organic compounds

 $\mu = 0.08 \text{ mm}^{-1}$

 $0.28 \times 0.24 \times 0.20 \text{ mm}$

9666 measured reflections

3884 independent reflections 2466 reflections with $I > 2\sigma(I)$

. Т – 295 К

 $R_{\rm int} = 0.031$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N'-[(1*E*)-4-Diethylamino-2-hydroxybenzidene]benzohydrazide

M. Prabhu,^a C. Meenakshi,^b G. Chakkaravarthi^c* and G. Rajagopal^d*

^aShasun Pharmaceuticals Ltd, Chennai 600 048, India, ^bDepartment of Chemistry, Government Arts College for Women (Autonomous), Madurai 625 002, India, ^cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, and ^dDepartment of Chemistry, Government Arts College, Melur 625 106, India Correspondence e-mail: chakkaravarthi_2005@yahoo.com, rajagopal18@yahoo.com

Received 3 September 2011; accepted 7 September 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.072; wR factor = 0.203; data-to-parameter ratio = 17.5.

In the title compound, $C_{18}H_{21}N_3O_2$, the dihedral angle between the phenyl and benzene rings is 36.85 (10)°. The methyl C atom of one of the ethyl groups is disordered over two positions with site occupancies of 0.810 (8) and 0.190 (8). The molecular structure is stabilized by a classical intramolecular O-H···N hydrogen bond. The crystal structure exhibits weak intermolecular N-H···O, C-H···O and C-H··· π interactions.

Related literature

For the biological activity of Schiff base ligands, see: Kelley *et al.* (1995); Pandeya *et al.* (1999); Singh & Dash (1988); Tarafder *et al.* (2002). For related structures, see: Bahron *et al.* (2010); Manvizhi *et al.* (2010).

Experimental

Crystal data

$C_{18}H_{21}N_3O_2$
$M_r = 311.38$
Monoclinic, $P2_1/c$

a = 10.591 (5) Å
b = 16.733 (6) Å
c = 9.671 (5) Å

 $\beta = 102.316 (5)^{\circ}$ $V = 1674.4 (13) \text{ Å}^3$ Z = 4Mo K α radiation

Data collection

Oxford Diffraction Xealibur Eos
diffractometer
Absorption correction: multi-scan
(CrysAlis PRO; Oxford
Diffraction, 2009)
$T_{\min} = 0.977, T_{\max} = 0.984$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.072 & 6 \text{ restraints} \\ wR(F^2) &= 0.203 & H\text{-atom parameters constrained} \\ S &= 1.05 & \Delta\rho_{\text{max}} &= 0.43 \text{ e} \text{ Å}^{-3} \\ 3884 \text{ reflections} & \Delta\rho_{\text{min}} &= -0.40 \text{ e} \text{ Å}^{-3} \\ 222 \text{ parameters} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C9-C14 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2 - H2A \cdots N2$	0.82	1.92	2.643 (3)	147
$N1 - H1 \cdots O1^{i}$	0.86	2.10	2.926 (3)	160
C8−H8···O1 ⁱ	0.93	2.50	3.293 (3)	144
$C3-H3\cdots Cg2^{ii}$	0.93	2.97	3.468 (5)	115

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) x - 1, y, z.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2009); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2009); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

The authors wish to acknowledge Pondichery University for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2298).

References

- Bahron, H., Bakar, S. N. A., Kassim, K., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, 0883.
- Kelley, J. L., Linn, J. A., Bankston, D. D., Burchall, C. J., Soroko, F. E. & Cooper, B. R. (1995). J. Med. Chem. 38, 3676–3679.
- Manvizhi, K., Ranjith, S., Parthiban, K., Rajagopal, G. & SubbiahPandi, A. (2010). Acta Cryst. E66, o2422.
- Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
- Pandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). *Pharm. Acta Helv.* **74**, 11–17.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33-37.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tarafder, M. T. H., Kasbollah, A., Saravanan, N., Crouse, K. A., Ali, A. M. & Khor, T. O. (2002). J. Biochem. Mol. Biol. Biophys. 6, 85–91.

supplementary materials

Acta Cryst. (2011). E67, o2633 [doi:10.1107/S160053681103652X]

