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Transnuclear mice reveal Peyer’s patch iNKT cells
that regulate B-cell class switching to IgG1
Eleanor Clancy-Thompson1,‡, Gui Zhen Chen1,‡, Nelson M LaMarche2,3, Lestat R Ali1 ,

Hee-Jin Jeong1,†, Stephanie J Crowley1, Kelly Boelaars1,4, Michael B Brenner2,3, Lydia Lynch2,3 &

Stephanie K Dougan1,3,*

Abstract

Tissue-resident iNKT cells maintain tissue homeostasis and periph-
eral surveillance against pathogens; however, studying these cells
is challenging due to their low abundance and poor recovery from
tissues. We here show that iNKT transnuclear mice, generated by
somatic cell nuclear transfer, have increased tissue resident iNKT
cells. We examined expression of PLZF, T-bet, and RORct, as well as
cytokine/chemokine profiles, and found that both monoclonal and
polyclonal iNKT cells differentiated into functional subsets that
faithfully replicated those seen in wild-type mice. We detected
iNKT cells from tissues in which they are rare, including adipose,
lung, skin-draining lymph nodes, and a previously undescribed
population in Peyer’s patches (PP). PP-NKT cells produce the major-
ity of the IL-4 in Peyer’s patches and provide indirect help for B-cell
class switching to IgG1 in both transnuclear and wild-type mice.
Oral vaccination with a-galactosylceramide shows enhanced fecal
IgG1 titers in iNKT cell-sufficient mice. Transcriptional profiling
reveals a unique signature of PP-NKT cells, characterized by tissue
residency. We thus define PP-NKT as potentially important for
surveillance for mucosal pathogens.
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Introduction

iNKT cells are T cells with semi-invariant TCRs that recognize lipid

antigens presented on CD1d. They exist as a pre-expanded pool and

can rapidly respond by producing a range of different cytokines

(Brennan et al, 2013). iNKT cell functional subsets have been

described that parallel the CD4 T-cell subsets: NKT1 cells express T-

bet and are poised to secrete IFNc; NKT2 cells express high levels of

PLZF and are poised to secrete IL-4, while NKT17 cells are RORct+

and poised to secrete IL-17 (Kim et al, 2015; Wang & Hogquist,

2018). Each of these subsets can be found in the thymus and appear

at different ratios in spleen and liver, which are the most abundant

sources of iNKT cells in the mouse (Engel et al, 2016; Tuttle &

Gapin, 2018).

iNKT cells are also found in disparate tissues such as lung,

adipose tissue, and intestinal lamina propria (Crosby & Kronenberg,

2018). In lung, iNKT cell production of GM-CSF helps control

Mycobacterium tuberculosis infection (Rothchild et al, 2017). iNKT

cells in the gut interact with CD1d on epithelial cells to cause feed-

back production of IL-10 under homeostatic conditions (Olszak et al,

2014), but can be activated by oxazolone-induced inflammation to

trigger colitis (Heller et al, 2002; Iyer et al, 2018). Gut iNKT cells are

also induced by microbial ligands early in life (Olszak et al, 2012; An

et al, 2014) and help shape the nascent microbiome (Selvanantham

et al, 2016; Saez de Guinoa et al, 2018). In adipose tissue, iNKT cell

interactions with macrophages set the metabolic tone of the whole

animal and affect insulin sensitivity and propensity toward obesity

(Lynch et al, 2012, 2015; Exley et al, 2014). In addition to the well-

described NKT1/2/17 subsets, iNKT cells can also have follicular

helper function (Chang et al, 2011; King et al, 2011; Dellabona et al,

2014; Doherty et al, 2018) and regulatory function (Monteiro et al,

2010; Sag et al, 2014), or produce primarily IL-9 (Kim & Chung,

2013; Monteiro et al, 2015). The role of iNKT cell subsets in distinct

tissue environments has been often difficult to elucidate due to poor

cell recovery and a paucity of iNKT cells at baseline.

iNKT cells can provide B-cell help in two fashions: either by

cognate interactions between CD1d-expressing B cells and CD40L-

expressing iNKT cells (Galli et al, 2007; Barral et al, 2008; Leadbetter

et al, 2008) or by non-cognate interactions whereby iNKT cells

license dendritic cells to prime CD4 Tfh cells (Tonti et al, 2009;

Vomhof-DeKrey et al, 2014). Cognate interactions generate short-

term bursts of Ig production, but do not sustain long-term B-cell
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memory or generate long-lived plasma cells (King et al, 2011; Tonti

et al, 2012; Vomhof-DeKrey et al, 2015). Non-cognate interactions

do generate long-term memory, and several studies have shown dif-

ferences between help provided by splenic iNKT Tfh versus CD4 Tfh,

despite the fact that both cell types produce IL-21 and express CD40L

(King et al, 2011; Tonti et al, 2012). In addition to cognate and non-

cognate help, early production of IL-4 by iNKT cells in the lung was

demonstrated to be critical for B-cell survival and entry into germinal

centers upon infection with viral pathogens (Gaya et al, 2018). These

studies defined iNKT cell provision of IL-4 as a third mechanism by

which iNKT cells offer B-cell help (Gaya et al, 2018).

