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ABSTRACT DNA methylation is traditionally thought to be established during early development and to remain
mostly unchanged thereafter in healthy tissues, although recent studies have shown that this epigenetic mark can
be more dynamic. Epigenetic changes occur in the liver after birth, but the timing and underlying biological
processes leading to DNA methylation changes are not well understood. We hypothesized that this epigenetic
reprogramming was the result of terminal differentiation of hepatocyte precursors. Using genomic approaches, we
characterized the DNAmethylation patterns in mouse liver from E18.5 until adulthood to determine if the timing of
the DNA methylation change overlaps with hepatocyte terminal differentiation, and to examine the genomic
context of these changes and identify the regulatory elements involved. Out of 271,325 CpGs analyzed throughout
the genome, 214,709 CpGs changed DNA methylation by more than 5% (e.g., from 5 to 10% methylation)
between E18.5 and 9 wk of age, and 18,863 CpGs changed DNA methylation by more than 30%. Genome-scale
data from six time points between E18.5 and P20 show that DNAmethylation changes coincided with the terminal
differentiation of hepatoblasts into hepatocytes. We also showed that epigenetic reprogramming occurred primar-
ily in intergenic enhancer regions while gene promoters were less affected. Our data suggest that normal postnatal
hepatic development andmaturation involves extensive epigenetic remodeling of the genome, and that enhancers
play a key role in controlling the transition from hepatoblasts to fully differentiated hepatocytes. Our study provides
a solid foundation to support future research aimed at further revealing the role of epigenetics in stem cell biology.
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Many cellular processes, including normal growth and development,
involve carefully regulated changes in gene expression. Epigenetic
modifications, particularly histone modifications and DNA methyl-

ation, are known to play a critical role in regulating gene expression.
While histonemodifications are dynamically regulated, DNAmeth-
ylation of CpG dinucleotides is considered to be mostly static in
adult cells after establishment of these marks during early develop-
ment (Smith and Meissner 2013). The methylation patterns in de-
veloping cells are erased before implantation of the blastocyst (with
the exception of imprinted regions), and the reestablishment of
DNA methylation afterward is thought to set up the epigenetic
programs of each cell lineage (Smith and Meissner 2013). Epige-
netic changes during later cellular differentiation have been docu-
mented but these mostly occur before birth (Smith and Meissner
2013; Perera and Herbstman 2011; Reik et al. 2001; Smith et al.
2012; Wang et al. 2012; Stadler et al. 2011; Meissner et al. 2008;
Bock et al. 2012; Gifford et al. 2013; Xie et al. 2013) (e.g., the
differentiation of embryonic stem cells). However, recent studies
have revealed that DNA methylation is more fluid during postnatal
development than previously thought (Bock et al. 2012; Reizel et al.
2015). For example, several studies have shown postnatal changes
in DNA methylation in mouse liver (Waterland et al. 2009; Reizel
et al. 2015).

There are, however,many unresolved questions relating to postnatal
DNA methylation changes in the liver, including the mechanism(s)
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underlying these epigenetic changes, the timingof these changes, and the
extent and precise genomic context where these changes occur. We
hypothesized that terminal differentiation of hepatocytes was respon-
sible forpostnatalDNAmethylationchanges.Unfortunately, testing this
hypothesis is complicated by (i) the lack of a robust in vitro model for
hepatocyte differentiation and (ii) the complex cellular changes occur-
ring in vivo, including efflux of hematopoietic stem cells (HSC), exten-
sive cell division, and cell differentiation (Baron et al. 2013; Gordillo
et al. 2015).

Here,weuseReducedRepresentationBisulfiteSequencing(RRBS) to
characterize DNA methylation changes throughout the genome of
mouse liver samples collected immediately before birth and throughout
the first weeks of life. Our study reveals that the timing of the DNA
methylation coincides with hepatocyte terminal differentiation and
occurs after HSC migration, and that the DNA methylation changes
preferentially occur at specific genomic regulatory elements.

MATERIALS AND METHODS

Tissue collection
WeobtainedC57BL/6Jmice from Jackson Laboratories (BarHarbor,
Maine) at 3 wk of age and mated females at 8 wk of age. We housed
mice in ventilated microisolator cages with a 14:10 light:dark cycle.
We collected tissue samples from offspring at embryonic day 18.5
(E18.5), postnatal days P1, P5, P10, P15, andP20, and 9wk.All tissues
were stored in RNA later at 280�. We fed mice used for the initial
RRBS experiments chow obtained from Research Diets Inc. (New
Brunswick, NJ; D12328), which contains 11% fat from coconut oil
(Cannon et al. 2014). Mice used for qRT-PCR and histology were fed
standard chow. For our time-course study, we obtained tissues from
E18.5, P1, P5, P10, P15, and P20 C57BL/6J mice directly from Jack-
son laboratories.

