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A B S T R A C T   

Background: Cuproptosis, i.e., copper-induced programmed cell death, has potential implications in cancer 
therapy. However, the impact of the cuproptosis-related gene (CRG) dihydrolipoyl dehydrogenase (DLD) on 
breast cancer (BC) prognosis remains underexplored. 
Methods: We employed real-time quantitative PCR and multiplexed immunostaining techniques to quantify DLD 
expression in both BC and the adjacent non-cancerous tissues. Immunofluorescence analysis was employed to 
assess the influence of DLD on immune cells and immunological checkpoints in the BC microenvironment. DLD 
knockdown experiments were conducted in BC cell lines MDA-MB-468 and SK-BR-3, with knockdown efficiency 
validated via western blot. Subsequently, we performed the cell counting kit-8 (CCK-8) assay, clone formation 
assay, Transwell migration assay, and invasion assay. To construct a prognostic model, we employed a Lasso-Cox 
regression analysis of immune-related genes associated with DLD. Additionally, we established a competing 
endogenous RNA network based on CRGs to evaluate potential regulatory pathways. 
Results: Compared to the adjacent tissues, BC tissues exhibited markedly elevated DLD expression levels. In vitro 
experiments demonstrated that DLD knockdown effectively inhibited BC cell migration, invasion, and prolifer-
ation. DLD exhibited positive correlations with CD68+ macrophages and PD-L1 in the tumor, as well as with 
macrophages and CD4+ T cells in the stroma. Tumor regions with high DLD expression were enriched in PD-L1 
and macrophages, while stromal regions with high DLD expression contained CD4+ T cells and macrophages. The 
AUC values for 1-, 3-, and 5-year overall survival in TCGA-BRCA training set were 0.67, 0.66, and 0.66, 
respectively. A nomogram with a C-index of 0.715 indicated that risk score, tumor stage, and age could serve as 
independent prognostic factors for BC. 
Conclusion: Our findings underscore the significant predictive significance of DLD in BC and its influence on the 
tumor microenvironment. DLD represents a promising diagnostic and prognostic marker for BC, offering novel 
avenues for the identification of therapeutic targets and the enhancement of immunotherapy in BC.   

1. Introduction 

Lung cancer was once the most prevalent malignant tumor world-
wide; however, it has now been surpassed in incidence by female breast 
cancer (BC) [1]. In the United States, the 5-year survival rate for 
early-stage BC is 90%, but it significantly drops to 29% once distant 
metastases occur[2]. Currently, treatment options for female patients 

with BC include surgery, radiation, chemotherapy, endocrine therapy, 
and targeted treatments [3–6]. Although these treatments improve pa-
tient survival, they can also result in long-term effects that considerably 
impact survivors’ quality of life. For example, surgery may cause 
physical trauma and have psychological repercussions for patients [7,8]. 
Radiation therapy and chemotherapy can harm healthy tissues and cells, 
accelerating cell senescence and increasing the risk of heart disease [9, 
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10]. Furthermore, hormone and targeted therapies are effective only for 
specific subgroups of patients with hormone-responsive or 
target-sensitive tumors [11]. Therefore, identifying novel diagnostic and 
therapeutic targets, as well as prognostic biomarkers, has become the 
foremost priority in combating female BC. 

Tumor cells employ various immune evasion mechanisms to estab-
lish a tumor immune microenvironment (TIME) that facilitates their 
proliferation [12]. This microenvironment consists of diverse 
tumor-infiltrating immune cells (TIICs) possessing both adaptive and 
innate immune functions, which can have both pro-tumorigenic and 
anti-tumor effects [13]. Macrophages, for instance, regulate IL-35 
through the macrophage-stimulating 1 receptor signaling pathway, 
thereby promoting BC growth and progression [14]. Neutrophils can 
either promote cancer progression by enhancing tumor angiogenesis or 
mediate antibody-dependent cellular cytotoxicity against cancer cells, 
thus functioning as a double-edged sword [15]. Research suggests that 
certain subsets of TIICs, such as tumor-infiltrating lymphocytes, hold 
promise as potential prognostic markers for BC due to considerable 
lymphocytic infiltration [16]. A promising approach to improving the 
prognosis of patients with BC involves targeting immune checkpoints 
(ICPs) PD-L1 and CTLA-4 on T-cell surfaces, which impede tumor 
growth [17,18]. However, TIME exhibits heterogeneity throughout 
tumor development. Therefore, a thorough investigation of 
immune-related prognostic markers in the TIME is necessary to gain a 
deeper understanding of tumor progression. Currently, there is a lack of 
comprehensive analysis of immune cell subtypes and checkpoints in the 
TIME at the tissue level in BC. 