NKT cell functional differentiation can begin as early as thymic

development (Lee et al, 2013). Signal strength through the TCR

during positive selection can skew function, with higher affinity or

more TCR signaling leading to NKT2 cells and lower TCR signaling

required for NKT1 cell development (Matulis et al, 2010; Cruz Tleu-

gabulova et al, 2016; Tuttle et al, 2018; Zhao et al, 2018). We previ-

ously reported a panel of iNKT cell transnuclear mice, cloned by

somatic cell nuclear transfer from the nuclei of individual iNKT

cells, which express monoclonal Vb7 or Vb8.2 TCRs (Clancy-

Thompson et al, 2017). Tissue-specific factors have been implicated

in iNKT cell subset specification, and our study unequivocally

showed that monoclonal iNKT cells with different ligand speci-

ficities differentiate in vivo into all iNKT subsets at relatively normal

frequencies, with a slight skewing of particular TCRs toward or

away from NKT17 profiles. TCR specificity does not measurably

affect localization of iNKT cells, their accumulation in tissues, or the

expression of CD4 and has only a modest impact on transcription

factor expression and cytokine production (Clancy-Thompson et al,

2017). Instead, tissue of origin plays a more dominant role in deter-

mining iNKT cell function, with iNKT cells from liver, skin-draining

lymph nodes, spleen, and thymus having distinct cytokine and tran-

scription factor profiles (Clancy-Thompson et al, 2017).

Given the importance of tissue-resident iNKT cells, we further

investigated whether our panel of transnuclear mice could be used

as an abundant source of tissue-resident iNKT cells. We here show

that iNKT cells from mesenteric lymph node, skin-draining lymph

node, adipose tissue, lung, liver, and spleen coordinate distinct cyto-

kine profiles. These cytokine profiles are similar among polyclonal

and each of our monoclonal lines, suggesting that TCR specificity

plays a minor role in the differentiation of tissue-resident iNKT cells.

Our transnuclear iNKT cells faithfully recapitulate the skewing of

NKT1/2/17 ratios seen in disparate tissues from C57BL/6 mice, and

transnuclear iNKT cells from adipose tissue are similar to those

reported from C57BL/6 mice as well. Furthermore, we uncovered a

novel population of iNKT cells residing in Peyer’s patches

and show that PP-iNKT cells are critical for B-cell class

switching to IgG1+ B cells in both steady state and upon oral

vaccination.

Results

Tissue-resident iNKT cells are greatly enriched in iNKT
transnuclear mice

We used somatic cell nuclear transfer to generate three independent

lines of transnuclear (TN) mice, all of which use the identical

Va14Ja18 TCRa chain, but with three distinct TCRb rearrangements

(Clancy-Thompson et al, 2017, 2018). When crossed to C57BL/6

mice, the TN TCR alleles segregate independently, which allowed us

to establish a line of Va14 TN mice that inherited only the rear-

ranged TCRa locus and therefore develop polyclonal iNKT cells.

These mice contain many-fold more iNKT cells in peripheral tissues

than wild-type B6 mice (Fig 1A and B). The fold increase is espe-

cially pronounced in tissues where iNKT cells are rare, such as skin-

draining and mesenteric lymph nodes, spleen, and lung.

To better profile cytokine and chemokine production by iNKT

cells from different tissues, lymphocytes were harvested from

spleen, mLN, sdLN, liver, adipose tissue, and lung of Va14 and

Ja18�/� mice (lacking iNKT cells), and cocultured with RAWd cells

with or without a-GalCer for 24 h. Culture supernatants were then

analyzed by cytokine bead array. Unfractionated lymphocyte popu-

lations were used; thus, the cytokines analyzed were not necessarily

secreted by iNKT cells directly. To determine which cytokines and

chemokines were produced in an iNKT cell-dependent manner,

lymphocytes from Ja18�/� mice stimulated with a-GalCer were

included as a negative control. As a second negative control, Va14
lymphocytes were cultured in the absence of added antigen to deter-

mine the production of iNKT-dependent cytokines in response to

endogenous ligands. Of the 31 analytes examined, 15 cytokines and

chemokines showed iNKT cell-dependent production as defined by

increased production in Va14 cultures compared to Ja18�/� cultures

across most tissues (Fig 1C). Mesenteric lymph node iNKT cells

produced IL-4 and IL-13, as well as LIF and IL-2, suggesting that a

large fraction of these cells are NKT2 (Fig 1C and Lee et al, 2015).

Liver iNKT cells adopted more of an NKT1-like profile and produced

CXCL9, CXCL10, and IFNc. Liver iNKT cells also produced some IL-

4, consistent with a previous report of IL-4 secretion by iNKT cells

during sterile liver injury (Liew et al, 2017). Both inguinal LN and

lung iNKT cells produced IL-17, although lung iNKT also produced

IL-10 (Fig 1C). Adipose cultures produced IL-10, as previously

reported (Lynch et al, 2012, 2015; Sag et al, 2014), as well as GM-

CSF and eotaxin (Fig 1C). Spleen appeared to contain the most

diverse iNKT population, capable of making nearly all cytokines

and chemokines examined, although this likely reflects a mixture of

several different functional subsets. Therefore, iNKT cells coordi-

nate a signature cytokine profile dependent on the tissue of origin.

