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Abstract

Immune checkpoint inhibitors (ICIs) play a crucial role in the immunotherapy

of malignant tumors, preventing immune evasion by tumor cells and

activating autoimmune cells to eliminate the tumor. Despite their proven

effectiveness in antitumor therapy, potential immune‐related adverse effects

must be recognized, particularly ICI‐associated myocarditis (ICIAM). ICIAM

is the most lethal form of organ immunotoxicity, with a significant impact on

short‐term mortality. However, ICIAM is predominantly asymptomatic or

mildly nonspecific. It is difficult to diagnose, especially due to the lack of

unique molecular markers. This article aims to provide a comprehensive

overview of the progress made in identifying molecular markers for ICIAM.
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1 | INTRODUCTION

Immune checkpoint inhibitors (ICIs) have shown great
advantages and potential in tumor therapy [1]. Two types
of ICIs have been used clinically: programmed cell death
protein 1 and ligand (PD‐1/PD‐L1) inhibitors and
peripheral blood cytotoxic T lymphocyte‐associated
antigen‐4 (CTLA‐4) inhibitors. PD‐L1 is located on the
surface of tumor cells and binds to PD‐1 on T
lymphocytes, thereby inhibiting the activity of cytotoxic
T cells [2]. CTLA‐4 is highly expressed on the surface of

tumor‐infiltrating regulatory T cells (Treg cells) and
binds to B7 on the surface of antigen‐presenting cells
(APCs). This pathway transmits inhibitory signals to
reduce the immune response of T cells [3]. Consequently,
tumor cells can exhaust T cells and achieve immune
escape [4]. ICIs are monoclonal antibodies that block
these immune checkpoints and restore the ability of T
cells to fight tumors [5].

ICIs can lead to enhanced immune responses, but this
can also lead to immune‐related adverse events (irAEs)
[6], of which cardiac irAEs are the most lethal [7–9].
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The incidence of cardiac irAEs is 1.3%, while ICIAM is the
most common type, accounting for 50.8% of all cardiac
irAEs and having the highest mortality rate. In addition,
the incidence of cardiac irAEs may be underestimated in
patients treated with ICIs [10]. Previous studies have
shown that the incidence of ICIAM is only 0.27%–1.14%,
but its clinical features lack specificity, and the fatality rate
can be as high as 50% [4, 11, 12]. Thus, early detection and
intervention are crucial for patient survival. There is an
urgent need for effective tools for the early diagnosis of
ICIAM.

2 | ICIAM

There was no significant evidence that different types of
ICIs lead to differences in the pathological staging of
ICIAM. Autopsies of ICIAM patients revealed a predom-
inantly CD3+ T cell infiltration in the myocardium,
mainly composed of CD8+ cytotoxic T cells and CD4+

helper T cells, the former being more abundant than the
latter [13–15]. However, there are differences in the
incidence of ICIAM based on the different types of ICI.
The incidence of ICIAM was 0.05%–0.38% with PD‐
1/PD‐L1 inhibitors alone [13, 16] and 0.06%–1.08% with
CTLA‐4 inhibitors alone [17], the latter being slightly
higher than the former. In addition, the incidence of
ICIAM in patients receiving two or more ICIs was 2.4%,
which was significantly higher than that of monotherapy
[18, 19]. However, the true incidence of ICIAM might be
underestimated due to the lack of specific clinical
symptoms, potential overlap with other cardiovascular
diseases, diagnostic challenges, and overall lack of
awareness of the disease.

In a cohort study, 122 ICIAM patients developed
early symptoms, such as chest pain, weakness, and panic,
within an average of 30 days of their initial ICI exposure
[20]. However, late cardiovascular events (>90 days) are
less well characterized and are often associated with a
higher risk of noninflammatory heart failure, progressive
atherosclerosis, hypertension, and death [21]. Although
the incidence of ICIAM is low, the risk of death after
ICIAM is 38%–46% [18]. In fact, according to the
recommendations of the European Society of Cardiology
Oncocardiology Guidelines, myocarditis is considered a
serious irAE and forms the basis for permanent
discontinuation of immunotherapy [22, 23]. The occur-
rence of such adverse cardiovascular events necessitates
discontinuation of treatment, thereby worsening the
patients' prognosis, and only a very few cases can be
considered for the reintroduction of immunotherapy
[18, 23]. Therefore, early diagnosis of ICIAM is crucial
for improving the long‐term survival of patients.