Cuproptosis represents a novel manifestation of copper-induced 
programmed cell death [19]. Copper ions induce cell death by inter-
acting with lipoylated proteins in the tricarboxylic acid (TCA) cycle 
during mitochondrial respiration [19]. Furthermore, copper ions influ-
ence PD-L1 expression, thereby facilitating immune evasion in cancer 
[20]. Cuproptosis has introduced a promising avenue for the treatment 
of malignant tumors. Traditionally, cancer cells were believed to favor 
aerobic glycolysis over the TCA cycle (known as the Warburg effect) as a 
rapid means of generating energy to fuel tumor progression [21]. 
However, recent evidence highlights the significant role of the TCA cycle 
in cancer prognosis. For instance, the activation of the pyruvate dehy-
drogenase complex through PDHA phosphorylation promotes the TCA 
cycle, enabling cancer cells to adapt to the metastatic microenvironment 
and facilitate metastasis [22]. In addition, cuproptosis may be associ-
ated with the tumor microenvironment. Numerous current risk models 
based on cuproptosis-related genes indicate that individuals at high risk 
exhibit reduced immune cell infiltration [23–25]. However, these find-
ings require further experimental validation. 

Dihydrolipoyl dehydrogenase (DLD), a constituent of the pyruvate 
dehydrogenase complex, regulates cuproptosis through the lipoic acid 
pathway [19]. This enzyme catalyzes the oxidative conversion of py-
ruvate into acetyl-CoA [26], an irreversible reaction that provides a 
cofactor for the TCA cycle, thereby bridging glycolysis and the TCA 
cycle. A recent study showed that the downregulation of DLD can pre-
vent the growth and metastasis of melanoma [27]. However, the impact 
of DLD on the biological functions of BC cells and the tumor microen-
vironment remains unexplored. 

To address this knowledge gap, we performed an in-depth analysis of 
DLD expression at both the mRNA and protein levels. The influence of 
DLD on BC migration, invasion, and proliferation was assessed by 
knocking down DLD in various BC cell lines. Immunofluorescence 
techniques were employed to investigate the relationship between DLD 
and immune-infiltrating cells, as well as ICPs in the tumor microenvi-
ronment. Furthermore, we developed a predictive model to evaluate BC 
prognosis based on immune-related genes associated with DLD. Our 
study underscores the potential of DLD as a novel diagnostic and prog-
nostic marker for BC. 

2. Materials and methods 

2.1. Validation of DLD mRNA expression in BC via reverse real-time 
quantitative PCR (qPCR) 

Twelve pairs of matched BC and adjacent tissues were collected at 
the Affiliated Hospital of Nantong University. For RNA extraction, 500 
μL of RNeasy isolation reagent (Vazyme, Nanjing, China) was added to 
25 mg of tissue. Subsequently, the supernatant was mixed with an equal 
volume of isopropanol and centrifuged to obtain the mRNA precipitate. 
The resulting RNA pellet was then dissolved in RNase-free ddH2O. The 
extracted RNA was reverse transcribed to generate complementary 
DNA, and qPCR was employed to discern differences in DLD expression 
between tumor and normal tissues. Each group of samples was subjected 
to three independent experiments. The relative expression level of DLD 
was determined using the 2-ΔΔCT method. The DLD primers utilized were 
as follows: (forward) 5′ GAAATGTCCGAAGTTCGCTTGA 3′ and (reverse) 
3′ TCAGCTTTCGTAGCAGTGACT 5′. The relative expression was 
normalized to that of glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) using the following primers: (forward) 5′ AACG-
GATTTGGTCGTATTGGG 3′ and (reverse) 3′ CCTGGAA-
GATGGTGATGGGAT 5′. 

2.2. Cell culture and reagents 

The triple-negative BC cell line MDA-MB-468, the HER-2-positive BC 
cell line SK-BR-3, and the HEK293T tool cell line were generously pro-
vided by the Department of Clinical Biobank at the Affiliated Hospital of 
Nantong University. We employed Dulbecco’s Modified Eagle’s Medium 
(DMEM; Invitrogen, USA) and McCoy’s 5 A medium (Procell, China) in 
our experiments. These media were supplemented with 10% fetal 
bovine serum (Lonsera, USA) and 1% penicillin/streptomycin (NCM 
Biotech, China). DMEM was utilized for the cultivation of the MDA-MB- 
468 and HEK293T cell lines, while McCoy’s 5 A medium was employed 
for the cultivation of the SK-BR-3 cell line. 

2.3. Virus packaging and infection 

The knockdown sequences for two destination plasmids, DLD-sh1 
and DLD-sh2 (Genechem, China), were as follows: GCAGTTGAAA-
GAAGAGGGTAT and GCTGGGAGAAATGGGTAAATGAA. Packaging 
plasmids (psPAX2 and pMD2. G) were introduced in a 4:2:5 ratio to the 
destination plasmid. Subsequently, PEI 40 K (Servicebio, China) was 
added, and supernatants were collected after 48 and 72 h. Infection was 
performed during a period of heightened activity in BC cells, and 
infection efficiency was assessed at the 72-h time point using fluores-
cence. Stable cell lines exhibiting DLD knockdown were subsequently 
selected through the application of puromycin. 