The impact of tissue of origin on cytokine profiles was apparent in

cultures containing polyclonal iNKT as well as monoclonal iNKT

cells from Vb7A, Vb7C, and Vb8.2 TN mice, although subtle dif-

ferences in the relative magnitude of cytokine production from iNKT

cells bearing different TCRs may exist (Fig EV1).

Tissue-specific imprinting of TN iNKT cells recapitulates that
seen in wild-type iNKT cells

To ensure that tissue-resident iNKT cells obtained from our TN mice

faithfully recapitulate the phenotype of tissue-resident iNKT cells

from wild-type mice, we examined expression of lineage-specific

transcription factors in iNKT cells across multiple tissues in Va14
and C57BL/6 mice (Fig 2A–F). IFNc-poised NKT1 cells are charac-

terized by expression of T-bet, while NKT2 cells are PLZFhigh, and

NKT17 cells express RORct (Kim et al, 2015). Thymic differentiation

is altered in iNKT TN mice, with an increase in the NKT2:NKT1

ratio in the thymus, consistent with our previous report (Clancy-
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Figure 1. iNKT TN mice have increased numbers of tissue-resident iNKT cells.

A Diagram representing the placement of various tissues analyzed for iNKT cells. mLN = mesenteric lymph node; sdLN = skin-draining lymph node.
B Relative iNKT cell yield in various tissues from TN mouse lines compared to C57BL/6 mouse lines. Tissues were isolated from indicated C57BL/6 or iNKT TN mouse

lines and stained with anti-CD3 and CD1d-(PBS57)-tetramer.
C Spleen, mLN, sdLN, liver, adipose, and lung lymphocytes from Ja18�/� or Va14 mice were stimulated in vitro with RAW-CD1d cells and 1 lg a-GalCer. An additional

sample of Va14 lymphocytes from each organ was plated with RAW-CD1d cells but no a-GalCer. Supernatants were collected after 24 h and cytokine concentration
determined by cytokine bead array. Error bars are SD of mean values from three different mice per group. Results shown are representative of two independent
experiments where n = 3 biological replicates.
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Thompson et al, 2017). However, across all peripheral tissues, Va14
TN iNKT cells showed similar frequencies of NKT1/2/17 cells when

compared to iNKT cells in those same tissues from C57BL/6 mice,

with the exception of slightly higher frequencies of NKT2 cells in

the lungs of Va14 TN mice (Fig 2G). Inguinal LN iNKT cells from

both Va14 and C57BL/6 mice had an increased frequency of

RORct+ NKT17 cells—a population that was notably absent from

mesenteric LN iNKT cells in both groups of mice. Liver iNKT cells
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Figure 2. iNKT cells from TN and C57BL/6 mice show similar influence of tissue microenvironment on NKT1, NKT2, and NKT17 subsets.

A–F Lymphocytes from the indicated tissues of C57BL/6 and Va14 mice were stained with anti-CD3 and CD1d-(PBS57)-tetramer, before they were fixed, permeabilized,
and stained with antibodies to T-bet, RORct, and PLZF. Results shown are gated on CD3+CD1d-tetramer+ cells.

G The percentage of CD3+ CD1d-tetramer+ iNKT cells in each organ that stained positively for PLZF, T-bet, and RORct are shown. **P < 0.01, Mann–Whitney test.
Error bars are SD.

Data information: Results shown are representative of three independent experiments where n = 3 biological replicates.
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were more strongly T-bet+, indicating an increased frequency of

NKT1 cells in the liver (Fig 2G). Adipose iNKT cells are among the

more distinct iNKT cell lineages and express the transcription factor

E4BP4 rather than PLZF. We analyzed adipose iNKT cells from

Va14 TN mice and found low levels of PLZF and high expression of

E4BP4, similar to C57BL/6 mice and previous reports (Fig EV2A–D

and Lynch et al, 2015).

iNKT cells are found in Peyer’s patches of both wild-type and
Va14 TN mice and correlate with increased IgG1+ B cells

iNKT cells with follicular helper-like function have been previously

defined; immunization with a-GalCer induces the formation of

NKTfh in the spleen (Chang et al, 2011). However, NKTfh have not

previously been shown in Peyer’s patches, an important site for

germinal center formation that is continuously exposed to gut anti-

gens. When we examined Peyer’s patches from Va14 TN mice, we

found CD1d-tetramer+ iNKT cells at greatly increased frequency

compared to C57BL/6 mice (Fig 3A and B). Importantly, we could

detect a small population of iNKT cells in C57BL/6 mice as

compared to Ja18�/� mice, indicating that iNKT cells are also

present in Peyer’s patches in wild-type mice (Fig 3A and B).

Peyer’s patches are important sites of germinal center activity to

produce antigen-specific antibodies (Reboldi and Cyster, 2016). We

first measured fecal IgA titers and found only modest differences in

total IgA among mice with low, high, and zero levels of PP-NKT

cells (Fig 3C). IgA can be produced in both T-cell-dependent and T-

cell-independent fashion and correlates with the amount of TGF-b
present in Peyer’s patches. Although IgA is the predominant isotype

in the gut lumen, IgG is also secreted into and recycled from the gut

lumen through binding to FcRn (Rath et al, 2013). IgG sampling of

gut luminal contents is an important source of antigen acquisition

and has a protective role against some enteric pathogens (Bry &

Brenner, 2004; Maaser et al, 2004). To investigate IgG antibody

production, we measured IgG1 titers by ELISA and IgG1+ B cells by

flow cytometry (Fig 3D–F). IgG1+ B-cell frequencies were similarly

low (< 1%) in spleens of C57BL/6, Va14 TN, and Ja18�/� mice;

total serum IgG1 was also not different among the groups. However,

C57BL/6 and Va14 mice had significantly increased numbers of

IgG1+ B cells in both mLN and Peyer’s patches and compared to

Ja18�/� mice (Fig 3F), and increased fecal IgG1 titers (Fig 3D).