3 | POSSIBLE MECHANISMS OF
ICIAM

The mechanism by which ICI leads to irAEs in nontarget
organs such as the heart remains unclear. Four main
hypotheses have been proposed [1–6, 24]: (1) ICIs may
directly bind to cell surface proteins, such as CTLA‐4
expressed in normal tissues, leading to T cell infiltration
and complement‐mediated tissue damage. (2) Identifying
T cells that recognize antigens expressed by tumor cells
may potentially enter the circulation and subsequently
identify the same tumor antigens or similar tissue
antigens in healthy tissues. Inhibition of PD‐1 or
CTLA‐4 by ICI therapy may facilitate this process. (3)
There is evidence that immune checkpoint inhibition can
increase the levels of circulating cytokines in affected
tissues and promote the infiltration of inflammatory
molecules into nontarget tissues. (4) The use of ICI may
lead to an increase in autoantibodies against target
organs or promote the formation of new autoantibodies.
Although ICIAMs are known to disrupt cardiac immune
homeostasis, other underlying mechanisms of ICI‐
induced cardiotoxicity may remain, some of which
remain unclear.

4 | ICIAM FEATURES AND
DIAGNOSIS

ICIAM is the main form of ICI‐induced cardiotoxicity
and has the following three key features: (1) Low
morbidity and high mortality. The incidence of ICIAM
ranges from 0.06% to 0.27%, with fatal myocarditis
occurring in less than 0.17% of cases. Despite this, the
mortality rate of ICIAM is still as high as 50%. In recent
years, due to researchers' emphasis on cardiotoxicity, the
incidence of ICIAM has been on the rise, and related
reports have increased [10, 25, 26]. (2) ICIAM often
manifests itself in the early stages of treatment. Typically,
the median time to ICIAM is approximately 34 days
(interquartile range: 21–75 days) after ICI initiation [19].
Of note, cardiotoxicity, including myocarditis, may occur
at any time during receipt of an ICI, and in some cases,
delayed cardiotoxicity may occur up to 90 days
after discontinuation of the ICI [27]. (3) Certain patient
groups with specific risk factors may be more susceptible
to ICIAM. These risk factors include age above
75 years, underlying cardiac disease, previous auto-
immune disease, combination chemotherapy involving
anthracyclines [10, 28], and combination chimeric
antigen receptor T‐cell therapy [29].

The diagnosis of ICIAM requires a comprehensive
evaluation including clinical presentation, electrocardiogram
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(ECG), cardiac imaging, pathology, and blood biomarkers.
However, both clinical presentation and ECG lack specificity
[1, 19, 30]. Furthermore, cardiac imaging has limited
sensitivity [19, 31]. The invasiveness and surgical risks
associated with myocardial biopsy have limited its wide-
spread use [32]. Given the rapid progression and poor
prognosis of ICIAM, clinicians urgently need to identify
highly sensitive and specific molecular markers for early
diagnosis.

5 | ICIAM MOLECULAR
MARKERS

5.1 | Specific antigens in tumors

There are certain highly homologous antigens or epitopes
between cardiomyocytes and tumor cells. ICIs may induce
allosteric recognition of tumor homologous antigens by T
cells [13]. Johnson et al. [13] performed autopsies on two
patients who received combined anti‐CTLA‐4 and anti‐
PD‐1 therapy and developed ICIAM. The results demon-
strated the presence of high‐frequency T cell receptor
sequences in the heart, skeletal muscle, and tumor
infiltrates in both patients. Whole‐transcriptome sequenc-
ing revealed increased expression of inflammatory T‐cell
factors in the myocardium and increased expression of
muscle‐specific antigens, such as junctional and troponin
antigens, in tumors. Interestingly, both cases presented
with myositis and myocarditis. One study reported that up
to 38% of cases of ICI‐associated myositis also included
myocarditis [33]. The histology and immunophenotype of
skeletal muscle were found to be similar to cardiac muscle
[34]. These studies support the possibility of a shared
antigen theory [13, 35]. However, clinical evidence for a
link between shared tumors and cardiac antigens remains
lacking. Determining which epitopes are recognized by
these T cell receptors among the large number of potential
antigens is a daunting task. Additionally, further studies
are needed to elucidate the pathogenic antigens and
molecular mechanisms of ICIAM. Collecting antibody
titers and T cell frequency data for cardiac and tumor‐
associated antigens (e.g., desmin and troponin antigens) in
patients with and without myocarditis will be crucial to
understanding the type and range of antigens associated
with ICIAM.