Histological analysis
We prepared liver tissue excised from animals at each time point for
histological analysis by embedding the tissue in Optimal Cutting Tem-
peraturecompound(OCT).Weimmersedthe sample in2-methylbutane
cooled by liquid nitrogen to freeze the samples. Frozen samples were
stored at280� until sectioning. We cut sections to 5 mm thickness and
stained with Hematoxylin and Eosin (H&E) according to standard
protocols. The percent of HSCs and hepatocytes for each slide was
estimated by a trained pathologist by microscopy.

DNA/RNA isolation
We isolated DNA and RNA from tissue samples using the Qiagen All-
prep DNA/RNA kit (Venlo, Limburg) according to the manufacturer’s
instructions.

qRT-PCR
Weused qRT-PCR to quantify gene expression ofAlb,Afp,Tdo2, Sds,
Ccne1, Ccne2, Ccna2, Ccnb1, and Actb (as a housekeeping gene). We
treated RNA with DNase and performed reverse transcription with
Invitrogen Superscript III reverse transcriptase (Carlsbad, CA). We
conducted qRT-PCR on an Eppendorf Mastercycler RealPlex2
(Hamburg, Germany) machine using Qiagen QuantiTect SYBR
green PCR reagents (Venlo, Limburg). Primer sequences are pro-
vided in Supplemental Material, Table S1. qRT-PCR data were nor-
malized to Actb and either the E18.5 or 9 wk time point was used as a
reference (whichever was lower). Differences between time points
were tested using Student’s t-tests with a Bonferroni correction for
multiple comparisons.

RRBS library preparations
To measure DNAmethylation at numerous loci across the genome, we
performed RRBS experiments (adapted from Gu et al. 2011) separately
on two mouse cohorts. This protocol allows reproducible, base pair
resolution quantification of DNAmethylation at a large subset of CpGs
across the genome. Briefly, we digested genomic DNA extracted from
each mouse liver with the MspI restriction enzyme, which cuts at the
CCGG motif. We then prepared Illumina Truseq DNA libraries (San
Diego, CA) according to the manufacturer’s instructions, with the ex-
ception that after adapter ligation, we pooled 12–18 samples with dif-
ferent barcodes and isolated fragments of �150–600 bp by gel
extraction. We then bisulfite treated each pool using an Invitrogen
MethylCode Bisulfite Conversion Kit (Carlsbad, CA). Finally, we per-
formed enrichment PCR using the Truseq primers for 20 cycles. Each
pool was sequenced on 2–3 lanes of a HiSequation 2500 instrument,
producing 50 bp reads. In our discovery RRBS experiment, we analyzed
liver samples from two time points [E18.5 (n = 5) and 9 wk old male
mice (n = 10)]. A second independent experiment, the time-course
dataset, was performed at a later time and included another mouse
cohort and 90 samples from liver, heart, and muscle tissues collected
at time points (5 per age per tissue) (E18.5, P1, P5, P10, P15, and P20).

Locus-specific bisulfite sequencing (LSBS)
library preparation
To validate the RRBS data, we selected 21 CpGs from 11 regions analyzed
byRRBS anddesignedprimers (provided inTable S1) to amplify bisulfite-
converted DNA at these loci. Due to other CpGs included in the ampli-
cons, a total of 124 CpGs were quantified. We analyzed livers from mice
at E18.5 (n=6), P1 (n=5), P5 (n=5), P10 (n=6), P15 (n=6), P20 (n=6),
and 9wk old (n = 5). The amplification primers included 59-end tails that
allowed the addition of adapter sequences and barcodes for massively
parallel sequencing by a second PCR. We then combined samples to-
gether and sequenced all amplicons simultaneously on an IlluminaMiSeq
to generate paired-end reads of 250 bp. The samples sequenced included
both male and female animals, which were analyzed together, as we de-
tected no differences in DNA methylation between sexes at these loci.