Ja18�/� mice have somewhat limited TCR repertoire diversity

(Bedel et al, 2012); thus, we also examined fecal IgG1 in CD1d�/�

mice and age- and sex-matched C57BL/6 control mice. Both fecal

IgG1 and the frequencies of IgG1+ B cells in mLN and Peyer’s

patches were reduced in CD1d�/� mice (Fig EV3A and B). Thus,

PP-NKT cells are critical for homeostatic levels of IgG1+ B cells in

the gut, but do not appear to be dose-limiting, as even the low

frequencies of iNKT cells found in wild-type mice are sufficient to

allow for class switching to IgG1. This requirement of iNKT cells for

IgG1+ B cells in Peyer’s patches was observed across two different

mouse facilities (Fig EV3C).

PP-NKT cells provide indirect help to B cells through production
of IL-4 and are important in oral vaccination

To determine how PP-NKT cells might regulate B-cell class switch-

ing, we sorted PP-NKT cells from Va14 TN, as well as iNKT cells

from spleen and CD4 T cells from Peyer’s patches. Cell yields were

adequate such that transcriptional profiling could be performed on

bulk populations of cells isolated from 3 individual mice (n = 3

biological replicates). Cluster analysis revealed that PP-NKT cells

were more similar to spleen iNKT cells than CD4 T cells, thereby

confirming their identity as bona fide iNKT cells (Fig 4A). Genes

associated with Tfh cell identity or required for their function were

highly expressed in Peyer’s patch CD4 T cells, but absent from PP-

NKT (Fig 4B). Notably, PP-NKT expressed undetectable levels of

CD40L and CXCR5, making it unlikely that PP-NKT cells make direct

cell–cell contact with germinal center B cells.

IL-4 is important for regulating B-cell class switching to IgG1,

and early production of IL-4 by iNKT cells in the lung was previ-

ously reported to be critical for supporting B cells en route to germi-

nal centers (Gaya et al, 2018). We therefore examined IL-4 and

IFNc production from cells cultured from the spleen, mLN, or

Peyer’s patches (Fig 4C and D). Following stimulation, we analyzed

the relative proportions of iNKT cells and non-iNKT T cells produc-

ing IL-4 or IFNc and found that the majority of the IL-4 was derived

from iNKT cells. In contrast, although iNKT cells produced IFNc,
the majority of the IFNc was derived from other T cells in the

cultures. We therefore conclude that PP-NKT cells could be an

important local source of IL-4, which supports B-cell class switching

and production of IgG1. To determine the relevant function of PP-

NKT cells in vivo, we challenged mice with a-GalCer either intra-

venously or by oral gavage. Mice were treated with brefeldin A to

prevent cytokine secretion, and then, cells from the indicated tissues

were analyzed by intracellular cytokine staining (Fig 4E and F).

NKT cells from spleen produced both IFNc and IL-4 upon intra-

venous a-GalCer, but oral gavage failed to induce activation of

spleen iNKT (Fig 4E and F). Peyer’s patch iNKT cells produced

primarily IL-4 upon oral administration of a-GalCer.
Va14 TN iNKT cells pooled from spleen and LNs, and cocul-

tured with naı̈ve B cells and a-GalCer yielded no detectable IgG1,

consistent with the lack of detectable CD40L expression by iNKT

cells (Figs 4B and 5A). Provision of agonistic anti-CD40 induced

robust B-cell activation as evidenced by IgM secretion. IgM levels

were not augmented by the presence of iNKT cells (Fig 5B). In

contrast, IgG1 production was dependent on the presence of iNKT

cells, was increased by a-GalCer, and was diminished by the addi-

tion of blocking antibodies to CD1d that prevented iNKT cell acti-

vation in this setting (Fig 5B). To determine whether iNKT cell

recognition of CD1d on B cells was important for induction of

IgG1, we modeled the iNKT-B cell interaction in vitro using iNKT

cells obtained from skin-draining LN, mesenteric LN, or Peyer’s

patches of Va14 TN mice or from Peyer’s patches of IL-4�/� mice

(Fig 5C–F). These iNKT cells were cocultured with CD40-activated

B cells obtained from wild-type or CD1d�/� mice. Va14 TN iNKT

cells from all three tissues produced IL-4, with mLN and PP-iNKT

cells producing more IL-4 than sdLN (Fig 5C). IL-4 was not

detected from IL-4�/� PP cells. IgG1+ class-switched B cells and

IgG1-secreted Ab were strongly induced in cocultures of B cells

with Va14 TN mLN and PP-iNKT cells, and this induction was

blocked by addition of blocking antibodies to IL-4 (Fig 5D–F).