5.2 | Specific immune cells and
antibodies

ICI leads to the disruption of cardiac immune homeosta-
sis by affecting tissue‐based tolerance mechanisms [36]

and peripherally regulated tolerance mechanisms. Con-
sequently, central tolerance cannot completely eliminate
autoreactive cells [37]. Moreover, ICIs promote the
production of autoantibodies against myocardial tissue,
leading to ICIAM in patients [24].

5.2.1 | Cardiac troponin I or troponin
antibodies

Cardiac troponin and myosin are contraction‐regulating
proteins present in cardiomyocytes. In the case of
autoimmune myocarditis, these proteins can act as
antigens, triggering the production of specific antibodies
[38]. Numerous studies confirmed the importance of
cardiac autoantibodies in the pathogenesis of myocarditis
and their role in identifying patients with myocarditis
[38–41]. In a study by Lucas et al. [42], mice genetically
deficient in the PD‐L1 gene (on an MRL background)
exhibited spontaneous lethal myocarditis, with high titers
of anticardiac myosin autoantibodies and troponin I
autoantibodies detected. However, there is no conclusive
evidence that these antibodies or antibody‐mediated
immune responses lead to myocarditis in patients receiv-
ing ICIs. However, these antibodies have the potential as
biomarkers to identify patiens at risk for myocarditis [43].

5.2.2 | α‐isoform of myosin heavy chain
(α‐MyHC)‐specific T cells

The α‐MyHC (which is encoded by the gene Myh6) is
unique to the heart, expressed only in the myocardium, and
has been identified as a major autoantigen in patients with
idiopathic dilated cardiomyopathy [44]. Moreover, patients
with ICIAM may also present with dilated heart disease. Lv
et al. [45] demonstrated that thymic CD4+ T cells lack
tolerance to α‐MyHC, making them susceptible to this
severe disease. The limited presence of α‐MyHC‐specific
CD4+ T cells in the blood of healthy individuals suggests
that the body lacks central T‐cell tolerance to the protein
[46]. In contrast, the number of α‐MyHC‐specific T cells in
the peripheral blood of myocarditis patients was significantly
higher. Grabie showed that α‐MyHC‐specific T cells play a
central role in autoimmune myocarditis in certain popula-
tions with a genetic predisposition to autoimmunity [34].

5.2.3 | CD4+ T cells with high expression of
Bcl‐2‐like protein 12 (Bcl‐2L12)

Bcl‐2L12, a member of the Bcl‐2 protein family, acts as an
antiapoptotic protein that also inhibits p53 to promote
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tumor cell survival [47, 48]. Studies have shown that it is
involved in impaired immune tolerance [49–51]. Chen
et al. [52] found that in end‐stage heart failure, CD4+ T
cells isolated from myocarditis hearts showed high
expression of Bcl‐2L12, leading to abnormal helper T
cell 2 (Th2) polarization in the heart. This abnormality
enhanced interleukin (IL)‐4 expression and disrupted the
apoptotic machinery, ultimately leading to increased
infiltration of cardiac‐specific cytotoxic T cells into the
myocardium.

5.3 | Cytokines

ICI causes an increase in circulating cytokines, and
ICIAM is triggered when cytokines accumulate to a
certain threshold in nontarget tissues such as myocar-
dium [24]. Hang et al. [53] demonstrated that the
expression of specific cytokines, including IL‐1β, IL‐4,
IL‐10, and interferon‐γ (IFN‐γ), was significantly upre-
gulated in the blood of patients with fulminant myocar-
ditis. However, with appropriate treatment, the levels of
these cytokines gradually decrease to normal levels. Ji
et al. [54] conducted a study on crab‐eater monkeys
treated with a combination of ipilimumab and nivolu-
mab. Their research results showed that: (1) The
activation and proliferation of T cells were closely related
to the increase of cytokine levels such as IL‐4, IL‐6,
IFN‐γ, and tumor necrosis factor (TNF)‐α in the blood.
(2) Observed upregulation of multiple chemokine recep-
tor genes in the CXCR3‐CXCL9/CXCL10 and CCR5/
CCL5 axes associated with T cell homing. Both the
CXCR3‐CXCL9/CXCL10 and CCR5/CCL5 axes have
been implicated in the regulation of inflammatory
responses and the promotion of downstream cytokine
release [55–57]. These results suggest that specific
cytokines may have potential as biomarkers for ICIAM.