N'-[(1E)-4-Diethylamino-2-hydroxybenzidene]benzohydrazide

M. Prabhu, C. Meenakshi, G. Chakkaravarthi and G. Rajagopal

Comment

In view of the biological actitivities of Schiff base ligands which are known to exhibit anti–viral, anti–cancer, anti–bacterial, anti–fungal, anti–inflammatory, anti–convulsant and anti–HIV activities (Pandeya *et al.*, 1999; Singh & Dash, 1988; Kelley *et al.*, 1995; Tarafder *et al.*, 2002), we report herein the molecular and crystal structures of the title compound.

The geometric parameters of the molecule of title compound (Fig.1) agree well with the reported similar structures (Bahron *et al.*, 2010; Manvizhi *et al.*, 2010). The dihedral angle between the phenyl ring (C1–C6) and the benzene ring (C9–C14) is $36.85 (10)^\circ$. The methyl C18 atom in the ethyl groups is disordered over two positions with site occupancies of 0.810 (8) and 0.190 (8).

The molecular structure is stabilized by weak intramolecular O2—H2A···N2 hydrogen bond and the crystal structure exhibit weak intermolecular N1—H1···O1ⁱ, C8—H8···O1ⁱ and C3—H3··· π (*Cg*2ⁱⁱ is the centroid of C9–C14 ring) interactions (Fig. 2 & Table 1). Symmetry codes (i) and (ii) are indicated in Table 1.

Experimental

The benzoic acid hydrazide (5 mmol) in methanol (10 ml) was stirred in a round bottom flask followed by drop wise addition of methanolic solution of 4–(diethylamino)salicylaldehyde (5 mmol). The reaction mixture was then refluxed for three hours and upon cooling to 273 K. A pale yellow crystalline solid precipitates from the mixture was separated out. Crystalline product was washed with ice cold ethanol and dried *in vacuo* over anhydrous CaCl₂. Single crystals suitable for the *X*–ray diffraction were obtained by slow evaporation of a solution of the title compound in *DMF* at room temperature. Melting point 500 K.

Refinement

The site occupancy factors for disordered C atom were refined as C18/C18A = 0.810 (8)/0.190 (8). H atoms were positioned geometrically with C—H = 0.93–0.97 Å, O—H = 0.82Å and N—H = 0.86Å and allowed to ride on their parent atoms, with $U_{iso}(H) = 1.5U_{eq}(O)$, $U_{iso}(H) = 1.2U_{eq}(N)$, $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl droups and $U_{iso}(H) = 1.2U_{eq}(C)$ for other.

Figures

Fig. 1. The molecular structure of title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. For disordered ethyl group only major moiety is presented. H atoms are shown as a small spheres of arbitrary radius.

Fig. 2. The crystal structure of title compound, viewed down *a* axis. Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

N'-[(1E)-4-Diethylamino-2-hydroxybenzylidene]benzohydrazide

F(000) = 664
$D_{\rm x} = 1.235 {\rm ~Mg~m}^{-3}$
Melting point: 500 K
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 4483 reflections
$\theta = 2.9 - 29.1^{\circ}$
$\mu = 0.08 \text{ mm}^{-1}$
T = 295 K
Block, pale yellow
$0.28\times0.24\times0.20~mm$

Data collection

Oxford Diffraction Xcalibur Eos diffractometer	3884 independent reflections
Radiation source: fine-focus sealed tube	2466 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.031$
φ - and ω -scans	$\theta_{\text{max}} = 29.2^{\circ}, \ \theta_{\text{min}} = 2.9^{\circ}$
Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Oxford Diffraction, 2009)	$h = -14 \rightarrow 13$
$T_{\min} = 0.977, \ T_{\max} = 0.984$	$k = -22 \rightarrow 18$
9666 measured reflections	$l = -12 \rightarrow 13$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.072$	H-atom parameters constrained
$wR(F^2) = 0.203$	$w = 1/[\sigma^2(F_o^2) + (0.0782P)^2 + 0.8512P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{max} < 0.001$
3884 reflections	$\Delta \rho_{max} = 0.43 \text{ e} \text{ Å}^{-3}$
222 parameters	$\Delta \rho_{min} = -0.40 \text{ e } \text{\AA}^{-3}$
6 restraints	Extinction correction: <i>SHELXL</i> , Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}