CD1d�/� B-cell cocultures phenocopied WT B-cell cocultures, indi-

cating that direct recognition of CD1d on B cells is not required

(Figs 5D–G and EV3D). Rather, IL-4 produced by iNKT cells

induced B-cell class switching to IgG1 in vitro, and we propose
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this as a likely mechanism by which iNKT cells in Peyer’s patches

may be inducing IgG1 in vivo.

The iNKT cell agonist lipid a-GalCer has been proposed as a

potential adjuvant for both preventative vaccines against pathogens

and therapeutic cancer vaccines (Silk et al, 2004; Singh et al, 2014;

Tefit et al, 2014; Kharkwal et al, 2016; Khan et al, 2017; Li et al,

2017; Wolf et al, 2018). Given the location of PP-NKT and their

positioning as potential first responders, we speculated that a-
GalCer could be used as an adjuvant for oral protein-based vaccines.

Oral vaccination of mice with the model antigen ovalbumin
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Figure 3. iNKT TN mice show increased IgG1 production and IgG1+ B cells in the mLN and Peyer’s patches.

A Lymphocytes from Peyer’s patches of C57BL/6 and Va14 mice were stained with anti-CD3 and CD1d-(PBS57)-tetramer.
B Percentage of lymphocytes that were CD3+CD1d-tetramer+ iNKT cells among Peyer’s patches of C57BL/6, Va14, and Ja18�/� mice are shown. Mann–Whitney test.

Error bars are SD. C57BL/6 n = 22; Va14 n = 16; Ja18�/� n = 8.
C–E Mice were analyzed for total fecal IgA (C), total fecal IgG1 (D), or total serum IgG1 (E) by ELISA. Mann–Whitney test. Error bars are SD. C57BL/6 n = 14; Va14 n = 11;

Ja18�/� n = 13.
F Percentages of total B cells that were IgG1+ in the spleen, mLN, and Peyer’s patches of C57BL/6, Va14, and Ja18�/� mice are shown. Mann–Whitney test. Error bars

are SD. C57BL/6 n = 15; Va14 n = 15; Ja18�/� n = 5.
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produced no appreciable IgA- or IgG1-specific antibody responses in

serum or feces, even after multiple boosts (Figs 6A–C, and EV4A

and B). Addition of a-GalCer admixed into the oral vaccine gener-

ated robust serum IgA and IgG1 responses in half of the mice after

one boost (Day 15, Fig EV4A), and fecal and serum anti-OVA

responses in all mice after multiple doses (Figs 6B and EV4A–C).

Interestingly, Va14 TN mice did not show augmented antibody

titers, suggesting that even small numbers of PP-NKT cells are

adequate to serve as a mucosal adjuvant.

To determine whether PP-NKT cells are related to the well-

described NKT1, NKT2, and NKT17 subsets, we stained freshly

isolated lymphocyte preparations from spleen, mesenteric lymph

nodes, or Peyer’s patches with antibodies to the transcription factors

T-bet, PLZF, and RORct. By this analysis, PP-NKT contained an
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A CD1d-(PBS57)-tetramer+ CD3+ cells were sorted from spleens or PP of 3 different Va14 TN mice along with CD4+CD3+CD1d-tetramer� cells from PP (PP CD4).
RNAseq was performed.

B Heatmap of FPKM values for the indicated Tfh genes across each RNAseq sample.
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unusually high fraction of T-bet+ cells, suggesting that these might

be related to NKT1 cells (Fig 6D and E). However, oral administra-

tion of a-GalCer did not result in IFNc production from PP-NKT

cells, demonstrating that although PLZFhigh cells appear to be a

minority of the population, PP-NKT cells produce IL-4, not IFNc, in
the setting of oral vaccination (Figs 4F and 6E).

PP-NKT cells exhibit a unique gene expression profile

NKT subsets express unique gene signatures, including the canoni-

cal transcriptional factors and cytokines, as well as a profile of other

differentially expressed genes. We used previously published gene

lists that had been identified from single-cell transcriptional profiling
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Figure 5. iNKT cells provide indirect help for B-cell class switching to IgG1 in vitro.

A Pooled spleen and LN cells from a Va14 TN mouse were cocultured with wild-type B cells with or without 1 lg a-GalCer and with or without agnostic anti-CD40.
IgM was measured by ELISA of culture supernatants 4 days later.
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Data information: Mann–Whitney test. Error bars are SD of triplicate samples. *P < 0.05; **P < 0.01; ***P < 0.001.
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of iNKT cell subsets (Engel et al, 2016). We compared expression

levels of these genes between spleen and PP-NKT, and found that

PP-NKT cells do not upregulate the canonical transcriptional signa-

tures associated with NKT1, NKT2, NKT17, and NKT0 cells, or at

least that no NKT subset is enriched compared to spleen

(Appendix Fig S1). This suggests that PP-NKT cells constitute a

novel NKT cell population with strong tissue-specific imprinting,

such as adipose iNKT cells, or that they are comprised of a highly

heterogeneous population of NKT cells, such as the splenic iNKT

cell pool. To determine whether iNKT cells could seed the PP in

adult mice, we adoptively transferred Va14 TN cells into sublethally

irradiated Ja18�/� hosts. Transferred iNKT cells could be detected

in spleen, liver, adipose tissue, and lymph nodes; however, we did

not detect transferred iNKT cells in Peyer’s patches of irradiated

Ja18�/� mice post-transfer (Fig EV5A and B).