5.3.1 | IL‐6

IL‐6 is a major driver of inflammation in cytokine
release syndrome (CRS), leading to enhanced B‐cell and
T‐cell activity and the release of acute‐phase response
proteins [58, 59]. Increased IL‐6 levels may increase the
risk of cardiovascular complications, including myocar-
dial ischemia and atherosclerosis [60, 61]. Therefore,
elevated IL‐6 may lead to ICIAM. However, it may also
be affected by factors such as tumor cell necrosis or
nontarget organ inflammation. The specific threshold of
IL‐6 levels required to diagnose ICIAM remains to be
studied.

5.3.2 | Soluble growth stimulation expressed
gene 2 protein (sST2)

sST2 is a member of the IL‐1 receptor. Previous studies
have shown that the IL‐133/ST2 pathway involved in T
cell‐mediated immune responses [62]. sST2 exhibits low
biological variability and high stability, making it a
reliable marker. Elevated sST2 levels are associated with
myocardial mechanical stress or inflammatory responses
[63, 64]. Li et al. [65] analysis of sST2 in ICIAM patients
suggested that it has the potential to serve as a molecular
marker for the diagnosis of ICIAM. They found that
when sST2 ≥ 87.5 ng/mL, the sensitivity and specificity of
ICIAM prediction were 90% and 100%, respectively.
Furthermore, the study of Wang et al. [66] study
highlighted the superiority of sST2 over cardiac troponin
I (cTnI) and N‐terminal pro‐B‐type natriuretic peptide
(NT‐proBNP) in diagnosing fulminant myocarditis.
Plasma sST2 levels were positively correlated with cTnI
and NT‐proBNP and negatively correlated with cardiac
systolic function. These findings further support the
utility of sST2 as a diagnostic molecular marker for
ICIAM, with higher levels indicating increased myocar-
dial fibrosis and poor cardiac remodeling [67, 68].
Meanwhile, sST2 has a significant independent predic-
tive value for the prognosis of ICIAM patients [69, 70].

5.4 | Myocardial injury markers

5.4.1 | Cardiac troponin T/I (cTnT/I)

Troponin is the most sensitive markers for detecting
myocardial injury and is widely used in clinical practice
[30]. Studies have shown that in cases of ICI‐induced
cardiotoxicity, troponin levels were elevated in 94% of
patients and that both peak troponin levels and final
troponin levels were associated with adverse outcomes. In
patients with myocarditis, final cTnT levels ≥1.5 ng/mL
are associated with a four‐fold increased risk of adverse
cardiovascular events [19].

5.4.2 | High‐sensitivity cardiac troponin T/I
(hs‐cTnT/I)

Elevation of hs‐cTnT/I is a specific indicator of
cardiac injury and is characterized by re‐expression of
the cardiac isoform of troponin T/I in damaged and
regenerating myocardium [71]. Petricciuol found that hs‐
cTnT/I ≥ 14 ng/L before medication could predict the
occurrence of cardiotoxicity and adverse cardiovascular
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events within 3 months of medication [72]. Consequently,
the hs‐cTnT/I can detect the sustained damage to trace
amounts of myocardial tissue caused by ICI, thereby
enabling early diagnosis of subclinical cardiac injury,
especially in asymptomatic patients.

5.4.3 | NT‐proBNP

NT‐proBNP is crucial for the early diagnosis of ICIAM. A
real‐world study [25] involving 204 patients treated with
ICIs showed that NT‐proBNP levels were significantly
elevated and periodically changed over time in patients
experiencing adverse cardiovascular events, including post‐
ICI myocarditis. These findings suggest an NT‐proBNP
trend indicative of ICI‐induced myocardial injury.

5.4.4 | Heart type‐fatty acid‐binding proteins

Fatty acid binding protein is a small cytoplasmic protein that
is highly expressed in tissues with active fatty acid
metabolism, such as heart and skeletal muscle. Yuan et al.
[73] demonstrated that heart type‐fatty acid binding proteins
(H‐FBPs) showed elevated levels at 3 months in ICI‐treated
patients with myocardial injury, whereas traditional molecu-
lar markers such as cTnI and NT‐proBNP did not. This
suggests that H‐FABPs may serve as a more sensitive
molecular marker for the detection of ICIAM.