2.4. Cellular protein extraction and western blot 

When the density of cells with DLD knockdown reached 80–90% 
within the field of view, RIPA lysates (WB3100, NCM Biotech) supple-
mented with phosphatase inhibitors and protease inhibitors (Epizyme, 
China) were added to extract proteins. Subsequently, electrophoresis 
was conducted followed by specific antibody blotting on a membrane. 
Luminescence signals were detected using a fully automated chem-
iluminescence image analysis system (4600, Tanon, China). 

2.5. Clone formation assay 

The requisite volume of cell suspension was added to a 6-well plate. 
The culture was monitored at 3-day intervals and terminated once 
clones became discernible in the 6-well plate. Subsequently, cells were 
fixed with 4% paraformaldehyde for 15 min and stained with 1% crystal 
violet for an additional 15 min. Next, the staining solution was gently 
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washed away with running water, and the cells were allowed to air dry. 

2.6. CCK-8 assay 

An appropriate volume of a suspension of cells validated for DLD 
knockdown was dispensed into a 96-well plate at a density of 2000 cells/ 
well. Subsequently, 100 μL of 10 × diluted CCK-8 reagent was intro-
duced at 0, 24, 48, 72, and 96 h, respectively. Following a 2-h incubation 
period, absorbance was measured at OD450 employing a microplate 
reader (Thermo Fisher Scientific, USA). 

2.7. Cell migration and invasion assay 

500uL of medium to 24-well plate chambers and 200 μL of pure 
medium containing 80,000 cells into the smaller chambers (353097, 
Corning, USA). After a 24-h incubation period, the migrating cells were 
fixed and stained. For the invasion assay, 10 μL of a high-concentration 
hydrogel (TEG003, TheWell Bioscience, USA) and 40 μL of a dilution 
solution (MS01–50, TheWell Bioscience) were added to the chambers, 
following which the subsequent steps mirrored those of the migration 
experiments. Observations were conducted using a microscope at a 
magnification of 200 × , and the analysis encompassed three indepen-
dent replicates. 

2.8. Development and validation of a BC predictive model based on DLD- 
related immunological genes (DRIGs) 

We identified immune-related genes associated with DLD (P < 0.05) 
in the TISID database (http://cis.hku.hk/TISIDB/). BC cases with 
missing clinical information were excluded from TCGA database. Sub-
sequently, TCGA-BRCA dataset was randomly divided into internal 
training (n = 754) and validation (n = 321) sets. A Lasso-Cox analysis 
was performed, and a prognostic model was constructed using the 
"glmnet" package in R. The DRIG score (DRIGS) was computed as fol-
lows: DRIGS = βExp1 + βExp2 + … + βExpN, where "Exp" represents 
gene expression, "β" signifies the regression coefficient, and "N" denotes 
the number of genes included in the model. Patients in the training set 
were categorized into high- and low-DRIGS groups based on a critical 
value determined using the "maxstat" package in R. Model performance 
was assessed by generating a receiver operating characteristic curve 
(ROC) using the "timeROC" package in R. Furthermore, we integrated 
the model with clinical and pathological data using the "rms" package in 
R to construct a nomogram and determine its calibration. 

2.9. Establishment of a competing endogenous RNA (ceRNA) network 
based on CRGs 

We screened the top 10 mRNAs with the highest correlation to 
cuproptosis, as reported in published literature [20]. Subsequently, we 
identified miRNAs associated with these mRNAs using the miRBase 
database (https://www.mirbase.org/). Based on the identified miRNAs, 
we explored the associated mRNA, lncRNA, and circRNA profiles using 
the ENCORI database (https://starbase.sysu.edu.cn/). Subsequently, we 
constructed a ceRNA network and visualized it using Cytoscape software 
(v. 3.7.2). 

2.10. Detection of DLD expression in BC via multiplexed 
immunohistochemistry 

Breast tissue was paraffin-embedded for fixation. Subsequently, 5- 
μm-thick sections were generated using a microtome. These sections 
were subsequently affixed to tissue microarray (TMA) slides and dehy-
drated and dewaxed via treatment with ethanol and formalin. To facil-
itate antigen retrieval, we subjected the slides to microwave heating in a 
10 × Tris-EDTA buffer solution (pH 9). The slides were then incubated 
with primary antibodies. Signal amplification was achieved through a 