Sequence data analysis
We checked sequence quality using FastQC (v0.9.0, Babraham Institute)
and removed any reads containing adapter or PhiX sequences. We
analyzed RRBS and LSBS data by aligning fastq files to themouse genome
(mm9)usingBismark (v0.7.6)with bowtie2, 20processors, output as bam,
and the default settings for all other options (Krueger andAndrews 2011).
Bisulfite conversion rates were estimated using Bismark. We then com-
bined data generated for each sample by different sequencing runs and
summarized the DNA methylation data using the Bismark methylation_
extractor. We quantified methylation for each CpG using perl scripts and
imported the data into R (v3.2.1) for statistical analysis. For each sample,
any CpG with fewer than 10 · coverage was considered as missing data.
We removed any CpGs where more than 20% of samples had missing
data and any CpG that was unmethylated (, 10%) in all samples of all
ages. To identify samples with unusual missing data, we first determined
CpGs that were most shared across samples by calculating the percentage
of samples with data for each CpG. We then multiplied this weighting
factor by 1 (read coverage$ 10) or 0 (missing data) for each CpG in each
sample. If the sum of these values was less than the arbitrary cutoff of
50,000, the sample was removed from the analysis. This approach avoids
removal of samples with relatively fewCpGs covered that are shared by all
other samples. It also avoids the inclusion of samples covering many
CpGs that are not shared by other samples. One sample was thus re-
moved from the time-course dataset (out of 90). Twelve additional
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samples produced no reads.We also performed aMDS analysis (Figure
S1) to identify clear outliers and further removed three samples. Over-
all, 15 samples were analyzed in the discovery dataset and 74 in the
time-course dataset.

For the LSBS data, we discarded any sequences mapping to a region
that was not targeted and any CpG with, 100 · coverage or for which
more than 20% of samples hadmissing data. We calculated the percent
methylation at each locus for each sample and compared values be-
tween groups using a Student’s t-test. We derived false discovery rates
(FDR) from t-test p-values using the qvalue package (v1.36.0) and
generated plots using the ggplot2 package (Wickham 2009).

For the time-course RRBS experiment, we restricted our analyses of
the timing of changes in DNA methylation to the CpGs that were
identified as significantly differently methylated in the discovery RRBS
dataset. We then calculated the change in methylation between con-
secutive time points and quantified the number of CpGs changing their
methylation by more than 5 and 30%.

Genomic feature analysis
We defined the genomic context for all CpGs assayed in our RRBS
experiments using the followingUCSCGenome browser tracks: DNase
hypersensitivity from eight-week-old (GEO# GSM1014195, replicate
#1)andE14.5(GEO#GSM1014183)C57BL/6liver (ENCODE/University
of Washington data, peaks were combined using Bedtools), CpG is-
lands, genic context [UCSC genes: exons, introns, and promoters (1 kb
upstream of transcription start site)], CTCF binding sites (LICR TFBS
Liver GEO# GSM918715), and 28-way conservation and histone mod-
ifications (LICR liver Histone data GEO# GSM1000140, GSM1000113,
GSM1000150,GSM1000151,GSM769015,GSM1000111,GSM769014,
GSM1000110, GSM1000152, and GSM1000153) (Rosenbloom et al.
2013). We calculated CpG density and GC content using 200 bp up-
and downstream of each CpG assayed by RRBS. Promoter, exon, and

intron tracks were made exclusive of each other by subtracting pro-
moters from exons, and subtracting the remaining exons from the
introns. We calculated the distance to each genomic feature for each
CpG in the RRBS data using bedtools (Quinlan and Hall 2010).

We groupedCpGs according to the pattern of theDNAmethylation
change. We first analyzed all CpGs with significant change in DNA
methylation (change inmethylation$ 5% and FDR# 0.1) and divided
them according to the direction of the DNA methylation changes (i.e.,
increased or decreased DNA methylation with age). We further sub-
divided these CpGs into discrete changes (50% or more of the total
methylation change occurs between two consecutive time points), con-
tinuous changes (, 50%methylation changes between two consecutive
time points but continuous increase or decrease with time), and other
(all other changing CpGs).

We also calculated whether CpGs changing their DNAmethylation
occurred preferentially in specific genomic contexts by comparing their
enrichment to1000randomsubsamplingsofCpGsexactlymatching the
local CpG density.We then generated a p-value for each enrichment by
quantifying how many subsamples had a greater number of CpGs in
each feature than the observed data.

Animal experimentation
All animals were handled and housed in accordance with standardNIH
practices. All protocols were approved by the Institutional Animal Use
and Care Committee.

Data availability
All dataused in this study are available in theNCBIGEOdatabaseunder
accession numbers GSE58129 and GSE79775. The authors state that all
datanecessary for confirming the conclusionspresented in the article are
represented fully within the article.

