list of start and end coordinates for exons to a working
directory. From the command line, the user can choose to
expand or connect regions to specify targets for sequencing
and define the type, total number, copy number, and length of
CNVs to simulate. SECNVs makes a list of randomly generated
CNVs and using that information creates a file of rearranged
target regions. Next, FASTA-formatted test genome sequence(s)
FIGURE 1 | Copy Number Variant detection by alignment of whole-exome sequencing reads to a reference genome. Whole-exome sequencing data are obtained
by sequencing target regions in genomes of interest. If the test genome contains duplications and/or deletions overlapping target regions, these regions will be
rearranged (duplicated, deleted or shifted in their genomic coordinates) compared to control and reference genome. Reads from the test and control genomes are
aligned to the original target regions in the reference genome. Copy number variants are detected according to the alignment.
TABLE 1 | Comparison of current simulators to SECNVs.

Simulator
Type

Name Language Steps Extra Files? * Output Format Short Reads
Simulated?

WGS RSVSim (Bartenhagen and
Dugas, 2013)

R Multiple No Test genome (fasta) and CNV
information

No

SCNVSim (Qin et al., 2015) JAVA 2 Samtools index of reference genome;
Chromosome length file; Repeat mask file

Test genome (fasta) and CNV
information

No

Pysim-sv (Xia et al., 2017) Python Multiple No Fastq and SAM Some
SVsim (Faust, 2017) Python 1 Samtools index of reference genome Test genome (fasta) and bedpe No
SInC (Pattnaik et al., 2014) C 2 No Test genome (fasta) and short reads Some

WES VarSimLab1 (CNV-Sim2) Python 1 No Short reads or SAM, CNV
information

Some

SECNVs Python 1 No Test genome (fasta), short reads
and/or BAM files, and CNV
information

Yes
February 2020 | Volume
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and FASTQ-formatted short sequence reads for the target
regions from the control and single or pooled test genome(s)
are simulated, and BAM file(s) and index(es) for them are all
generated in a single command. These files can then be used as
the input to compare various CNV detection tools.

Simulation of Rearranged Genomes and
Rearranged Target Regions
Before simulating WES, test genomes containing simulated
CNVs that overlap with target regions are produced. First, the
reference sequence is preprocessed based on how the user wants
to handle gaps in the sequence. Next, a list of coordinates for
CNVs are generated. Then SNPs and indels are simulated to
create test genomes that mimic real data. Finally, CNVs are
created in the FASTA-formatted test genome files.

Preprocessing
First, SECNVs reads in a FASTA reference genome file and a file
of target regions, and checks which option the user chose to
handle ambiguous nucleotides (N) or assembly gaps (collectively
referred to herein as “gaps”). An assembly gap is a stretch of 50
(default) or more “Ns” in the sequence. The user can choose to
replace ambiguous nucleotides or gaps with random nucleotides,
to avoid simulating CNVs in regions containing gaps, or to
ignore the presence of gaps (default). If the user chose
replacement, SECNVs finds gaps in the reference genome and
fills them with random nucleotides. Instead, if the user chose to
avoid them, after finding the gaps, SECNVs stores the genomic
coordinates that demarcate each gap for the following steps.

Creating a List of Coordinates for Copy Number
Variant Regions
Before actually simulating a FASTA test genome and WES reads
that contain CNVs, a list of sites where the CNVs will be placed is
generated by the software. Placement of CNVs in the sequence
depends on many user defined parameters: proportion of each
type (duplication, deletion), total number, range of copy number,
range and distribution of lengths (random, Gaussian, Beta, user-
supplied), spacing (random, Gaussian), and minimum spacing
between CNVs. Unless the user specifies a number of CNVs per
chromosome, the application considers the proportion of CNVs
that would be expected on each chromosome based on the length
of the chromosome. The software randomly allocates whether
each CNV is a duplication or deletion and the number of copies
will be simulated within the user-defined range for copy number,
and the length is also assigned randomly within the user-defined
range and length distribution. Once the length of the CNVs have
been determined, for each CNV, the software randomly chooses
the start point of that CNV based on CNV spacing and calculates
the coordinate for the end point. At this stage, the software stores
the coordinates for the beginning and end of the CNV region.
Next, if the user specified that CNVs should not overlap with any
gaps, SECNVs checks the coordinates of the CNV region against
the coordinates for gaps. If an overlap is found, the CNV is
discarded; otherwise it is kept for the next step. SECNVs then
compares the start and end coordinate of the CNV region to the
Frontiers in Genetics | www.frontiersin.org 4
list of target regions. If there is partial (default minimum overlap
is 50 bp) or complete overlap with targets, the region is retained,
otherwise it is discarded, and the loop starts again. Before writing
the coordinates for the CNV regions to the file, SECNVs checks
for overlap with previously generated regions or a user-defined
buffer region. Only non-overlapping CNV regions are recorded
in the final list from SECNVs. The loop is repeated until the total
number of CNVs is reached, unless the chromosome is too small
and/or the number of target regions is too limited to simulate
enough CNVs. In this situation, SECNVs outputs a warning
message and the number of CNVs simulated on that
chromosome is printed instead of the user specified number,
and the program continues for other chromosomes. Users can
also choose to simulate CNVs outside of target regions. The
process is very similar to simulating CNVs overlapping with
target regions. The only difference is that if a CNV does not
overlap with any target region, it will be kept; otherwise it will be
discarded. SECNVs can also work with a list of predefined CNV
regions. In this case SECNVs will read in the CNV list and use it
as the final output of this step.