fluorophore covalently linked to the tissue, achieved via a secondary 
antibody conjugated with horseradish peroxidase. This staining process 
was repeated, and the sections were counterstained with DAPI. The 
following antibodies were employed: anti-DLD (1:4000; ab133551, 
Abcam, USA), anti-cytokeratin (CK, 1:4000; orb69073, Biorbyt Ltd., 
UK), anti-CD3 (1:1000; 85061 s, Cell Signaling Technology, USA), anti- 
CD4 (1:100; ab133616, Abcam), anti-CD8a (1:1000; 85336 s, Cell 
Signaling Technology), anti-CD66b (1:4000; arg66287, Arigo Bio-
laboratories Corp., China), anti-CD20 (1:300; ab78237, Abcam), anti- 
CD68 (1:10000; 76437 s, Cell Signaling Technology), anti-PD-1 
(1:100; 13684 T, Cell Signaling Technology), anti-PD-L1 (1:100, 
18616 s, Cell Signaling Technology), anti-CTLA-4 (1:500; orb527271, 
Biorbyt Ltd.), and anti-LAMP3 antibodies (1:500; ab111090, Abcam). 
All TMA slides were scanned using the Vectra Quantitative Pathology 
Imaging System (v. 3.0; PerkinElmer Inc.). The percentage of cells dis-
playing positive staining was quantified using the Inform image analysis 
software (v. 2.6.0; PerkinElmer Inc.). Cell segmentation software was 
trained based on cytokeratin and DAPI signals. Positive staining 
thresholds for TIICs and ICP markers were established, allowing the 
differentiation between areas with positive and negative staining. Sub-
sequently, the cell percentage (ranging from 0% to 100%) of the positive 
staining areas was calculated. Senior pathologists validated all patho-
logical diagnoses. 

2.11. Study population 

We obtained BC tissues (n = 122) and adjacent non-cancer tissues (n 
= 88) from the Affiliated Hospital of Nantong University between 2005 
and 2010 for multiplex immunohistochemistry. In 2022, an additional 
12 pairs of matched cancer and adjacent non-cancer tissues were ob-
tained for qPCR. Informed consent was obtained for all patients for the 
secondary use of their tissue samples, and the study was conducted in 
strict adherence to the ethical guidelines outlined in the Declaration of 
Helsinki. Patients provided written informed consent prior to the initial 
sample collection. The ethics committee at the Affiliated Hospital of 
Nantong University approved the utilization of human tissue samples 
(approval number: 2021-L001). 

2.12. Statistical analysis 

The correlation between DLD expression and clinicopathological 
data was assessed using Pearson’s chi-square test. Differences in DLD 
expression between cancer and adjacent non-cancer tissues were eval-
uated using the Wilcoxon signed-rank test. Spearman rank correlation 
analysis was employed to estimate the correlation between DLD and 
TIICs. The variation in TIIC and ICP infiltration across groups with 
different DLD expression levels was analyzed using the Wilcoxon signed- 
rank test. Statistical significance was considered at P < 0.05. All data 
analyses were performed using IBM SPSS Statistics for Windows (v. 26.0; 
IBM Corp., Armonk, NY, USA) and R software (v. 4.1.2). 

3. Results 

3.1. DLD is a potential diagnostic and prognostic marker for BC 

Analysis of TCGA and GTEx databases revealed that DLD expression 
was significantly upregulated in BC compared to normal tissue (Fig. 1A). 
Furthermore, DLD exhibited differential expression across various im-
mune and molecular subtypes of human cancers (Supplementary 
Figure 1). Analysis of TCGA-BRCA (Fig. 1B), ICGC-BRCA (Fig. 1C), and 
GSE9893 (Fig. 1D) datasets consistently suggested a poor prognosis 
associated with elevated DLD expression. Pan-cancer analysis further 
underscored DLD as a prevalent tumor marker (Supplementary 
Figure 2). Moreover, DLD expression displayed negative correlations 
with the estimate score (r = − 0.11; P = 1.7e-4) and immune score (r =
0.14; P = 2.5e-6) (Fig. 1E), suggesting its potential in modulating the 

L. Xu et al.                                                                                                                                                                                                                                       

http://cis.hku.hk/TISIDB/
https://www.mirbase.org/
https://starbase.sysu.edu.cn/


Computational and Structural Biotechnology Journal 23 (2024) 1201–1213

1204

(caption on next page) 

L. Xu et al.                                                                                                                                                                                                                                       



Computational and Structural Biotechnology Journal 23 (2024) 1201–1213

1205

TIME. Subsequently, we investigated the relationship between DLD and 
ICPs. DLD demonstrated a negative correlation with PD-1 (r = − 0.178; 
P = 2.96e-9) (Fig. 1F). Subsequently, we investigated the TIMER data-
base, which revealed associations between DLD and various immune 
infiltrating cells (Fig. 1G), including neutrophils (r = 0.217; P < 0.001), 
CD4+ T cells (r = − 0081; P = 0.0107), CD8+ T cells (r = 0.22; P = 9.7E- 
14), and macrophages (r = 0.28; P = 2.6e-21). Analysis of the mutations 
in 49 CRGs [19,28–30] in 985 TCGA-BRCA samples revealed genetic 
variations in 57 (5.8%) samples, with ATP7A and NLRP3 being the 
predominant mutated genes (Fig. 1H). KEGG pathway enrichment 

analysis of these 49 CRGs revealed that they were primarily enriched in 
carbon metabolic and hypoxia-inducible factor (HIF-1) signaling path-
ways (Fig. 1I). We performed quality control assessments, examining 
gene information, the total number of molecules, and the percentage of 
mitochondrial genomes in cells from GSE123926, GSE176532, and 
GSE188600 (Fig. 1J–L). Prior to principal component analysis, we 
pooled 2000 high-frequency genes to mitigate batch effects, followed by 
screening through canonical correlation analysis (Fig. 1M). This process 
enabled the identification of seven distinct cell types, including B cells, 
neutrophils, macrophages, natural killer (NK) T cells, regulatory T cells, 