Although PP-NKT cells bear many similarities to iNKT cells from

spleen, principal component analysis reveals that PP-NKT cells form

a distinct cluster (Fig 7A). Differential gene expression analysis

comparing spleen iNKT with PP-NKT shows strong upregulation of

the gut-homing chemokine receptor CCR9, as well as hallmarks of

tissue residency (CD69 and CD103; Fig 7B). This signature of tissue

residency was uniquely expressed in PP-NKT cells, along with
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several genes characteristic of recent thymic emigrants (Fig 7C).

CD103 and CD69 expression on PP-NKT were confirmed by flow

cytometry and suggest that PP-NKT cells are tissue-resident cells

(Fig 7C and D), similar to a previous report showing an increased

tissue residency signature in lung iNKT cells compared to iNKT cells

from spleen (Salou et al, 2019). PP-NKT cells were uniquely
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E Quantification of data from (D), n = 11 mice per group. Mann–Whitney test. Error bars are SEM.
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responsive to type I and type II IFNs as shown by expression of IFN

response genes (Fig 7C). PP-NKT cells share several features with

CD4+ Tregs (expression of both CTLA-4 and the adenosine-

converting enzyme CD73), suggesting possible regulatory function

or maintenance of mucosal tolerance at homeostasis. Aryl hydrocar-

bon receptor, which has been implicated in sensing colitis-inducing

oxazoles (Iyer et al, 2018), is upregulated in PP-NKT cells. PP-NKT

cells also uniquely express granzymes A and B, along with perforin,

suggesting cytotoxic potential (Fig 7C).

Discussion

We here report PP-NKT as a novel population of iNKT cells with

unique function in supporting IgG1 class switching in the gut

mucosa. Gut-resident B cells primarily produce IgA or IgG1 for

secretion into the gut lumen. IgA is by far the most abundant

secreted isotype, and class switching to IgA can occur independently

of T-cell help and is correlated with the amount of TGF-b present.

Class switching to IgG1 is T-cell-dependent and occurs in Peyer’s

patches and mesenteric lymph nodes, both of which contain signifi-

cant populations of CD4 Tfh cells. Our finding of iNKT cells in

Peyer’s patches suggests that these cells may play a role in B-cell

class switching, and indeed, we show that PP-NKT cells express the

majority of the IL-4 produced in these tissues, even when PP-NKT

cells are present at low frequencies such as in C57BL/6 mice.

PP-NKT cells are rare. Their presence in wild-type mice was only

appreciated by first finding them in Va14 TN mice, thus highlighting

the utility of the transnuclear approach. Indeed, all tissue-resident

iNKT cell populations are many-fold more abundant in our panel of

iNKT TN mice. We show by cytokine production and transcription

factor expression that tissue-resident iNKT cells from lungs, adipose,

liver, mesenteric lymph nodes, and skin-draining lymph nodes faith-

fully recapitulate the properties of wild-type iNKT cells from those

same tissues. Comparison of monoclonal iNKT cells using Vb7 or

Vb8 TCRs with different preferences for CD1d–lipid complexes

showed little influence of the iNKT TCR on development of tissue-

resident iNKT cells, although the monoclonal TN NKT mouse lines

may be useful for studying responsiveness to particular lipids in dif-

ferent tissues.

PP-NKT cells are a clearly distinct population with a unique gene

expression signature, suggesting a long-lived tissue niche. Our

attempts to adoptively transfer iNKT cells into naı̈ve Ja18�/� mice

resulted in undetectable recovery of iNKT cells in Peyer’s patches.

We propose that these cells seed Peyer’s patches early in the post-

natal period and are non-recirculating, as was previously reported

for total gut iNKT cells (Olszak et al, 2012; An et al, 2014). There,

they likely contribute to mucosal inflammation and tolerance by a

variety of mechanisms. We report one effect of early production of

IL-4 in promoting B-cell class switching to IgG1, a property that can

be exploited for oral vaccination. However, this is unlikely to be the

only function of PP-NKT cells, and we predict that multiple avenues

for regulation by PP-NKT cells will be uncovered in the future.

Indeed, several commensal-derived lipids have been reported to

regulate gut-resident iNKT cells (Olszak et al, 2012; Wingender

et al, 2012; An et al, 2014), and conversely, the composition of the

microbiome appears to be regulated by CD1d+ cells and iNKT cells

(Nieuwenhuis et al, 2009; Selvanantham et al, 2016; Saez de

Guinoa et al, 2018). Intriguingly, when we analyzed IgG1+ B cells

from iNKT TN mice versus their littermate controls housed in two

different mouse facilities, we found that in one mouse facility, the

frequencies of IgG1+ B cells were increased in iNKT TN compared

to littermates, and in the second mouse facility, IgG1+ B cells were

similar between iNKT TN and littermate controls. In the interest of

not overstating our claims, we have chosen to report results from

the second mouse facility, where the differences between iNKT TN

mice and littermate controls were less pronounced. In both facilities,

Ja18�/� mice had fewer IgG1+ B cells, thus supporting our conclu-

sion that PP-NKT cells are required for homeostatic levels of gut

IgG1. However, the magnitude of the PP-NKT cell effect changed

between mouse facilities, thereby suggesting a complex link with

the microbiome that is worth further exploration.