Primary atom site location: structure-invariant direct Extinction coefficient: 0.022 (3)

Special details

Geometry. All s.u.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
C1	0.3790 (2)	0.27667 (16)	0.7824 (2)	0.0476 (6)	
C2	0.2753 (3)	0.2435 (2)	0.8285 (3)	0.0669 (8)	
H2	0.2877	0.1980	0.8850	0.080*	
C3	0.1545 (3)	0.2771 (3)	0.7914 (5)	0.0950 (13)	
Н3	0.0849	0.2538	0.8207	0.114*	
C4	0.1374 (4)	0.3448 (4)	0.7114 (4)	0.1128 (17)	
H4	0.0554	0.3672	0.6850	0.135*	
C5	0.2401 (5)	0.3807 (3)	0.6692 (4)	0.1231 (19)	
Н5	0.2282	0.4282	0.6182	0.148*	
C6	0.3614 (3)	0.3455 (2)	0.7031 (3)	0.0831 (11)	
H6	0.4305	0.3684	0.6722	0.100*	
C7	0.5058 (2)	0.23618 (14)	0.8256 (2)	0.0416 (5)	
C8	0.7610(2)	0.19544 (16)	0.6584 (2)	0.0477 (6)	
H8	0.7314	0.2260	0.5776	0.057*	
C9	0.8774 (2)	0.14947 (15)	0.6699 (2)	0.0436 (6)	
C10	0.9440 (2)	0.15018 (17)	0.5596 (2)	0.0510 (6)	
H10	0.9133	0.1823	0.4812	0.061*	
C11	1.0526 (2)	0.10543 (18)	0.5627 (3)	0.0559 (7)	
H11	1.0945	0.1082	0.4875	0.067*	
C12	1.1017 (2)	0.05524 (17)	0.6782 (3)	0.0524 (6)	
C13	1.0364 (2)	0.05409 (16)	0.7911 (3)	0.0512 (6)	
H13	1.0676	0.0222	0.8697	0.061*	
C14	0.9275 (2)	0.09940 (15)	0.7862 (2)	0.0449 (6)	
C15	1.2777 (3)	0.0098 (2)	0.5648 (3)	0.0690 (8)	
H15A	1.2157	0.0150	0.4757	0.083*	
H15B	1.3226	-0.0406	0.5630	0.083*	
C16	1.3733 (3)	0.0763 (2)	0.5773 (4)	0.0863 (10)	
H16A	1.3298	0.1264	0.5793	0.129*	
H16B	1.4140	0.0751	0.4976	0.129*	
H16C	1.4377	0.0700	0.6630	0.129*	
C17	1.2575 (4)	-0.0495 (4)	0.7989 (4)	0.1165 (17)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H17A	1.1854	-0.0671	0.8385	0.140*	0.810 (8)
H17B	1.2922	-0.0961	0.7605	0.140*	0.810 (8)
H17C	1.3506	-0.0446	0.8124	0.140*	0.190 (8)
H17D	1.2359	-0.0233	0.8803	0.140*	0.190 (8)
N1	0.58174 (18)	0.23775 (13)	0.73010 (19)	0.0478 (5)	
H1	0.5590	0.2647	0.6531	0.057*	
N2	0.69687 (17)	0.19532 (13)	0.7574 (2)	0.0473 (5)	
N3	1.2080 (2)	0.00784 (18)	0.6801 (3)	0.0766 (8)	
01	0.53870 (16)	0.20183 (12)	0.93992 (16)	0.0574 (5)	
O2	0.86897 (17)	0.09411 (12)	0.89825 (18)	0.0628 (6)	
H2A	0.8054	0.1234	0.8849	0.094*	
C18	1.3519 (5)	-0.0184 (4)	0.9069 (6)	0.121 (2)	0.810 (8)