Fig. 1. Correlation of DLD expression with BC prognosis and tumor microenvironment. (A) A satterplot illustrating DLD expression in BC and normal tissues. 
Kaplan–Meier survival curves depicting OS in patients stratified based on DLD expression in (B) TCGA-BRCA, (C) ICGC-BRCA, and (D) GSE9893 datasets. (E) 
Correlation analysis of DLD expression and stromal, estimate, and immune scores. (F) Correlation analysis of DLD expression and ICPs. (G) Correlation analysis of 
DLD expression and TIICs based on the TIMER database. (H) Mutation analysis of 49 CRGs. (I) KEGG enrichment analysis of the 49 CRGs. (J) Data pertaining to the 
quantity of molecules, genes, and mitochondrial genome copies in each cell, along with the percentage of each cell’s mitochondrial genome. The x-axis represents 
various sample values, whereas the y-axis displays the number of genes discovered or mitochondrial content. The left graph depicts the relationship between the total 
number of molecules in the cell before (K) and after (L) data filtering, as well as mitochondrial content. (M) A graph of principal component analysis (PCA) following 
the removal of batch effects. The vertical coordinates denote the proportion of each cell, whereas the horizontal coordinates represent distinct groups. (N) The 
distribution of various cell proportions and cell distribution maps. (O) Differential expression of DLD across diverse cell types. 

Fig. 2. Differential expression of DLD between BC and adjacent tissues. (A, B) Evaluation of the differential mRNA expression of DLD between BC and adjacent 
tissues via qPCR. (C) A scatterplot depicting the protein expression of DLD in BC and adjacent tissues (D, E) mIHC validation of the differential protein expression of 
DLD between BC and adjacent tissues. 
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fibroblasts, and breast epithelial cells, based on cell-specific markers. 
Within the BC tumor microenvironment, DLD exhibited differential 
expression patterns (Fig. 1N, O). Additionally, we observed a significant 
correlation between DLD expression and TIME, immunotherapy bio-
markers, and ICPs across a spectrum of cancer types (Supplementary 
Figures 3, 4). 

3.2. Expression of DLD is higher in BC tissues compared to normal tissues 

We investigated DLD expression in 12 pairs of matched BC and 
adjacent non-cancerous tissues via qPCR. Our analysis revealed a 
marked increase in DLD expression in BC tissues (n = 122) compared to 
non-cancerous tissues (n = 88; P = 0.0342) (Fig. 2A, B). This finding 
was further corroborated by multiplexed immunohistochemistry, which 
revealed elevated levels of the protein expression of DLD in BC tissues 
(Fig. 2C–E). 

3.3. Correlation between DLD protein expression, BC prognosis, and 
clinicopathological features 

We assessed the correlation between the protein expression of DLD 
and clinicopathological features of patients with BC using the Pearson 
product-moment correlation coefficient. DLD expression exhibited as-
sociations with age (Pearson χ2 = 5.299; P = 0.022), T (Pearson 
χ2 = 14.705; P = 0.002), and N (Pearson χ2 = 10.058; P = 0.018;  
Table 1). Furthermore, both univariate and multivariate Cox regression 
analyses indicated that DLD expression (P = 0.001), N category 
(P < 0.0001), and HER-2 status (P = 0.029) were independent prog-
nostic factors for unfavorable overall survival (OS) outcomes among the 
patients (Table 2). 

3.4. Correlation among the protein expression of DLD, TIICs, and ICPs in 
BC TIME 

We employed multiplexed immunohistochemistry-derived expres-
sion data to examine the association between DLD and TIICs as well as 
ICPs in the TIME of BC. Spearman rank correlation analysis revealed 
distinct immune infiltration patterns between the tumor and interstitial 
regions of BC. In the tumor region, DLD expression exhibited a positive 
correlation with CD68+ macrophages and PD-L1 (Fig. 3A). Additionally, 
in the stromal region, a positive correlation was observed between DLD 
expression and the presence of macrophages and CD4+ T cells (Fig. 3B). 
In addition, tumor regions with high DLD expression demonstrated an 
enrichment of macrophages and PD-L1 (Fig. 3C), while stromal regions 
with elevated DLD expression exhibited an increased presence of CD4+ T 
cells and macrophages (Fig. 3D). To visualize the spatial distribution of 
ICPs and TIICs, we employed the Vectra Quantitative Pathology Imaging 
System (Fig. 3E–G). 