PP-NKT cells produce IL-4 in the absence of IFNc, thereby

providing a mechanism for the observed increase in IgG1+ Peyer’s

patch B cells and fecal antibodies. How they produce IL-4 is unclear.

NKT2 cells are under-represented in PP-NKT compared to spleen or

mesenteric lymph nodes. We observed IL-4 production from 11% of

total PP-NKT cells after oral a-GalCer, so preferential activation of

NKT2 cells is formally possible, for example, by NKT2 cells being

better positioned proximal to CD1d+ antigen-presenting cells. This

seems unlikely since administration of a-GalCer by either intra-

venous or oral routes both resulted in IL-4 production without IFNc;
however, further understanding of the spatial orientation of the rele-

vant CD1d+ cells in Peyer’s patches would be necessary to answer

this question. Another possibility is that PP-NKT cells are indeed

NKT1 cells that would co-express IFNc and IL-4, but that IFNc is

specifically suppressed in Peyer’s patch setting, possibly due to

increased adenosine levels (Lappas et al, 2005). In either case, the

production of IL-4 is important for homeostatic levels of fecal IgG1

and can also be exploited for oral vaccination. Since oral delivery of

a-GalCer stimulated IL-4 production from PP-NKT, but had minimal

effect on iNKT cells in the spleen, the effects of oral a-GalCer may

be safer than systemic administration. Humans have iNKT cell

frequencies that are overall lower and more variable than those seen

in mice. We discovered PP-NKT by looking in our transnuclear

mice, and PP-NKT cells exist at small frequencies in wild-type mice.

However, even rare populations of iNKT cells can produce copious

IL-4, and we have shown that the very few iNKT cells found in

wild-type mouse are capable of supporting steady-state IgG1 and

specific antibody production in the setting of oral vaccination. These

data suggest that a minimum threshold number of PP-NKT cells are

adequate for IgG1 class switching, but that increased iNKT cells are

not necessarily correlated with higher IgG1 titers. PP-NKT may be

useful for both routine surveillance of mucosal pathogens, and as a

cellular adjuvant for oral vaccines.

Materials and Methods

Animal care

Animals were housed at the Dana-Farber Cancer Institute and were

maintained according to protocols approved by the DFCI IACUC.

C57BL/6, CD1d�/�, and IL-4�/� mice were purchased from Jackson

Labs. Ja18�/� mice were obtained from Dr. Michael Brenner (Bos-

ton, MA). Va14, Vb7A, Vb7C, and Vb8 iNKT TN mouse lines were
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generated using somatic cell nuclear transfer as previously

described (Dougan et al, 2012, 2013a,b).

Tissue preparation

Spleen, thymus, Peyer’s patches, and lymph nodes were harvested

and homogenized through a 40-lm cell strainer. Adipose tissue was

minced with scalpels prior to digestion with 5 mg/ml collagenase II

for 30 min while rotating at 37°C. Lung tissue was placed in a

gentleMACS C Tube (Miltenyi 130-093-237) and digested using the

lung dissociation kit enzymes (Miltenyi 130-095-927) and the gentle-

MACS Dissociator (Miltenyi 130-093-235), as per the manufacturer’s

recommendation. Liver was homogenized through a 70-lm cell

strainer and centrifuged at 300 g for 5 min. The organ pellet was

resuspended in 10 ml of 35% Percoll (GE Healthcare 17-0891-01) in

RPMI. 5 ml of 70% Percoll in PBS was subsequently added to form

a bottom layer in the tube before centrifugation at 450 g for 15 min

with no brakes. After centrifugation, the middle layer of lympho-

cytes was harvested into 10 ml PBS.

Flow cytometry

Cell preparations from spleen, thymus, lymph nodes, liver, epididy-

mal fat pads, lung, or Peyer’s patches were harvested and exposed

to hypotonic lysis to erythrocytes. Following cell preparation, cells

were stained and analyzed using a BD LSRFortessa and a Sony Spec-

tral Flow Cytometer. CD1d-PBS57 (CD1d-agal) tetramers were

obtained from the NIH Tetramer Core Facility. The following anti-

bodies used for staining were obtained from BioLegend: IFNc (Clone

XMG1.2, Cat 505830), IL-4 (Clone 11B11, Cat 504109), T-bet

(Clone 4B10, Cat 644816), CD3e (Clone 17A2, Cat 100241), GL7 (Clone

GL7, Cat 144609), B220 (Clone RA3-6B2, Cat 103243), IgG1 (Clone

RMG1-1, Cat 406610), IgG2b (Clone RMG2b-1, Cat 406707), and IgD

(Clone 11-26c.2a, Cat 405711). The following antibodies were from

eBioscience: RORct (Clone B2D, Cat 17-6981-80) and PLZF (Clone

Mags.21F7, Cat 53-9320-82). The following antibody is from BD

Pharmingen: IgA (Clone C10-3, Cat 559354).

Stool sample generation

Individual stool samples from C57BL/6 and Va14 mice were

collected and normalized to their weight by adding volumes of

distilled water proportional to their weight (1 g stool:10 ml H2O).