5.5 | Noncoding RNA

5.5.1 | MicroRNAs (miRNAs)

miRNAs are noncoding RNA sequences that regulate
posttranscriptional gene expression by targeting the
3′ untranslated regions of messenger RNA (mRNA)
sequences [74]. Gene expression studies have shown that
miRNAs are differentially expressed in heart disease [75].
These miRNAs remain stable in circulation and can be
effectively amplified using sequence‐specific amplification
to increase the sensitivity and specificity of detection.

MiR‐208a is the only cardiac‐specific miRNA that is
minimally affected by noncardiac tissue damage. According
to the study of Wang et al. [76], elevated cardiac‐specific
miR‐208a in plasma could serve as a promising biomarker
for early detection of myocardial injury in humans. The
study showed that miR‐208a exhibited peak elevation before
cTnI, suggesting its potential for early detection. Further-
more, miR‐208a exhibited comparable sensitivity and
specificity to cTnI, further highlighting its diagnostic
significance.

Blanco‐Domínguez et al. [77] found a significant
increase in cardiac myosin‐specific type 17 helper T
cells in mice with autoimmune myocarditis. They
identified a novel miRNA (mmu‐miR‐721) as a potential
myocarditis marker by miRNA microarray analysis. Its
human homolog hsa‐miR‐Chr8:96 is expected to be used
in the molecular diagnosis of ICIAM.

Wang and Han [78] found specific miRNAs related to
the heart, such as miR‐1, miR‐133a, miR‐208a, miR‐208b
and miR‐499, as well as immune status‐related miRNAs,
including miR‐223‐3p, miR‐21, miR‐146b, miR‐155, miR‐98,
miR‐93, miR‐590‐3p, miR‐214 are related to myocarditis.
These miRNAs play a role in promoting cardiac inflamma-
tion and may serve as reliable diagnostic molecular markers.

Most studies are investigating the utility of individual
miRNAs as molecular markers. However, combining
multiple miRNAs is expected to significantly improve
diagnostic accuracy. In addition, larger studies are
essential to define precisely the threshold for measuring
cardiac‐specific miRNAs in plasma to diagnose ICIAM.

5.5.2 | Circular RNAs (circRNAs)

circRNAs are a class of noncoding single‐stranded RNAs
with covalently closed continuous loops formed by back‐
splicing of pre‐mRNAs. Due to the absence of 5′‐3′
polarity and poly(A) tail, circRNA exhibits high stability,
making it a potential new biomarker for disease
diagnosis [79]. It has been demonstrated that circRNAs
play a crucial role in the pathophysiology of cardiovas-
cular diseases [80, 81].

Zhang et al. [82] found that has‐circ‐0071542 was
significantly upregulated in children with fulminant
myocarditis, which was subsequently named circACSL1.
In the acute phase of myocarditis, the expression of
circACSL1 increased significantly, but decreased in the
recovery phase, indicating its correlation with myocardi-
tis. Furthermore, the study observed that circACSL1
expression levels changed in line with the trends of
hs‐TnT and NT‐proBNP, confirming that circACSL1
exacerbates myocardial inflammation and injury through
the miR‐8055/MAPK 14 pathway [83]. These findings
suggest that circACSL1 has the potential to serve as a
novel biomarker for the diagnosis of ICIAM.

6 | SUMMARY AND OUTLOOK

Although the incidence of ICIAM is relatively low, the
application of ICIs shows good potential, and with the
widespread use of ICIs, the number of ICIAM patients
has gradually increased. ICIAM is characterized by rapid
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progression, high mortality, and poor prognosis, requir-
ing high clinical vigilance. Molecular markers associated
with ICIAM play a crucial role in the early identification
and diagnosis of the disease. However, most studies of
ICIAM have been conducted on animal models and
patients diagnosed with ICIAM. The limitations of
ICIAM diagnosis and the lack of longitudinal data on
the onset of ICIAM patients pose significant challenges
to the study of ICIAM pathogenesis and molecular
markers.

Currently, there is a lack of specific molecular
markers for the diagnosis of ICIAM [84]. Urgently
needed are molecular markers that combine specificity
and sensitivity in the clinical setting. Additionally,
studying the possible mechanisms and molecular mark-
ers of ICIAM can optimize the drug structure of ICIs,
develop adjuvants to reduce ICIs‐related cardiotoxicity,
treat ICIAM and improve prognosis, such as TNF‐α
inhibitors [85], IL‐6 inhibitors [29], and CTLA‐4 agonists.
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