RESULTS

Bisulfite sequencing data result summary
We generated two DNA methylation datasets using RRBS. We exten-
sively sequenced liver samples from two time points for our discovery
dataset to identify which CpGs changed methylation between E18.5

Figure 1 Genome-wide changes in DNA methylation in the liver after
birth. There are numerous differences in DNA methylation between
E18.5 and 9 wk old mice. Each point represents one of the 271,325 CpGs
analyzed by RRBS and is displayed according to the magnitude of the
change in DNA methylation (x-axis, in %) and statistical significance
(y-axis, in –log10 of the p-value). Fifty on the x-axis represents an increase
in DNA methylation of 50% points (e.g., from 5 to 55% methylation) as
the animals age. Black points indicate CpGs that changed their methyl-
ation by more than 5% and an FDR # 0.1. Gray points are CpGs whose
methylation level was not significantly changed. Vertical dotted lines are
at 5, 30, and 75% gain/loss of methylation. E, embryonic day; FDR, false
discovery rate; RRBS, Reduced Representation Bisulfite Sequencing.

Figure 2 Count of CpGs changing by 30% or more between adjacent
time points. We counted CpGs that changed by 30% or more (e.g.,
from 30 to 60% methylation) between adjacent time points. The di-
rection of change is indicated by color. The most changes occurred
between P10 and P15. E, embryonic day; P, postnatal day.
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(n = 5) and 9 wk of age (n = 10). For this dataset, we generated between
6.5 and 83.6 million reads per sample (mean = 22.2 million, with bi-
sulfite conversion rates. 99% for all samples) (Table S2) and were able
to analyze 588,691 CpGs distributed throughout the genome. Each of
these CpGs was covered by at least 10 reads in more than 80% of the
samples. We removed any CpG that was unmethylated (, 10% meth-
ylation) in all samples, leaving 271,325 CpGs for further analyses. Note
that removing CpGs that were never methylated from the analysis
removed differences in local CpG density and GC content between
CpGs that significantly changed their DNA methylation between
E18.5 and 9 wk and those who remained unchanged (Figure S2). On
average, the 271,325 CpGs analyzed were covered by 40 reads in each
sample (Table S2).While this coverage is comparable to or greater than
that typically used in epigenetic studies (Gifford et al. 2013; Xie et al.
2013; Kobayashi et al. 2013; Ziller et al. 2013; Liu et al. 2014; Fritz et al.
2013; Varley et al. 2013), it is important to note that this level of
coverage only allows quantification of the percent methylation at a
given CpG with modest accuracy: DNA methylation at a CpG covered
by 40 reads can only be quantified in 2.5% intervals. Therefore, we only
considered CpGs as significantly changed between age groups if, in

addition to being statistically significant (FDR # 0.1), the average
difference in percent DNA methylation between groups was . 5%
(e.g., 5% methylation at E18.5 and 10% at 9 wk). In a similar dataset,
we previously estimated that such analyses had 80% power to detect an
11% difference in DNA methylation (Cannon et al. 2014).

To validate the RRBS data, we performed LSBS at 11 loci (targeting
21CpGs from the RRBS data and containing 124 CpGs total) randomly
chosen from our discovery RRBS data, and analyzed 39 samples (E18.5
n= 6, P1 n = 5, P5 n= 5, P10 n= 6, P15 n= 6, P20 n= 6, and 9wk n= 5).
We generated 7 million reads resulting in an average of 178,375 reads
per sample and a mean coverage of 2519 · per CpG. This experiment
confirmed the results of the RRBS experiment (Figure S3) with no
CpGs differing statistically in their methylation status as estimated by
LSBS or RRBS (p . 0.05).

We also evaluated possible DNA methylation at non-CpG sites
(CpH) in the discovery RRBS dataset. Out of 1,581,309 CpHs analyzed,
only 356 (0.0002%) displayedDNAmethylation. 5% for all samples in
at least one group. At many of these sites, inspection of the aligned
reads showed that the base following the C was a G in the sequenced
sample but not in the reference (due to a SNP, an error in the reference

Figure 3 Distribution of the extent
of DNA methylation throughout the
genome for each age group. Over-
all genomic methylation patterns
change with age. The figure shows
the proportion of CpGs (y-axis) with
a specific methylation level (x-axis in
percent) for the discovery and time-
course datasets. Note that the max-
imum methylation level increases
with age, possibly reflecting the de-
crease in cell divisions (see main
text for details). E, embryonic day;
P, postnatal day.
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genome sequence, or a mismapping of the read), leading to the in-
correct classification of these CpGs as CpHs. Given the small number
of putative methylated CpHs and the observation that many of these
were likely misclassified, we focused the rest of our analyses on CpG
methylation.