3.5. Development and validation of a prognostic model based on DRIGS 

We identified 18 immune-related genes associated with DLD in the 
TISID database (P < 0.05; Fig. 4A). These genes were utilized to 
construct a prognostic model through Lasso-Cox regression analysis. The 
following formula was employed: DRIGS = 0.067175 × CD276 - 
0.103028 × TNFRSF14 + 0.05778 × ULBP1 (Fig. 4B). Each patient’s 
prognostic information was represented as a prognostic curve and 
scatterplot. The thermogram displaying the expression profiles of the 
candidate DRIGs revealed that TNFRSF14 expression was lower in the 
high-DRIGS group, while CD276 and ULBP1 expression were higher 
(Fig. 4C, D). In comparison, the OS of patients in the high-DRIGS group 
was substantially lower than that in the low-DRIGS group (Fig. 4E, G). 
ROC analysis demonstrated that the area under curve (AUC) for OS at 1, 
3, and 5 years was 0.67, 0.66, and 0.66, respectively (Fig. 4F), and 0.61, 
0.70, and 0.71, respectively, in the validation set (Fig. 4H). Moreover, 
these findings were corroborated by external training sets, namely 

GSE42568, GSE20685, and GSE88770 (Supplementary Figure 5). Uni-
variate and multivariate Cox analyses indicated that age, risk score, and 
tumor stage could serve as independent prognostic factors for BC. A 
nomogram model was subsequently constructed using these indepen-
dent risk factors (Fig. 4I). The performance of this nomogram was 
validated employing the C-index (C = 0.715; 95% CI = 0.683–0.747) 
and a calibration curve (Fig. 4J). 

3.6. Post-modeling multiplex analysis 

Differentially expressed genes (DEGs) were identified between the 
high- and low-DRIGS groups (Fig. 5A). Subsequently, KEGG enrichment 
analysis revealed that these groups exhibited enrichment primarily in 
pathways associated with ferroptosis, human cytomegalovirus infection, 
and HIF-1 signaling (Fig. 5B). An analysis of immune infiltration, con-
ducted using the CIBERSORT database, demonstrated a higher preva-
lence of eosinophils, CD4+ T cells, CD8+ T cells, and mast cells in the 
low-DRIGS group. Conversely, dendritic cells (DCs), macrophages, and 

Table 1 
Correlation between the protein expression of DLD and clinicopathological 
characteristics in BC.  

Characteristics High 
(n = 42) 

Low 
(n = 80) 

Total 
(n = 122) 

χ2 P 

Age     5.229  0.022 
> 60 27 

(22.13%) 
34 
(27.87%) 

61 (50.00%)     

≤ 60 15 
(12.30%) 

46 
(37.70%) 

61 (50.00%)     

ER     2.737  0.434 
0 16 

(13.11%) 
42 
(34.43%) 

58 (47.54%)     

1 10 (8.20%) 15 
(12.30%) 

25 (20.49%)     

2 10 (8.20%) 12 (9.84%) 22 (18.03%)     
3 6 (4.92%) 11 (9.02%) 17 (13.93%)     
PR     2.499  0.475 
0 28 

(22.95%) 
53 
(43.44%) 

81 (66.39%)     

1 1 (0.82%) 7 (5.74%) 8 (6.56%)     
2 7 (5.74%) 13 

(10.66%) 
20 (16.39%)     

3 6 (4.92%) 7 (5.74%) 13 (10.66%)     
HER-2     5.500  0.139 
0 5 (4.10%) 16 

(13.11%) 
21 (17.21%)     

1 12 (9.84%) 10 (8.20%) 22 (18.03%)     
2 11 (9.02%) 27 

(22.13%) 
38 (31.15%)     

3 14 
(11.48%) 

27 
(22.13%) 

41 (33.61%)     

T     14.705  0.002 
0 7 (5.74%) 25 

(20.49%) 
32 (26.23%)     

1 10 (8.20%) 33 
(27.05%) 

43 (35.25%)     

2 16 
(13.11%) 

9 (7.38%) 25 (20.49%)     

3 9 (7.38%) 13 
(10.66%) 

22 (18.03%)     

N     10.058  0.018 
0 24(19.67%) 23 

(18.85%) 
47 (38.52%)     

1 14(11.48%) 42 
(34.43%) 

56 (45.90%)     

2 2 (1.64%) 11 (9.02%) 13 (10.66%)     
3 2 (1.64%) 4 (3.28%) 6 (4.92%)     
M     3.016  0.082 
No metastasis 39 

(31.97%) 
79 
(64.75%) 

118 
(96.72%)     

Metastasis 3 (2.46%) 1 (0.82%) 4 (3.28%)     

ER: estrogen receptor; PR: progesterone receptor; HER-2: human epidermal 
growth factor receptor-2 
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Fig. 3. Evaluation of TIICs and ICPs in BC. Correlation analysis of DLD, TIICs, and ICPs in the tumor (A) and stromal regions (B) of BC. A scatterplot depicting the 
correlation between DLD expression and various ratios of TIICs and ICPs in the tumor (C) and stromal regions (D) of BC. (E) Four-color multispectral composite 
images of DAPI, CK, PD-L1, and DLD. (F) Four-color multispectral composite images of DAPI, CK, CD68, and DLD. (G) Five-color multispectral composite images of 
DAPI, CK, CD3, CD4, and DLD. 