The Gaussian distribution of CNV spacing is generated by
random selection from a symmetrically truncated Gaussian
distribution mapped to the length of the chromosome, with
distribution parameters (mean, SD) supplied by the user.
Likewise, Gaussian distribution of CNV length is generated by
random selection from a symmetrically truncated Gaussian
distribution mapped to the range of user specified CNV length
given distribution parameters (mean, SD) supplied by the user.
The Beta distribution of CNV length, which is more realistic for
CNV length distribution (Bartenhagen and Dugas, 2013), is
generated by random selection from a Beta distribution
mapped to the range of user-specified CNV lengths, again
given distribution parameters (alpha, beta) from the user.
Default values for alpha and beta are those used in
Bartenhagen and Dugas, 2013. Otherwise, the user must
estimate the parameters for the Beta distribution using a
collection of sample CNV lengths from their own data, which
can easily be done using R (Team, 2016). Detailed instructions
for this are included in the manual.

The final product of this step is a list of coordinates for CNV
regions that are used in the following step to produce test
genomes that are rearranged from the reference genome and
adjusted coordinates for target regions.

Simulation of Test Genomes and Adjusted
Target Regions
The target regions are duplicated, deleted or shifted as a result of
the simulated CNVs, as shown in Figure 1. Short reads are
generated based on the rearranged genome and target regions,
and aligned to the original reference/control genome in this
“simulation of short reads” step.

Before introducing CNVs into the FASTA genome sequence,
SNPs and indels are simulated as requested by the user. First,
SNPs are randomly generated in the target regions plus a user-
supplied buffer region upstream and downstream of the target
regions (default is 0), based on the SNP rate specified by the user.
February 2020 | Volume 11 | Article 82
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In this step, SECNVs randomly extracts n positions from these
regions to simulate SNPs, where n equals the total length of the
regions multiplied by the SNP rate. Then, nucleotides for these
positions are randomly changed to another nucleotide in the test
genome using the weights assigned by (Park, 2009) to represent
the known mutation rate for SNP in human. Users can modify
the mutation rates for other organisms. Detailed instructions are
in the manual.

Next, indels are randomly generated in the target regions
based on the indel rate (default is 0) specified by the user. In this
step, m start points of indels are randomly generated in the target
regions, where m equals the total length of the target regions
multiplied by the indel rate. The length of each indel is then
assigned by randomly choosing a number between 1 and the
maximum indel length specified by the user. Type of indel
(insertion or deletion) is randomly assigned to each indel as
well. Next, SECNVs sorts the indels by their start points, and
generates them one by one. If an indel is an insertion, SECNVs
will make a random string of nucleotides of the previously
assigned length and insert it at the assigned start point of that
indel in the test genome sequence. Then, SECNVs recalculates
the genomic coordinates of the target regions. If the start and/or
end of the target regions are greater than the start point of the
indel, their coordinates are increased by the length of that indel.
The start point of the remaining indels is iteratively changed as
well: coordinates of subsequent indels are increased by the length
of that indel.

If an indel is a deletion, SECNVs will first check if the length
of that indel is smaller than the target region it is in. If not, the
length of that indel is reduced to ensure that at least one base pair
of the target region remains. Then the sequence between the
coordinates defining the indel is deleted from the test genome.
Next, if the start and/or end of the target regions are greater than
the start point of the indel, their coordinates are adjusted by
subtracting the length of that indel. The start point of the rest of
the indels are adjusted in the same way.

Finally, after the SNP and indels are created, the simulated
CNVs are generated in the FASTA test genome files. In general,
Frontiers in Genetics | www.frontiersin.org 5
users would simulate CNVs that overlap with targets. The list of
CNVs is sorted by coordinate and processed one by one so that
the coordinates for subsequent CNVs are adjusted, similar to the
process used for indels.

For each CNV, the genomic start and end coordinates and
length are extracted. Then SECNVs loops iteratively through the
genomic coordinates for all the target regions on a chromosome. If
a target region is completely inside the CNV, it is categorized as
“inside the CNV.” If a target region partially overlaps with a CNV,
it will be split into at least two parts: the parts outside of the CNV
and the part overlapping with the CNV, and then categorized
(upstream, inside, downstream), as shown inFigure 2. Sometimes
users will choose to simulate CNV completely outside of target
regions, even though those CNVwill be undetectable in theWES.
If a target region is completely before the CNV, it is categorized as
“upstream of the CNV” and if a target region is completely after
the CNV, it is categorized as “downstream of the CNV.”