To identify the timing of DNA methylation changes in liver and
determine if similar changes occur in other tissues, we generated a
second RRBS (“time-course”) dataset. We analyzed liver, heart, and
muscle samples from multiple time points: E18.5 (n = 4, 5, and 4,
respectively), P1 (n = 4, 4, and 5), P5 (n = 4, 4, and 3), P10 (n = 3, 4,
and 4), P15 (n = 3, 5, and 4), and P20 (n = 5, 5, and 4). Note that, since
we combined more samples per sequencing lane, this dataset has a
lower coverage than the discovery dataset: we generated between 4.5
million and 44.9 million reads per sample (with bisulfite conversion
rates . 99% for all samples) and, after filtering, were able to analyze
70,259 CpGs across six time points in the liver samples, 53,520 CpGs in
heart samples, and 46,085 CpGs in muscle samples (Table S2). The
average coverage was 50.4, 45.7, and 46.3 for liver, heart, and muscle,
respectively.

RRBS reveals extensive postnatal changes in
liver methylation
To identify outliers and preliminarily assess parameters influencing
variation in global DNA methylation, we performed a MDS analysis
using the entire RRBS dataset. In both the discovery and time-course
datasets, the liver samples clustered according to the age of the animal
(Figure S4). There were minor differences between the methylation
patterns of the E18.5 samples generated in the discovery and time-
course experiments (Figure S4) that could be possibly due to biological
differences (e.g., different mouse cohort or uncertainty in timedmating)
or technical factors. However, it is important to note that all analyses
were conducted within each cohort and that the samples of each cohort
were randomized and processed identically at the same time.

We specifically tested whether each CpG in the discovery dataset
significantly changed its methylation status between E18.5 and 9 wk.
We identified a total of 214,709 CpGs (out of 271,325 or 79%) that
significantly changed their DNAmethylation by more than 5% (Figure
1, FDR # 0.1). Of these, 18,863 CpGs changed by more than 30%.

We detected both gain and loss of DNAmethylation between E18.5
and 9wkbut, overall, the distributionwas biased toward increasedDNA
methylationwith age: 89%of the significantly changedCpGsweremore
methylated in adult mice (the bias was similar when restricting the
analysis toCpGs that changed theDNAmethylationbymore than30%).
The magnitude of the DNA methylation changes varied extensively
amongCpGs,with themethylation status of someCpGs changing by up
to 88% (Figure 1).

To determine if the age-associated changes in DNA methylation
were unique to liver, we used the time-course RRBS dataset to compare
the patterns in liver, heart, and muscle samples. MDS analysis showed
that the clustering by age was most obvious in the liver, and that the

dimension separating the samples according to the age of the animals
explaineda largerproportionof the variance in the liver than in theheart
andmuscle (20.2% vs. 9.0% and 9.6%, respectively) (Figure S4).We also
tested specifically for differences in DNA methylation at each CpG
between E18 and P20 after randomly subsampling each tissue and
age group to n = 3 for identical comparisons. In these lower power
but comparable analyses, we found that 6998 CpGs out of 70,259
(9.9%) changed their DNA methylation by . 5% in the liver
(FDR # 0.1), while only 8 of 53,520 CpGs were changed in heart
and no CpGs, out of 46,085, changed in muscle. Overall, these analyses
showed that there are extensive DNAmethylation changes in liver after
birth and that this pattern is not observed in other tissues analyzed,
suggesting that it is not an organism-wide phenomenon.

Epigenetic changes occur predominately after postnatal
day five
To define the timing of epigenetic changes, we analyzed the CpGs that
were significantly changed in thediscovery dataset in an independent set
of liver samples from six time points between E18.5 and P20. Data from
the two datasets were highly concordant, with 93.2% of the CpGs with
significant change in DNA methylation in the time-course dataset also
significantly changed in the discovery dataset (Figure S5).However, due
to the lower sequence coverage in the time-course data, only 53,682
CpGs were present in both analyses and, overall, we were able to follow
the temporal changes in DNA methylation at 42,889 CpGs that signif-
icantly changed their methylation status in the discovery dataset (note
that, due to the smaller sample size, only 11,942 of those CpGs reached
statistical significance in the time-course dataset). We first calculated
the number of CpGs that changed their DNA methylation between
consecutive time points to identify when most changes occur. When
considering only the CpGs that changed their methylation by . 30%
between two ages, we observed that most DNA methylation changes
occurred after P5 (Figure 2). Changes in DNA methylation at many
CpGs were sustained over several days, confirming that these changes
were genuine and not statistical artifacts (Table S3). For example, out of
1136 CpGs changing their methylation by more than 30% between P10
and P15, 223 also changed between P15 and P20 (while only five had
changed between E18.5 and P1) (Table S3).

n Table 1 Tissue composition of the liver from E18.5 through P20

Age Liver Parenchyma (%) Hematopoietic Cells (%)

E18.5 52 48
P1 38 62
P5 56 38
P10 96 4
P15 99 1
P20 100 0

E, embryonic day; P postnatal day.