L. Xu et al.                                                                                                                                                                                                                                       



Computational and Structural Biotechnology Journal 23 (2024) 1201–1213

1208

Fig. 4. Development and validation of a prognostic model based on DLD. (A) Differential expression of DRIGs in tumor and normal tissues. (B) Lasso-Cox analysis 
with a 10-fold cross-validation, evaluating the prognostic value of DRIGS. Distribution of DRIGS and a heatmap of the three-gene model in the training (C) and 
validation sets. (D) Kaplan–Mayer curve of the three-gene model in the training I and validation sets (G). Time-dependent ROC analysis of the three-gene model for 1- 
, 3-, and 5-year OS in the training (F) and validation sets (H). (I) A nomogram combining age signature and stage. (J) Calibration analysis of the nomogram for 1-, 3-, 
and 5-year survival rates. 
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Fig. 5. Post-modeling multiplex analysis. (A) A heatmap of DEGs between high- and low-risk groups. (B) Enrichment analysis of DEGs. (C) Correlation analysis of 
TIICs based on the DEGs. (D) Differentially expressed TIICs between high- and low-risk groups. (E) Mutation analysis in the high-DRIGS group. (F) Analysis of 
variations in sensitivity to chemotherapeutic medication between the high- and low-risk groups. 
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NK cells were more abundant in the high-DRIGS group (Fig. 5C, D). In 
the high-DRIGS group, PTEN, FBXW7, and IREB2 exhibited the highest 
mutation frequencies, while in the low-DRIGS group, TP53, PIK3CA, and 
TTN ranked as the top three mutated genes (Fig. 5E, Supplementary 
Figure 6). Furthermore, the low-DRIGS group displayed increased 
sensitivity to methotrexate and paclitaxel, which may signify a more 
favorable prognosis (Fig. 5F). 

3.7. Knockdown of DLD inhibits BC cell proliferation, migration, and 
invasion in vitro 

We validated the efficacy of DLD knockdown in two distinct types of 
BC cells through western blot analysis (Fig. 6A). Quantification of the 
bands using ImageJ software further substantiated the significant 
reduction in the expression of DLD in sh1 and sh2 cells compared to 
negative control cells (Fig. 6B). Subsequently, Transwell assays revealed 
a significant reduction in both migration (Fig. 6C) and invasion (Fig. 6D) 
of BC cells following DLD knockdown. Furthermore, the results of a CCK- 
8 assay (Fig. 6E) and a clone formation assay (Fig. 6F) indicated that 
inhibiting DLD diminished the proliferative capacity of BC cells. 
Collectively, these findings provide evidence that DLD promotes the in 
vitro progression of BC cells. 

3.8. Establishment of co-expression and ceRNA networks based on CRGs 

We examined the co-expression network of DLD in BC using the 
LinkedOmics database. The molecules co-expressed with DLD in BC are 
visually depicted in a volcano plot (Fig. 7A) and heatmaps (Fig. 7B, C). 
Subsequently, we conducted an enrichment analysis of the co-expressed 
genes. GO analysis indicated that the DLD co-expression network was 
primarily associated with the tRNA metabolic processes and extracel-
lular matrix structural constituents (Fig. 7D–F). Additionally, KEGG 
analysis revealed that the co-expressed genes were primarily enriched in 
RNA transport (Fig. 7G). We also constructed a ceRNA network using 
Cytoscape (v. 3.7.2), which consisted of 10 mRNA nodes associated with 
cuproptosis, 14 lncRNA nodes, 8 circRNA nodes, and 19 miRNA nodes 
(Fig. 7H). 

4. Discussion 

BC stands as the most prevalent malignancy among females globally, 
and its prognosis varies significantly due to inherent heterogeneity [31]. 
Identifying novel therapeutic targets is paramount to improving patient 
prognosis. 