The next step is to adjust the coordinates to take into account
the placement of the CNV relative to the target regions. As
shown in Supplementary Figure 1, the coordinates of target
regions categorized as “upstream of the CNV” remain
unchanged. Coordinates of target regions categorized as “inside
the CNV” must be adjusted. For duplications, the new start and
end positions of these target regions will be: new position =
length * (number of copies – 1) + old position, where the number
of copies loops from 1 to the total copy number of that
duplication, thus creating a tandem CNV duplication event in
the test sequence. For deletions, when the CNV and target region
overlap, the coordinates for that part of the target are deleted
from the file. Coordinates of target regions categorized as
“downstream of the CNV” will be altered as follows. For
duplications, new position = length * (total copy number of
duplication –1) + old position. For deletions, new position = old
position – length of the CNV.

Finally, the CNV sequence will be copied to or deleted from
the FASTA test genome accordingly. All the genomic
coordinates of CNVs subsequent to this CNV in the list are
adjusted in the same manner as the target regions categorized as
FIGURE 2 | Categorization of target regions in the test genome. For each of the simulated copy number variants (CNVs), all target regions on a chromosome are
assigned as “upstream of the CNV,” “inside the CNV,” and/or “downstream of the CNV.” If the region partially overlaps it is also split. Afterwards genomic
coordinates for the targets are recalculated and split regions are reconnected.
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“downstream of the CNV.” Finally, if a target region was
previously split, it will be reconnected.

The software loops iteratively through all CNVs to create the
rearranged test genome sequence and target regions for short
read simulation. If the user chose to simulate multiple test
genomes, the steps after preprocessing will be repeated to
simulate each test genome.

The output files generated by this step include: 1. Test genome
(s) (FASTA) with non-overlapping CNVs; 2. Target regions for
test genome(s) (.bed); 3. Control genome (FASTA, optional); 4.
Target regions for control genome (.bed, always generated in case
the target regions are modified by user in sequencing steps); 5.
List(s) of CNVs overlapping with target regions (.bed); 6. List(s)
of CNVs outside of target regions (.bed, optional).

This is the core step of SECNVs. Users can choose to continue
the pipeline within SECNVs to simulate short reads or use
another short-read simulator and the files produced from this
step as input.

Simulation of Short Reads
Users have the option to generate short read files with SECNVs
by simulating single- or paired-end sequences from the test and
control genomes. During this step, if the spacing between target
regions is less than the spacing selected by user (default 0), the
target regions are connected to form a single region (called a
combined target region) to simulate the sequences. Users can
also choose to expand the target regions by including additional
nucleotides (default 0) upstream and downstream of the target
regions (called an extended target region) for sequencing. The
number of reads, type of reads (paired-end or single-end),
fragment size, standard deviation of fragment size, read length,
quality score offset, and error model can also be specified. A
default error model: Illumina HighSeq 2500 for WES paired end
sequencing is provided. This default error model was generated
using a modified GemSIM script (McElroy et al., 2012) which
fixed a bug to make the error profile generation function work.
The dataset used for generating this error model was a human
WES dataset from the Sequence Read Archive at the National
Center for Biotechnology Information: run number
ERR3385637. Users can also generate their own error model
from real data using this modified GemSIM script, to keep the
error profiles up to date as sequencing technology changes over
time. Detailed instructions on how to use it to make new error
profiles are included in the manual.

Instead, SECNVs reads in the headers of the input file as keys
of a dictionary and reads the sequences line by line and combines
them as values of that dictionary for the corresponding keys.
Short read sequences are generated within the combined and
extended target regions, which match just the target regions
when default settings are used. Reads passing GC filtering are
synthesized using a modification to the Wessim1 (Kim et al.,
2013) algorithm (ideal target approach). Wessim1 only simulates
reads at the start and the end of each target region
(Supplementary File 1). Custom codes were written to modify
Wessim1's scripts to correct this shortcoming of the program.
Now fragments across the entire target regions based on
fragment size and standard deviation of fragment size are
Frontiers in Genetics | www.frontiersin.org 6
produced and saved as FASTQ sequence, better mimicking
real-world WES sequencing data. Output files from this step
are the short reads for test genome(s) (FASTQ) and the short
reads for the control genome (FASTQ, optional).