Figure 4 Timing of terminal differentiation of hepatocytes. We
quantified Afp (a marker of hepatocyte precursors) and Tdo2 (a marker
of differentiated hepatocytes) using qRT-PCR in liver at ages from
E18.5 through 9 wk. Afp decreased dramatically between P10 and
P15 (boxed), which was the same time period during which a large
increase in Tdo2 occurred. E, embryonic day; P, postnatal day; qRT-
PCR, quantitative reverse transcription-polymerase chain reaction.
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Overall our analyses revealed extensive and sustained epigenetic
changes in the liver after birth, with the majority of these changes
occurring between day 5 and day 20.

Variation in cellular division rates leaves its footprint in
the DNA methylation patterns but does not explain the
epigenetic changes associated with age
The liver grows dramatically during the early postnatal period,weighing
over five times more at P20 than at birth (Figure S6). Extensive cell
division could affect the DNA methylation patterns of a given organ,
since the newly synthesized DNA molecules initially lack DNA meth-
ylation and are hemimethylated (Hervouet et al. 2012; Desjobert et al.
2015). However, this mechanism is unlikely to explain (i) the loss of
DNA methylation observed at 11% of the changing CpGs and (ii) the
magnitude of the changes in DNA methylation observed at many
CpGs. Interestingly, we noted that, when comparing the same CpGs
across samples, the maximumDNAmethylation levels observed in our
RRBS experiments differed according to the age of the animal (Figure
3) and were consistent with more cellular divisions occurring in new-
born liver than adult liver. This is unlikely to be due to batch effects, as
the same pattern was observed in both the discovery and time-course
datasets. These changes in cellular division rates inferred from theDNA
methylation patterns were corroborated by analyses of Cyclin gene
expression: the Cyclins A2, B1, E1, and E2 showed a continuous de-
crease in gene expression from E18.5 to P20 and were barely detectable
afterward (Figure S7).

Since cell division cannot explain the extensive changes in DNA
methylation observed in liver postnatally, we then investigated the
possible contribution of variations in cell composition.

HSC migration precedes epigenetic changes
Prior to birth, the liver is the primary site of hematopoiesis and HSCs
migrate to thebonemarrow justbeforeor afterbirth (MikkolaandOrkin
2006). Histological analyses showed that the liver samples consisted of
more than 60% HSCs at birth, but that HSCs made up , 4% of the
livers by P10 (Table 1). Therefore, the migration of HSCs from the liver
postnatally is not sufficient to explain the dramatic epigenetic changes
that we observed between P10 and P20. Note that our data are in
agreement with previously published data (Waterland et al. 2009),
although we observed a slightly higher proportion of remaining HSCs
in our experiments at P5 than previously reported. After P10, the livers
were composed primarily of hepatocytes and hepatocyte precursors,
with adult-like morphology (easily discernible lobules with a central
vein and portal triads) and cellular composition (primarily hepato-
cytes). Figure S8 shows representative H&E stained liver sections from
the different age groups.

Postnatal epigenetic reprogramming occurs
concurrently with hepatocyte differentiation
To characterize the timing of hepatocyte differentiation, we quantified
the abundance of transcripts specific to a given cell type in each liver
sample. Albumin expression, a marker of hepatocytes and hepatocyte

Figure 5 Enrichment for CpGs chang-
ing by 30% or more in different geno-
mic contexts. We calculated enrichment
values for genomic contexts for CpGs
changing by 30% or more. The CpGs
were grouped by direction and pattern
of change as described in the Materials
and Methods. Note that only statistically
significant enrichment values are shown.
We generated p-values, indicated in pa-
rentheses beneath the fold change val-
ues, for each by resampling the data
1000 times, while correcting for local
CpG density as detailed in the Materials
and Methods.
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precursors (Tanimizu and Miyajima 2004), decreased between E18.5
and P5. Albumin expression then increased to roughly twice the E18.5
value at P10 and remained stable thereafter (Figure S7). These obser-
vations mirrored our histological results, which showed a decrease in
the proportion of hepatocytes at P1 followed by a large increase in
hepatocytes between P5 and P10 (Table 1). Tryptophan 2,3-dioxygenase
(Tdo2) (Cai et al. 2007; Nagao et al. 1986) and serine hydratase (Sds)
(Noda et al. 1990) are markers of differentiated hepatocytes, and alpha-
fetoprotein (Afp, Figure 4) (Tanaka et al. 2009) is amarker of hepatocyte
precursors. Analysis of these markers revealed that hepatocyte differ-
entiation began at P5 with the largest change occurring between P10
and P15 (Figure 4 and Figure S7). These observations indicate that the
extensive epigenetic changes observed in the liver after birth largely
overlap with the timing of the terminal differentiation of hepatoblasts
into hepatocytes.