In this study, we substantiated elevated DLD expression levels in BC, 
contrasted with low expression in adjacent non-cancerous tissues, both 

Fig. 6. Knockdown of DLD inhibits BC cell proliferation, migration, and invasion in vitro. (A) Validation of the efficiency of DLD knockdown in BC cells. (B) The 
relative expression of DLD in each BC cell following DLD knockdown. After quantifying the expression levels of DLD and GAPDH using ImageJ software, we 
calculated the relative expression of DLD. Images of Transwell migration (C) and invasion (D) of BC cells with varying DLD expression levels. (E) Line charts depicting 
the CCK-8 assay results for BC cells with varying DLD expression levels. (F) Images of colony formation by BC cells with varying DLD expression levels. 
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at the mRNA and protein levels. We validated these findings through 
qPCR and multiplexed immunohistochemical staining. Furthermore, our 
investigations revealed a correlation between DLD expression and TNM 
staging. Moreover, we identified DLD expression, N category, and HER-2 
status as independent prognostic factors negatively impacting OS in 
patients. These findings underscore the clinical significance of DLD as a 

promising diagnostic target and a valuable prognostic marker for BC. 
Current prognostic tumor markers include TIICs and ICPs [32]. In 

this study, we investigated the role of DLD in the TIME of BC. Our 
findings revealed a negative correlation between DLD expression and 
PD-1, a common checkpoint protein found on the surface of T cells 
known for its immune suppressive properties. Conversely, DLD 

Fig. 7. Establishment of co-expression and ceRNA networks based on CRGs. (A) A volcano map displaying genes highly correlated with DLD expression in the BC 
cohort. A heatmap of the top 50 co-expressed genes exhibiting a negative correlation (B) or a positive correlation (C) with DLD expression in BC. BP (biological 
process, D), MF (molecular function, E), CC (cellular component, F), and KEGG (G) enrichment analysis of the co-expression network. (H) Establishment of a ceRNA 
network based on CRGs. 
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exhibited positive correlations with various immune cell populations, 
including CD4+ T cells, CD8+ T cells, B cells, DCs, macrophages, and 
neutrophils. Multiplexed immunostaining further demonstrated that 
DLD expression was positively associated with macrophages and PD-L1 
expression in the tumor region of BC, as well as with CD68+ macro-
phages and CD4+ T cells in the interstitial region. Our experimental 
findings corroborated data obtained from databases, although some 
TIICs appeared unrelated to DLD. These findings suggest that increasing 
the sample size in future studies may provide more precise insights. 
Combining PD-1 and PD-L1 inhibition has been shown to hinder T 
cell-mediated cancer cell killing, with the anti-PD-L1 antibody and 
azithromycin conjugate demonstrating effectiveness against BC cell 
lines [33,34]. Tumor-associated macrophages are associated with a poor 
prognosis in most cancer types [35]. These macrophages can be classi-
fied into two subtypes: M1, which inhibits tumor growth, and M2, which 
promotes it [36]. Our results indicated a positive association between 
DLD and macrophage infiltration in the TIME of BC, indicating that DLD 
may influence the TIME by interacting with PD-L1 and M2 macro-
phages, potentially contributing to a poorer prognosis. The positive 
correlation between DLD expression in the BC stroma and CD4+ T cells 
aligns with data from the TIMER database. Helper CD4+ T cells have 
been shown to enhance the anti-tumor response of cytotoxic CD8+ T 
cells, and recently, CD4+ cytotoxic T cells have been detected in the 
context of cancer, demonstrating their potential to eliminate tumors 
such as melanoma [37,38]. Therefore, CD4+ T cells may represent 
promising therapeutic targets for DLD, influencing the prognosis of BC. 

At present, an increasing number of prognostic models focus on 
tumor immunity. In their research, some scholars have focused on 
identifying mutated genes that impact the OS of patients with melanoma 
treated with CTLA-4 inhibitors. These genes were mapped to relevant 
pathways to construct and validate the model [39,40]. Our investigation 
revealed an association between DLD and several immune-related genes. 
Consequently, we constructed a three-gene prognostic model 
comprising CD276, TNFRSF14, and ULBP1. Previous studies have 
established that CD276 promotes the proliferation of BC cells, as evi-
denced by human BC xenografts in mice [41]. Moreover, the over-
expression of TNFRSF14 has been shown to impede the proliferation of 
MCF-7 BC cells [42]. ULBP1, serving as a ligand for NKG2D, exhibited 
heightened expression with higher BC tumor grades and a greater 
prevalence of lymph node-positive tumors [43]. Despite the 
well-established association of these genes with BC pathogenesis, we are 
the first to consolidate them as prognostic markers for patients with BC. 

Nonetheless, our study has a few limitations. Firstly, we conducted 
the study with a limited sample size, which could potentially introduce 
statistical errors. Secondly, we did not explore the mechanisms under-
lying the immune microenvironment and the biological behavior of DLD 
in relation to BC through in vivo experiments. 

5. Conclusion 

Our study represents the first to investigate the impact of DLD 
expression on both the prognosis and the TIME in patients with BC. DLD 
is significantly overexpressed in BC tissues, making it a potential diag-
nostic marker for this condition. Our findings elucidate the intricate 
associations between DLD expression, the extent of immune cell infil-
tration, and the expression of ICPs. Consequently, DLD holds promise as 
a valuable prognostic tool for predicting outcomes in patients with BC, 
warranting further investigation. 
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