Creating BAM Files and Indexes From the
Simulated Short Read Files
BAM files and indexes can be generated from the short read files
for the test and control genomes through a standard pipeline that
implements the widely-used tools BWA (Li and Durbin, 2009),
samtools (Li et al., 2009; Li, 2011), Picard3, and GATK
(McKenna et al., 2010):

1. The Burrows–Wheeler Aligner of BWA is used to align the
FASTQ reads to create a SAM file.

2. Samtools is used to convert the file format to a BAM file, sort
the BAM file, and remove potential PCR duplicates.

3. Picard is used to add read groups to the samples.
4. GATK is used to locally realign reads, to minimize the

number of mismatching bases across all the reads.

The output files in this step include: 1. Indexes for the control
genome (.dict,.fai,.sa, etc., if BAM files are to be generated and no
indexes exist in the output directory); 2. BAM file(s) and index
(es) for the test genome(s) (.bam and.bai); 3. BAM file(s) and
index(es) for control genome (.bam and.bai, optional).

Validation of Method
To confirm that the code for the algorithm implemented in
SECNVs is correctly simulating the test genome and target
regions, a small pseudo-genome was used as input to illustrate
the process in Supplementary Figure 1.

Example Command Lines

1. Simulate 10 CNVs overlapping with target regions, and one
CNV outside of target regions randomly on each chromosome
using default lengths, copy numbers, minimum distance
between each of the 2 CNVs and proportion of duplications.
For each CNV overlapping with target regions, the overlapping
length is no less than 90 bps. CNV break points follow a
Gaussian(1, 2) distribution, and CNV lengths follow a Beta(2,
5) distribution. CNVs are not generated in gaps. A total of five
test and control samples are built. Short reads (fastq) files are
generated using default settings, paired-end sequencing.

SECNVs/SECNVs.py -G< input_fasta> -T< target_region>
-o < output_dir> \-e_chr 10 -o_chr 1 -ol 90 -ms gauss -as 1 -bs 2
-ml beta -al 2 -bl 5 -eN gap -n 5 -sc -pr -ssr

2. Simulate CNVs overlapping with target regions from a provided
CNV list. Twenty CNVs are to be simulated outside of target
regions randomly on the whole genome with default settings.
CNVs are not to be generated on any stretches of “N”s. A pair of
test and control genome are built.

SECNVs/SECNVs.py -G < input_fasta> -T <
t a r g e t _ r e g i o n> - o < ou t p u t _ d i r > \ - e _ c n v <
list_of_CNV_overlapping_with_target_regions> -o_tol 20
-eN all -sc
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3. Simulate 20 CNVs overlapping with target regions on the whole
genome and have at least 100 bps between any two CNVs.
CNVs are not generated outside of target regions. Gaps (50 or
more consecutive “N”s) are replaced by random nucleotides.
SNP rate is 0.001 and indel rate is 0.00001, and the maximum
indel length is 100 bps. Paired-end sequencing reads with
quality offset 35 are then produced. For a pair of test and
control genomes BAM files are generated.

SECNVs/SECNVs.py -G < input_fasta> -T < target_region>
-o < output_dir> \-e_tol 20 -f 100 -rN gap -sc -pr -q 35 -ssr -sb
\-s_r 0.001 -i_r 0.00001 -i_mlen 100 \-picard <
absolute_path_to_picard> -GATK < absolute_path_to_GATK>

4. Simulate CNVs overlapping with target regions and outside
of target regions from provided files of CNV lengths.
Combined single regions are formed from two or more
regions originally separated by less than 100 bps. CNVs are
not generated on gaps (60 or more consecutive “N”s). A total
of 10 test and control samples are built. The paired-end
sequencing must include sequences 50 bp upstream and
downstream of the target regions. The final output consists
of short reads (fastq) files with 100,000 reads.

SECNVs/SECNVs.py -G < input_fasta> -T <
target_region> -o < output_dir> \-ml user -e_cl <
length_file_1> -o_cl < length_file_2> \-clr 100 -eN gap
-n_gap 60 -n 10 -sc -pr -tf 50 -nr 100000 -ssr
Simulation of Mouse and Human Whole-
Exome Sequencing Datasets
To evaluate the performance of SECNVs, we used mouse (mm10)
and human (hg38) chromosome 1 (downloaded from UCSC
genome browser: https://genome.ucsc.edu/) as control genomes.
Target regions were exons, which were also downloaded from the
UCSC genome browser. We simulated 20 test genomes for each
species that included 100 randomly distributed CNVs that
overlapped at least 100 bp of target regions and ranged from
1,000 to 100,000 bp in length. Another 10 CNVs outside of target
regions were also generated for each species. For each test genome,
all sequenceswith “Ns” (gaps)were excluded, the SNPratewas set at
10-3, and the indel rate was set at 10-5 (Mills et al., 2006). The
minimum distance between any two CNVs was 1000 bp. For the
synthesis of short reads, target regions less than 100 bp apart were
connected and 50 bp upstream and downstream of the connected
target regions were also sequenced. Paired-end sequencing was set
to a base quality offset of 33. A total of one million reads were
generated for each sample, with a fragment size of 200 bp and a read
length of 100 bp. The rearranged fasta genome files with target
regions, fastq short read files, BAM files and indexes for the 20
samples and control were simulated in one command for each
species as follows:

Mouse: python SECNVs/SECNVs.py -G mouse/mouse.1.fa -T
mouse/mouse.1.bed -e_chr 100 -o_chr 10 -o test_mous -rn mouse
-ssr -sb -f 1000 -ol 100 -tf 50 -clr 100 -sc -eN all -pr -n 20 -q 33 -s_r
0.001 -i_r 0.00001 -nr 1000000 -picard< absolute_path_to_picard>
-GATK < absolute_path_to_GATK>

Human: python SECNVs/SECNVs.py -G hg38/hg38.1.fa -T
hg38/hg38.1.bed -e_chr 100 -o_chr 10 -o test_human_nn -rn
Frontiers in Genetics | www.frontiersin.org 7
human -ssr -sb -f 1000 -ol 100 -tf 50 -clr 100 -sc -eN all -pr -n 20
-q 33 -s_r 0.001 -i_r 0.00001 -nr 1000000 -picard <
absolute_path_to_picard> -GATK < absolute_path_to_GATK>

Validation of Read Generation
and Alignment
To confirm SECNVs is reliably simulating short reads and BAM
files, read alignments in the target regions for human and mouse
chromosome 1 against the respective reference genome were
visualized with IGV (Thorvaldsdóttir et al., 2013).

Evaluation of Performance of Simulator of
Exome Copy Number Variants
To demonstrate the utility of simulated datasets generated by
SECNVs in performance testing of CNV detection software, we
chose three commonly used WES CNV detection tools:
ExomeDepth (Plagnol et al., 2012), CODEX2 (Jiang et al.,
2018), and CANOES (Backenroth et al., 2014). Performance
was evaluated for sensitivity, precision and false discovery rate.
Sensitivity is the number of true CNVs that are correctly detected
divided by the total number of true CNVs. Precision is the
number of CNVs correctly detected by tools, divided by the total
number of CNVs detected by tools. False discovery rate (FDR),
which equals to 1—precision, is the number of CNVs incorrectly
detected by tools, divided by the total number of CNVs detected
by tools. During this evaluation, we found that CNV transition
probability in ExomeDepth and CNV occurrence in CANOES
influenced the test results the most, so we evaluated different
values for these parameters as well. All other parameters were
either left as default or set to fit the characteristics of CNVs we
expected to detect. For example, in ExomeDepth, length of
expected CNVs was set to 50000, which was about the average
CNV length expected. A CNV was considered detected if at least
80% of the detected CNV overlap with a simulated CNV.We also
used the best application with optimized parameter settings to
test if any CNVs outside of target regions were detected.
RESULTS

In this study, we presented a fast, reliable and highly-
customizable software application, SECNVs, which takes in a
reference genome and target regions to simulate SNPs, indels and
CNVs in one or multiple test genomes, as well as the control, and
outputs fasta formatted genome files with target regions, short
read files, BAM files and indexes in a single command.

Computational Speed
SECNVs is a fast software application for CNV simulation. The
detailed approximate computation time to generate CNVs for
each sample on human and mouse chromosome 1 is shown in
Table 2.

Validation of Method
Simulation of SNPs, indels and CNVs in the tiny pseudo-genome
established that the method of random replacement of gaps,
simulation of SNPs, indels and CNVs in the test genome is
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accurate; and the rearrangement of target regions for the test genome
is accurate aswell (Supplementary File 2; Supplementary Figure 1).

The simulated short reads and BAM files generated using the
modified Wessim1 code align across the whole target regions
(Figure 3). Differences in read coverage at combined and extended
target regions in test andcontrolBAMfiles are characteristic ofCNVs
spanning these target regions (Figures 3A, C). For target regions
without CNVs, there was no obvious difference in read coverage at
combined and extended target regions in test and control BAM files
(Figures 3B, D). No reads were aligned outside of target regions,
regardless of whether there were CNVs or not, except for a few
alignment errors. The reliability of the BAM files ensured that CNVs
overlapping with target regions could be readily detected.
Frontiers in Genetics | www.frontiersin.org 8
Sensitivity and Precision of Copy Number
Variant Detection From Simulated WES
Datasets
Average sensitivity, precision, FDR and the number of CNVs
detected by ExomeDepth, CANOES and CODEX2 using
simulated reads from human and mouse genomes are
summarized in Table 3 and Figure 4. Regardless of the species,
as the transition probability from ExomeDepth increased
(Figures 4A, B) and until the number of CNV detected
matched the number of CNV simulated, sensitivity increased,
and precision was high. Beyond 100 CNV, the number of detected
CNV rapidly inflated and precision rapidly declined. A similar
profile was observed for occurrence of CNV inCANOES (Figures
4C, D). The overall performance of ExomeDepth in terms of
precision and sensitivity was better than CANOES or CODEX
(Figure 5). False discovery rate was higher for the human data
than the mouse data. CODEX was not able to detect all of the
simulated CNV. Although the parameters of transition
probability in ExomeDepth and occurrence of CNV in
CANOES are similar in concept, the comparison in Figure 5
shows that as each of these parameters was changed, performance
of the two software tools was very different. We also confirmed
that CNVs simulated outside of exomes were never detected.
DISCUSSION