Epigenetic reprogramming during hepatocyte
differentiation localizes in enhancer elements
To investigate the biological context of these epigenetic changes, we
tested whether specific genic or genomic features were associated with
these extensive postnatal DNAmethylation changes. For these analyses,
we considered separately CpGs that changed by between 5 and 30%, or
those that changed by a minimum of 30%.We analyzed CpGs grouped
by the pattern and direction of the change in DNA methylation (as
outlined in the Materials and Methods).

In our dataset, out of the 2293 CpGs located in promoter regions
(definedas1kbupstreamofa transcriptionstart site),only5.3%changed
their DNAmethylation bymore than 30%. Compared to the percent of
all CpGs analyzed that changed their methylation by more than 30%
(8.5%), this represents a 1.60-fold depletion, suggesting that DNA
methylation at CpGs in promoter regions is proportionally less often
affected by the age of the animal than an average CpG in the genome.
However, this analysis does not take into account possible differences in
CpG content between different genomic contexts that may affect DNA
methylation. Therefore, we calculated the enrichment in differentially
methylated CpGs of each genomic feature by randomly subsampling
regions of the genome with similar CpG density (see Materials and
Methods for details).

After this adjustment, we observed that genic context (promoters,
exons, and introns) had little influence on differential methylation
between ages. By contrast, temporal changes in DNA methylation
occurred much more often than expected by chance in regions of
DNase hypersensitivity (2.34–7.89-fold enrichment), with marks
commonly found in enhancers such as H3K4me1 (1.95–3.41-fold
enrichment), or H3K27ac (2.35–5.74-fold enrichment) (Figure 5).
In fact, despite only roughly 25% of the CpGs in our dataset over-
lapping H3K4me1 regions, more than 85% of the CpGs that de-
creased methylation by . 30% overlapped H3K4me1 marks. For
CpGs that increased by . 30%, 50–57% of CpGs overlapped
H3K4me1 marks. Interestingly, H3K4me3 was enriched (2.01–
3.94-fold enrichment) and H3K27me3 was depleted for differential
methylation (1.47–5.24-fold depletion), while both histone marks
are typically found in promoters, though recent evidence suggests
that H3K4me3 may also be present in select enhancers (Chen et al.
2015; Pekowska et al. 2011). H3K9ac, which is generally associated
with transcriptionally active chromatin (Qiao et al. 2015), was also
enriched for differential methylation (1.33–5.13-fold enrichment).
CTCF binding sites did not seem preferentially affected by the
changes in DNA methylation (1.93–2.43-fold depletion). H3K36me3,
often found toward the 39-end of actively transcribed genes (Wagner
and Carpenter 2012), was slightly enriched (1.34–3.51-fold enrichment),

except for CpGs that increased in the “other” pattern group. H3K79me2,
which is generally associated with transcriptionally active genes (Steger
et al. 2008), was slightly enriched (1.74–3.51-fold enrichment). The de-
tailed analyses for all CpGs that changed by 5–30% are presented in
Figure S9. Overall, our analyses revealed that most of the age-related
epigenetic changes occur largely independently of the genic context
and primarily in regions where histone marks are suggestive of the
presence of enhancers (Onder et al. 2012; Guenther et al. 2008; Yoo
and Hennighausen 2012; Rada-Iglesias et al. 2011; Zentner et al.
2011; Hon et al. 2013).