Samples were vortexed to mix and incubated at 37°C for 15 min to

loosen the stool. Samples were vortexed again and centrifuged at

450 g for 1 min. For some experiments, fecal samples were centri-

fuged at 16,000 g for 5 min to pellet bacteria. Supernatant was

collected into a new tube and frozen at �20°C until use. Negligible

differences in antibody titers were observed between the same

samples centrifuged at low speed versus high speed.

ELISA

High-binding assay plates (Corning 9018) were coated with anti-Ig

(H + L) antibody (Southern Biotech 103101) at a 1:500 dilution in

PBS or with ovalbumin (Sigma-Aldrich, 100 ng/ml). Plates were

allowed to coat overnight at 4°C. Plates were subsequently washed

with wash buffer (1:2,000 dilution of Tween in PBS) and blocked

with assay diluent (10% FBS in PBS) for 1 h at room temperature

(RT). Plates were washed again with wash buffer before addition of

100 ll of samples, diluted at 1:2 and 1:10 for IgG1 and IgA. Plates

were incubated overnight at 4°C and then washed with wash buffer.

100 ll of secondary antibody (1:5,000 in assay diluent) was added

to all wells [IgA (Southern Biotech 1040-05) and IgG1 (Southern

Biotech 1071-05)] and incubated for 1 h at RT. After washing with

wash buffer, 100 ll of tetramethylbenzidine (Sigma-T8665) was

added and incubated for 10–20 min at RT; then, 50 ll of 1 M

hydrochloric acid was added to stop the reaction. Optical density

values were read as a measure of concentration at 450 nm on a

plate reader.

Cell culture

Cells were cultured in RPMI 1640 medium supplemented with 10%

heat-inactivated FBS, 100 U/ml penicillin G sodium, 2 mM L-gluta-

mine, 1 mM sodium pyruvate, 100 lg/ml streptomycin sulfate,

0.1 mM non-essential amino acids, and 0.1 mM 2-ME. RAWd cells

(gift from Dr. Michael Brenner) were cultured in DMEM with 10%

FBS, 1% PenStrep, and 2 mM L-glutamine. CD1d expression on

RAWd cells was confirmed by inclusion of a no a-GalCer condition
in each experiment. RAWd cells were tested for mycoplasma every

4 months. For cocultures, total cell preparations from the indicated

organs were added to RAWd cells pulsed with 1 lg/ml a-GalCer
(Avanti Lipids). RAWd cells were plated into flat-bottom 96-well

plates at 50,000 cells per well. 1/60 of spleen was added to culture.

For lymph nodes, liver, and adipose tissue, 1/3 of the organ was

added per well. The contents of one lung lobe (mouse left) were

harvested, and 1/3 of the organ was added per well. Production of

IL-4, IL-2, GM-CSF, IL-17, IFNc, and IL-10 of 24-h culture super-

natants was measured by ELISA, as indicated (BioLegend). 31-plex

cytokine and chemokine panel bead array analysis was performed

by Eve Technologies. For stimulation experiments, cell cultures

were stimulated with PMA and ionomycin for 4 h, with the addition

of GolgiStop (Invitrogen). Cells were subsequently fixed, permeabi-

lized, and stained with Abs to IFNc and IL-4.

Oral vaccinations

Ten- to 18-week-old mice of both sexes were used for vaccination.

Wild-type mice used were cohoused with littermates of the transnu-

clear NKT cell mice. Ja18�/� mice were bred separately. Mice were

given by oral gavage 5 mg ovalbumin suspended in 150 ll of sterile
water with or without 2 lg a-galactosylceramide (Avanti Lipids).

Mice were immunized and boosted according to the schedule shown

in Fig 6A.

In vivo cytokine analysis

Ten- to 18-week-old Va14 iNKT TN mice were given by oral gavage

5 lg a-galactosylceramide (Avanti Lipids) in 150 ll sterile water or

2 lg a-galactosylceramide in 150 ll PBS intravenously. Mice were

housed in standard caging for 30 min, then injected intraperi-

toneally with 5 lg brefeldin A in 150 ll PBS, and returned to stan-

dard caging for an additional 3 h. Tissue lymphocytes were

harvested, fixed and permeabilized, and stained with antibodies to

IL-4, IFNc, and IL-17.
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RNA sequencing

Peyer’s patch cells and spleen cells were prepared from three litter-

mate Va14 female mice. Cell preparations were stained with CD1d-

PBS57 tetramer and antibodies to CD4, CD45, and CD3. iNKT cells

were sorted by FACS from both tissues and CD4+ CD1dtet- cells

were sorted from Peyer’s patches into collection tubes containing

RNA isolation buffer (Qiagen RNA mini plus). RNA was prepared as

per the manufacturer’s protocol. Library construction and Illumina

sequencing were performed by the DFCI Molecular Genomics Core

Facility. Raw transcript counts were collapsed to gene-level counts

and log-normalized using the R package DESeq2. Principal compo-

nent analysis was then performed on the normalized counts. Princi-

pal component analysis was performed using R. Total variance was

1128.203.

Statistics

Error bars are SD unless otherwise noted. Mann–Whitney test was

used to determine significance. Data were analyzed using Prism

GraphPad software.

Data availability

RNAseq data are available at Gene Expression Omnibus

(GSE129366).

Expanded View for this article is available online.
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