H18A	1.3185	0.0276	0.9465	0.182*	0.810 (8)
H18B	1.4256	-0.0031	0.8699	0.182*	0.810 (8)
H18C	1.3772	-0.0581	0.9791	0.182*	0.810 (8)
C18A	1.241 (2)	-0.1276 (11)	0.827 (2)	0.122 (7)	0.190 (8)
H18D	1.2950	-0.1413	0.9165	0.183*	0.190 (8)
H18E	1.2651	-0.1598	0.7539	0.183*	0.190 (8)
H18F	1.1524	-0.1373	0.8287	0.183*	0.190 (8)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0438 (13)	0.0650 (16)	0.0350 (10)	0.0059 (11)	0.0108 (9)	-0.0109 (11)
C2	0.0472 (15)	0.072 (2)	0.085 (2)	-0.0064 (14)	0.0217 (14)	-0.0232 (16)
C3	0.0463 (17)	0.121 (3)	0.119 (3)	-0.001 (2)	0.0213 (19)	-0.053 (3)
C4	0.071 (2)	0.185 (5)	0.080 (2)	0.063 (3)	0.0093 (19)	-0.023 (3)
C5	0.127 (3)	0.170 (4)	0.083 (2)	0.097 (3)	0.047 (2)	0.046 (3)
C6	0.086 (2)	0.106 (3)	0.0680 (18)	0.044 (2)	0.0400 (17)	0.0290 (18)
C7	0.0392 (11)	0.0510 (14)	0.0347 (10)	-0.0056 (10)	0.0080 (9)	-0.0076 (10)
C8	0.0398 (12)	0.0637 (16)	0.0396 (11)	0.0020 (11)	0.0084 (9)	0.0022 (11)
C9	0.0342 (11)	0.0578 (15)	0.0393 (11)	-0.0021 (10)	0.0088 (9)	0.0000 (10)
C10	0.0419 (12)	0.0728 (18)	0.0390 (11)	0.0034 (12)	0.0102 (10)	0.0084 (11)
C11	0.0470 (14)	0.0810 (19)	0.0441 (13)	0.0054 (13)	0.0199 (10)	0.0039 (12)
C12	0.0401 (13)	0.0704 (18)	0.0479 (13)	0.0053 (12)	0.0122 (10)	0.0003 (12)
C13	0.0427 (12)	0.0659 (17)	0.0462 (12)	0.0059 (12)	0.0122 (10)	0.0089 (12)
C14	0.0386 (12)	0.0583 (15)	0.0398 (11)	-0.0051 (11)	0.0129 (9)	0.0006 (10)
C15	0.0591 (16)	0.081 (2)	0.0721 (18)	0.0123 (16)	0.0255 (14)	-0.0058 (16)
C16	0.079 (2)	0.093 (3)	0.089 (2)	-0.003 (2)	0.0219 (18)	0.006 (2)
C17	0.080 (2)	0.200 (5)	0.078 (2)	0.077 (3)	0.0359 (17)	0.044 (2)
N1	0.0394 (10)	0.0662 (14)	0.0391 (9)	0.0089 (9)	0.0115 (8)	0.0044 (9)
N2	0.0364 (10)	0.0636 (14)	0.0422 (10)	0.0034 (9)	0.0094 (8)	-0.0003 (9)
N3	0.0568 (14)	0.110 (2)	0.0699 (15)	0.0288 (14)	0.0290 (12)	0.0117 (13)
01	0.0563 (10)	0.0785 (13)	0.0387 (9)	0.0050 (9)	0.0128 (7)	0.0050 (8)
O2	0.0574 (11)	0.0875 (14)	0.0505 (10)	0.0146 (10)	0.0272 (8)	0.0179 (9)
C18	0.108 (4)	0.140 (5)	0.121 (4)	0.037 (3)	0.036 (2)	0.043 (3)
C18A	0.110 (17)	0.195 (10)	0.058 (11)	0.065 (16)	0.010 (10)	0.029 (14)