DISCUSSION
In contrast to histone modifications, DNA methylation marks are
typically considered to be established early in development and to be
stable during adult life (Bird 2002; Law and Jacobsen 2010). However,
recent in vitro studies have shown that DNA methylation can change
during terminal differentiation of cells (Stadler et al. 2011; Scharer et al.
2013; Laurent et al. 2010). We showed here that extensive DNA meth-
ylation changes occur postnatally in the liver, mostly between P5 and
P20. Based on our analysis, HSCs constitute more than half the cells of
the liver at E18.5, but only represent�4% of the cells in the liver at P10.
This indicates that the extensive changes in DNAmethylation observed
in postnatal liver are unlikely to be caused by the exodus of HSC from
the liver. The liver also dramatically increases in size after birth, pri-
marily due to cell division and multiplication of hepatocytes. Cell di-
vision can affect estimation of DNA methylation since, after DNA
replication, there is a short period when the newly synthesized DNA
strand is unmethylated. Thus, if 10% of the cells of a given sample are
actively dividing, one would expect a decrease of DNA methylation of
5% (assuming that all cells are methylated at this locus). While this
temporary loss of methylation would affect the entire genome, it is
possible that methylation marks in some regions may be systematically
restored faster than in other regions (based on the kinetics of DNA
methyltransferase protein binding or the local chromatin structure).
While our analyses of the DNA methylation patterns are consistent
with variations in cell division rates, this cellular process is unlikely to
explain the magnitude of the DNA methylation changes that we ob-
serve at many loci throughout the genome. By contrast, the terminal
differentiation of hepatoblasts into hepatocytes coincides with the tim-
ing of the DNAmethylation changes in the postnatal liver and suggests

Figure 6 Summary of the changes occurring in postnatal liver. The
figure summarizes the cellular changes occurring in the liver after birth
including: the decrease in hematopoietic cell population (dash/dot
line), the decrease in the number of hepatocyte precursor cells
(dashed line), and the increase in the number of hepatocytes (solid
line). The figure also shows when most of the epigenetic remodeling
occurs. E, embryonic day; P, postnatal day.
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that this cellular process is responsible for the epigenetic changes in the
liver (Figure 6). Therefore, analyses of the genomic context of the CpGs
that are differentially methylated at different time points might provide
important insights into the biological mechanisms responsible for ter-
minal differentiation of hepatocytes. This knowledge is particularly
valuable since we do not currently have a robust model to study this
phenomenon in vitro. Our study reveals that most genome-wide
changes in DNA methylation occurred outside of genes and gene pro-
moters, which also highlights the advantage of a global approach rather
than studies that focus almost exclusively on gene promoters
(Waterland et al. 2009). In our study, differentially methylated CpGs
were significantly overrepresented in regions where histone marks
(H3K27ac and H3K4me1) indicate the presence of distal gene en-
hancers (see e.g., Figure S10). In particular, these regulatory regions
were highly enriched in CpGs that decreased their methylation status
from E18.5 through 9 wk. These findings agree with previous studies
that showed the critical role of enhancer regions in cellular differenti-
ation, and suggests that the epigenetic mechanisms controlling embry-
onic stem cell fate are similar to those underlying terminal
differentiation (Gifford et al. 2013; Xie et al. 2013; Whyte et al. 2012;
Kaaij et al. 2013). Our study also provides a solid foundation for future
studies aimed at understanding which genes these differentially meth-
ylated enhancers regulate, and how these genes drive the differentiation
of hepatoblasts.

Our findings have implications for diseases of the liver. First, our
study describes extensive epigenetic alterations that occur during early
postnatal development, a critical period for the establishment of adult
liver function. While we cannot definitively explain the cause of these
epigenetic changes (due to the cellular complexity of the developing
liver), we believe, based on the timing of these changes, that they are
primarily driven by the terminal differentiation of hepatocytes and
speculate that DNAmethylation is an importantmechanism in cell fate
determination in these cells. Further investigations of the molecular
mechanismsunderlying theseDNAmethylationchangescould improve
our understanding of how hepatocytes terminally differentiate, which
will be critical to better understand the regenerative properties of the
liver and explore possible therapeutic avenues exploiting this feature.
Second, our analyses showed that DNA methylation in the liver is
dramatically altered after birth. This observation is important as
DNA methylation has been proposed to underlie the translation of
maternal stimulus into long-lasting molecular consequences. The in
utero environment has been shown in many animal models and
epidemiological studies to influence the risk of developing diseases
in adulthood (Barker 1997; Warner and Ozanne 2010). Our results
suggest that further research is needed to determine if changes to
DNA methylation in utero are maintained through the extensive
reprogramming that coincides with hepatocyte differentiation and
show if modification of DNA methylation in the liver could be re-
sponsible for this phenomenon.

Overall, our findings highlight the complexity and dynamicity of
epigenetic regulation in the liver during early postnatal development,
and point toward aspects of liver biology that are important for future
research to investigate in order to better understand the mechanisms
underlying the terminal differentiation of hepatocytes, as well as the
molecular etiology of liver diseases.
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