CNVs represent an important source of genetic variation and have
been associated with disease and other important phenotypic traits
in humans, domesticated animals and crops (Zhang et al., 2009;
FIGURE 3 | Exemplar simulated output BAM files visualized in IGV. (A) A 10 copy duplication at mouse chr1:65272798-65339955, which partially overlap with
exons of the Pikfyve gene. Because of the read depth in this region, the reads tracks are shown side-by-side; (B) A region of Dhx9 gene of the mouse genome,
showing no copy number variants in this region; (C) A deletion at human chr1: 35106158-35150376, which partially overlap with exons of the Zmym1 gene; (D) A
region of ANKRD13C gene of the human genome, showing no copy number variants in this region. In each image, the top track is a region of the test genome and
the middle track shows the same region of the control genome. The bottom track is the exons and introns of genes.
TABLE 2 | Computation time and memory usage of SECNVs.

Mouse
chromosome

1

Human
chromosome

1

1. Read in genome and target region files,
exclude all “N” sequences

<15 s <25 s

2. Generate list of CNVs overlapping with
target regions

<4 min <8 min

3. Generate list of CNVs outside of target
regions

<50 s <3 min

4. Generate rearranged genome: make
SNPs, indels and CNVs in the genome

<50 s <80 s

5. Generate short reads <7.5 min <7.5 min
6. Create indexes for the control genome <3.5 min <4.5 min
7. Generate BAM file and index <2 min <2 min

Max memory 5,630 MB 6,516 MB
Average memory 1,885.78 MB 2,521.26 MB
CNV, copy number variant; SECNVs, Simulator of Exome Copy Number Variants.
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Alkan et al., 2011).WES projects represent an increasingly common
source of genomic data that can be harvested to detect CNVs. Often
applied in the detection of mutations associated with cancer,
Mendelian and complex diseases in humans, WES data have also
been generated for multiple non-model organisms to identify
genetic variants, including CNVs (Prunier et al., 2017; Low et al.,
2019). However, previous studies have shown that detection of
CNVs from WES data is inconsistent across the tools designed to
detect these variants (Guo et al., 2013; Nam et al., 2016; Yao et al.,
2017). These evaluations have largely relied on datasets of well-
characterized CNVs obtained using array-based experiments or
WGS data from human samples, a benchmarking approach that
presents several limitations. First, known variants tend to occupy
the higher end of the spectrum of lengths for CNVs. Second, known
CNVs are often derived from cancer tissues and are expected to
show different features than germline CNVs. Third, the
characteristics of CNVs might differ significantly between
humans and other organisms. Therefore, flexible CNV simulators
would allow more rigorous testing of the efficacy of these tools.

Previously developed simulators fall short of producing
realistic CNVs and present a variety of operational issues that
make them challenging or impossible to use. Most of the
applications for simulating CNVs and other structural variants
from WGS data (Table 1) (Bartenhagen and Dugas, 2013;
Pattnaik et al., 2014; Qin et al., 2015; Faust, 2017; Xia et al.,
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2017), require commands be entered in several steps, and require
further processing to use their outputs. Among them, only
RSVSim (Bartenhagen and Dugas, 2013) and SVsim (Faust,
2017) allow users to specifically generate CNVs in user-
selected regions of the genome. However, they cannot calculate
rearranged coordinates of the target regions in the test genome
after simulating CNVs, which makes it impossible to use their
outputs to generate accurate sets of short reads if the user only
knows the original target regions but not the probe sequences in
sequencing step. Additionally, RSVSim runs into an infinite loop
when there are too many gaps in the genome.

To the best of our knowledge, VarSimLab1, previously
released as CNV-Sim2, is the only other program specifically
designed to simulate CNVs from WES data (Zare et al., 2017),
but the website for the software indicates it is currently not
usable. We found that CNV-Sim had a problem generating short
reads. The main issue with these programs appears to be their
reliance on the ideal target approach implemented in the
application Wessim1 (Kim et al., 2013) to generate short reads,
but this approach does not provide coverage across target regions
(see Supplementary File 1). Furthermore, the majority of CNVs
simulated by CNV-Sim overlap with each other when target
regions are nearby on the reference genome. A third issue is that
this program creates temporary “genomes” by deleting the
segments between target regions. Additional copies for the test
TABLE 3 | Average sensitivity, precision, FDR, and number of CNV detected using simulated WES datasets.