Geometric parameters (Å, °)

C1—C6	1.374 (4)	C14—O2	1.362 (3)
C1—C2	1.387 (4)	C15—N3	1.464 (3)
C1—C7	1.483 (3)	C15—C16	1.492 (5)
C2—C3	1.373 (5)	C15—H15A	0.9700
С2—Н2	0.9300	C15—H15B	0.9700
C3—C4	1.363 (6)	C16—H16A	0.9600
С3—Н3	0.9300	C16—H16B	0.9600
C4—C5	1.378 (7)	C16—H16C	0.9600
C4—H4	0.9300	C17—C18A	1.353 (16)
C5—C6	1.387 (5)	C17—C18	1.384 (7)
С5—Н5	0.9300	C17—N3	1.502 (5)
С6—Н6	0.9300	С17—Н17А	0.9700
C7—O1	1.229 (3)	С17—Н17В	0.9700
C7—N1	1.348 (3)	С17—Н17С	0.9700
C8—N2	1.287 (3)	C17—H17D	0.9700
C8—C9	1.437 (3)	N1—N2	1.387 (3)
С8—Н8	0.9300	N1—H1	0.8600
C9—C10	1.399 (3)	O2—H2A	0.8200
C9—C14	1.412 (3)	C18—H17C	1.0114
C10—C11	1.367 (3)	C18—H17D	1.2036
С10—Н10	0.9300	C18—H18A	0.9600
C11—C12	1.406 (4)	C18—H18B	0.9600
C11—H11	0.9300	C18—H18C	0.9600
C12—N3	1.374 (3)	C18A—H18D	0.9600
C12—C13	1.411 (3)	C18A—H18E	0.9600
C13—C14	1.372 (3)	C18A—H18F	0.9600
С13—Н13	0.9300		
C6—C1—C2	119.5 (3)	H16A—C16—H16B	109.5
C6—C1—C7	123.2 (2)	C15—C16—H16C	109.5
C2—C1—C7	117.3 (2)	H16A—C16—H16C	109.5
C3—C2—C1	120.7 (4)	H16B—C16—H16C	109.5
С3—С2—Н2	119.7	C18A—C17—C18	108.4 (9)
C1—C2—H2	119.7	C18A—C17—N3	136.9 (10)
C4—C3—C2	119.5 (4)	C18—C17—N3	114.5 (5)
С4—С3—Н3	120.3	C18A—C17—H17A	59.0
С2—С3—Н3	120.3	C18—C17—H17A	108.6
C3—C4—C5	120.9 (3)	N3—C17—H17A	108.6
C3—C4—H4	119.6	C18A—C17—H17B	51.1
С5—С4—Н4	119.6	C18—C17—H17B	108.6
C4—C5—C6	119.6 (4)	N3—C17—H17B	108.6
С4—С5—Н5	120.2	H17A—C17—H17B	107.6
С6—С5—Н5	120.2	C18A—C17—H17C	102.8
C1—C6—C5	119.8 (3)	C18—C17—H17C	46.9
С1—С6—Н6	120.1	N3—C17—H17C	103.2
С5—С6—Н6	120.1	H17A—C17—H17C	146.7
O1—C7—N1	122.0 (2)	H17B—C17—H17C	70.2

supplementary materials

01	1222(2)	C18A—C17—H17D	102.4
N1-C7-C1	115.8 (2)	C18—C17—H17D	58.4
N2-C8-C9	121.5 (2)	N3-C17-H17D	103.2
N2-C8-H8	1193	H17A—C17—H17D	58.3
C9—C8—H8	119.3	H17B-C17-H17D	148 1
C10-C9-C14	116.5 (2)	H17C-C17-H17D	105.2
C10-C9-C8	1200(2)	C7-N1-N2	119 22 (19)
C14-C9-C8	123.4(2)	C7—N1—H1	120.4
$C_{11} - C_{10} - C_{9}$	1225.1(2) 122.5(2)	N2—N1—H1	120.4
C11—C10—H10	118.7	C8 - N2 - N1	116 09 (19)
C9—C10—H10	118.7	C12 - N3 - C15	121 5 (2)
C10-C11-C12	120.7(2)	C12 - N3 - C17	122.0(2)
C10 - C11 - H11	119.6	C12 = N3 = C17	122.0(2)
C12-C11-H11	119.6	C14 - O2 - H2A	109.5
N3_C12_C11	121.2 (2)	H17C - C18 - H17D	87.7
N_{3} C_{12} C_{13}	121.2(2) 121.1(2)	C17 - C18 - H18A	109 5
$C_{11} - C_{12} - C_{13}$	121.1(2) 1176(2)	H17C - C18 - H18A	140.6
C_{14} C_{13} C_{12} C_{13}	117.0(2) 120.8(2)	H17D $C18$ $H18A$	72.1
C14—C13—H13	119.6	C17_C18_H18B	109.5
C12_C13_H13	119.6	H17C-C18-H18B	68.6
02 - C14 - C13	117.3 (2)	H17D_C18_H18B	144 4
02 - C14 - C9	117.5(2) 121.0(2)		109.5
$C_{13} - C_{14} - C_{9}$	121.0(2) 121.7(2)	$H_{17} - C_{18} - H_{18} C$	107.8
N3_C15_C16	121.7(2) 113.5(3)	H17D_C18_H18C	107.8
N3 C15 H15A	108.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	102.8
C16 C15 H15A	108.9	C17 = C18A = H18D	109.5
N2 C15 H15P	108.9		109.5
C16 C15 H15P	108.9	C17 C18A H18E	109.5
L15A C15 L15D	100.9		109.5
C15 C16 H16A	107.7		109.5
C15_C16_U16P	109.5	moe—cloa—mor	109.5
С13—С10—Н10В	109.5		
C6-C1-C2-C3	2.3 (4)	C12—C13—C14—O2	179.0 (2)
C/C1C2C3	-179.3 (3)	C12—C13—C14—C9	-0.8 (4)
C1—C2—C3—C4	-1.6 (5)	C10—C9—C14—O2	-179.5 (2)
C2—C3—C4—C5	-1.0 (6)	C8—C9—C14—O2	-2.3 (4)
C3—C4—C5—C6	2.9 (7)	C10-C9-C14-C13	0.3 (4)
C2—C1—C6—C5	-0.4 (5)	C8—C9—C14—C13	177.5 (2)
C7—C1—C6—C5	-178.7 (3)	01—C7—N1—N2	4.1 (3)
C4—C5—C6—C1	-2.1 (6)	C1—C7—N1—N2	-174.4 (2)
C6—C1—C7—O1	145.2 (3)	C9—C8—N2—N1	-175.9 (2)
C2—C1—C7—O1	-33.2 (3)	C7—N1—N2—C8	176.0 (2)
C6—C1—C7—N1	-36.4 (3)	C11—C12—N3—C15	2.4 (4)
C2—C1—C7—N1	145.3 (2)	C13—C12—N3—C15	-178.8 (3)
N2—C8—C9—C10	179.3 (2)	C11—C12—N3—C17	-176.6 (4)
N2-C8-C9-C14	2.1 (4)	C13—C12—N3—C17	2.2 (5)
C14—C9—C10—C11	-0.3 (4)	C16—C15—N3—C12	82.8 (4)
C8—C9—C10—C11	-177.6 (3)	C16—C15—N3—C17	-98.1 (4)
C9-C10-C11-C12	0.8 (4)	C18A—C17—N3—C12	93.6 (15)
C10-C11-C12-N3	177.6 (3)	C18—C17—N3—C12	-92.3 (4)

C10-C11-C12-C13	-1.2 (4)		C18A—C17—N3—C15		-85.5 (15)	
N3-C12-C13-C14	-177.6 (3)		C18—C17—N3—C	15	88.6 (4)	
C11—C12—C13—C14	1.2 (4)					
Hydrogen-bond geometry (Å,	°)					
Cg2 is the centroid of the C9-	-C14 ring.					
D—H···A	Ľ	Р—Н	$H \cdots A$	$D \cdots A$	D—H··· A	
O2—H2A…N2	0	.82	1.92	2.643 (3)	147	
N1—H1···O1 ⁱ	0	.86	2.10	2.926 (3)	160	
C8—H8···O1 ⁱ	0	.93	2.50	3.293 (3)	144	
C3—H3···Cg2 ⁱⁱ	0	.93	2.97	3.468 (5)	115	
Symmetry adday (i) $u = u + 1/2$	1/2 (ii) $1/2$ $-$					

Symmetry codes: (i) x, -y+1/2, z-1/2; (ii) x-1, y, z.

Fig. 1

Fig. 2