Application Parameter value Mouse Human

Sensitivity Precision FDR Total # of CNVs
detected

Sensitivity Precision FDR Total # of CNVs
detected

Exome-Depth 0.0005 0.34 0.99 0.01 34.2 0.20 0.98 0.02 20.1
0.001 0.37 0.99 0.01 37.3 0.22 0.98 0.02 22.7
0.010 0.48 0.99 0.01 49.3 0.32 0.98 0.02 32.8
0.020 0.53 0.99 0.01 55.0 0.36 0.98 0.02 38.1
0.030 0.55 0.98 0.02 58.4 0.39 0.98 0.02 41.5
0.050 0.60 0.99 0.01 64.3 0.44 0.98 0.02 47.1
0.080 0.65 0.98 0.02 70.4 0.48 0.98 0.02 52.7
0.100 0.67 0.98 0.02 73.1 0.50 0.97 0.03 56.0
0.150 0.70 0.96 0.04 78.0 0.55 0.93 0.07 66.1
0.200 0.72 0.94 0.06 83.3 0.61 0.85 0.15 80.6
0.250 0.74 0.90 0.10 89.5 0.64 0.69 0.31 106.1
0.300 0.76 0.82 0.18 101.6 0.68 0.49 0.51 157.4
0.350 0.77 0.65 0.35 127.9 0.71 0.31 0.69 262.1
0.400 0.78 0.43 0.57 193.7 0.73 0.17 0.83 482.5

CANOES 0.0005 0.34 0.90 0.10 37.7 0.32 0.91 0.09 35.6
0.001 0.36 0.90 0.10 40.1 0.35 0.90 0.10 38.7
0.010 0.45 0.89 0.11 50.7 0.44 0.88 0.12 50.7
0.050 0.55 0.79 0.21 72.3 0.54 0.79 0.21 73.7
0.080 0.56 0.65 0.35 95.2 0.55 0.64 0.36 100.8
0.100 0.55 0.53 0.47 120.4 0.54 0.48 0.52 136.6
0.120 0.52 0.39 0.61 158.0 0.50 0.31 0.69 198.1
0.125 0.51 0.35 0.65 169.5 0.49 0.27 0.73 218.0
0.150 0.46 0.20 0.80 248.2 0.41 0.13 0.87 356.3
0.200 0.35 0.09 0.91 404.4 0.27 0.05 0.95 574.7
0.250 0.28 0.06 0.94 460.8 0.20 0.04 0.96 611.6
0.300 0.25 0.06 0.94 473.9 0.19 0.03 0.97 631.9
0.350 0.22 0.05 0.95 479.9 0.17 0.03 0.97 655.6

CODEX2 – 0.47 0.72 0.28 65.9 0.31 0.71 0.29 44.9
February 20
20 | Volum
CNV, copy number variant; WES, whole-exome sequencing; FDR, false discovery. The parameter for ExomeDepth is transition probability and the parameter for CANOES is
CNV occurrence.
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FIGURE 4 | Sensitivity, precision and number of copy number variants (CNVs) detected for ExomeDepth and CANOES. The sensitivity, precision and number of
CNVs detected in (A) simulated mouse data for ExomeDepth, (B) simulated human data for ExomeDepth, (C) simulated mouse data for CANOES and (D) simulated
human data for CANOES are displayed. Red lines show sensitivity, blue lines show precision and orange lines show the number of CNVs detected. Solid triangles,
squares and circles represent the actual data points.
FIGURE 5 | Comparison of sensitivity, precision and number of copy number variants (CNVs) detected by the three software applications. (A) simulated mouse data
and (B) simulated human data. Red lines show sensitivity, blue lines show precision and orange lines show the number of CNVs detected. Because CODEX2 does
not have the parameter “transition probability” or “CNV occurrence,” a single value for sensitivity, precision and number of CNVs is displayed.
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genome are generated in the case of duplications, and additional
copies for the control genome are created in the case of deletions.
Short read files are then generated using these test and control
genomes (called “tumor” and “normal” in CNV-Sim). This makes
it impossible to generate pooled samples with a common control,
whereas many CNV detection applications for WES data require
pooled samples as input. In addition, it cannot simulate the realistic
scenario of CNVs with different degrees of overlap with target
regions. Finally, CNV-Sim only accepts one chromosome at a time.

Here, we described SECNVs, a novel software application that
fills this gap by simulating realistic CNVs fromWES data. First, it
uses a completely new method to accurately and reliably simulate
test genome(s) and target regions with SNPs, indels and CNVs.
Second, it incorporates a modified version of the Wessim1
algorithm to simulate short reads, which effectively mimics
real-world WES sequencing, including GC filtration. Third, to
keep the sequencing error profile up to date, SECNVs provides a
recent error profile for short read simulation and includes
detailed instructions on how to make user-specified error
profiles from real data. Finally, the options for CNV
simulation are highly customizable. In this paper, SECNVs was
applied to human and mouse data and the results showed that
CNVs simulated by the software application were successfully
detected by various WES CNV detection software applications,
demonstrating that output from SECNVs can be used to test
these applications and their parameters.

Sensitivity and FDR were similar to previous reports using
real data (Seiser and Innocenti, 2015; Zare et al., 2017). It is
known that the sensitivity is low and FDR is high for CNV
detection inWES datasets (Tan et al., 2014; Yao et al., 2017). This
is because read depth approaches are the only reliable method for
WES CNV detection, but they have many limitations (Tan et al.,
2014). In addition, the high SNP and indel rate introduced, as
well as GC filtration and sequencing errors affect the alignment
and reduce sensitivity and increase FDR. However, compared to
the real human CNV detection from Illumina genotyping
microarrays by other Hidden Markov Model-Based CNV
detection methods mentioned in Seiser and Innocenti (2015),
and real human CNV detection from WES data using various
software applications (Zare et al., 2017), the sensitivity, precision,
and FDR all suggest that CNVs generated by SECNVs are reliable
and can be easily detected.

After reaching the true CNV number, the number of detected
CNVs tends to inflate. When this happens, sensitivity either
increases very slowly or begins to drop, and precision decreases
rapidly. Therefore, the user can choose the transition probability,
CNV occurrence or similar parameter to detect CNVs
approximating the number of real CNVs, and determine if the
sensitivity and precision are acceptable. Alternatively, the user
can sacrifice some sensitivity and detect fewer CNVs to get
higher precision. Of course, users can test other parameters as
well to find out the most suitable software application and
parameter settings for their data.

Using datasets simulated with SECNVs, we were also able to
characterize the performance of CNV detection software
applications under a wide range of parameters. We showed
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that simulations are critical to assess the effect of key
parameters on the sensitivity and accuracy of such
applications. Thus, SECNVs can simulate highly customized
WES datasets to mimic real-world data and enable users to
identify the most appropriate software application and
parameter settings for their real data.

SECNVs is suitable for the analysis of large, complex genomes.
In our tests on mouse and human chromosome 1 (~195.5 and
~250 Mbp), the program simulated a new chromosome for each
species with 110 CNVs/chromosome, removed gaps, and generated
one million reads/sample, BAM files and indexes in less than 30
min. The run time for scaled-up simulations using complete
mammalian genomes (~3–3.5 Gbp) should therefore require less
than a day. Longer computational times are likely to occur for
incomplete genomes with more extensive gap regions, although the
gaps-exclusion component of SECNVs is computationally fast
(Table 2). Because there is no limitation in the number of input
chromosome/scaffolds/contigs, SECNVs can be applied to highly
fragmented assemblies of nonmodel organisms. For instance,
CNVs have been simulated using SECNVs on the ~21 Gbp
assembly of the loblolly pine, which consists of 1,755,249 contigs
and scaffolds. In general, for very large assemblies such as those of
wheat, conifer and some amphibian genomes, generating CNVs is
likely to be computationally demanding. Using only scaffolds and
contigs containing the target regions is advised in order to
accelerate the simulation of CNVs.

We identified two main limitations in the current version of
SECNVs. First, because SNPs and indels are simulated in the test
genome and then CNVs are simulated, there is no variability
among the duplicated sequences. Second, all CNVs are tandem
duplications or deletions in SECNVs. However, these limitations
do not affect CNV detection from WES data, because most WES
CNV detection methods are read depth based, which cannot
distinguish between tandem duplication and insertion elsewhere
in the genome (Tan et al., 2014). The nature of WES datasets
makes methods other than read depth ineffective for WES CNV
detection (Tan et al., 2014).

One caution is that most diploid reference genomes report a
consensus sequence for each pair of chromosomes. Therefore, by
default the SECNVs simulator adds or deletes two copies at a
time. If the user wanted to extend the simulator to an odd
number of duplication or deletion events, the bam files for the
reference and test genomes could be merged.

Currently, SECNVs only simulates indels in target regions to
increase speed. For SNPs, buffer regions upstream and
downstream of target regions are allowed for simulation,
because SNPs downstream of CNVs may affect the detection of
that CNV (Bartenhagen and Dugas, 2013). Buffer regions
upstream and downstream of target regions are also allowed
for short read simulation. In future version of SECNVs, SNPs
and indels will be simulated for the whole genome.

The time used for each step implemented in SECNVs strongly
depends on the parameter settings supplied by the user and
increases in an approximately linear manner. For instance, run
time is positively correlated with the number of CNVs, SNPs and
indels that are generated. In addition, the run time tends to
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increase significantly when the length of all CNVs combined
exceeds the length of the genome, but we expect that this model
will rarely be implemented when simulating realistic CNVs even
in small genomes. Given its flexibility, precision and variety of
unique features, SECNVs represents a reliable application to
study CNVs using WES data for various species and under a
variety of conditions.
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