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Abstract

Background: Protein interaction databases often provide confidence scores for each recorded interaction based on
the available experimental evidence. Protein interaction networks (PINs) are then built by thresholding on these
scores, so that only interactions of sufficiently high quality are included. These networks are used to identify
biologically relevant motifs or nodes using metrics such as degree or betweenness centrality. This type of analysis can
be sensitive to the choice of threshold. If a node metric is to be useful for extracting biological signal, it should induce
similar node rankings across PINs obtained at different reasonable confidence score thresholds.

Results: We propose three measures—rank continuity, identifiability, and instability—to evaluate how robust a node
metric is to changes in the score threshold. We apply our measures to twenty-five metrics and identify four as the
most robust: the number of edges in the step-1 ego network, as well as the leave-one-out differences in average
redundancy, average number of edges in the step-1 ego network, and natural connectivity. Our measures show good
agreement across PINs from different species and data sources. Analysis of synthetically generated scored networks
shows that robustness results are context-specific, and depend both on network topology and on how scores are
placed across network edges.

Conclusion: Due to the uncertainty associated with protein interaction detection, and therefore network structure,
for PIN analysis to be reproducible, it should yield similar results across different confidence score thresholds. We
demonstrate that while certain node metrics are robust with respect to threshold choice, this is not always the case.
Promisingly, our results suggest that there are some metrics that are robust across networks constructed from
different databases, and different scoring procedures.
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Background
Protein interaction networks (PINs) are models of cellular
architecture in which proteins are represented by nodes
and the biologically meaningful interactions between
them are represented by edges. PIN analysis has a wide
range of applications in bioinformatics [1–3], and in par-
ticular in drug discovery [4–6]. For example, it can be
used to predict protein function [7–10] and disease rele-
vance [11–13], as well as to identify possible drug targets,
especially in the case of multi-target drug discovery [14].
A common aim of PIN analysis is the identification of key
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actors in the network, e.g. for the purposes of drug target
choice [15–17].
PINs can be built using both physical and/or

functional interactions, which can in turn be obtained
from a range of experimental and in silico techniques
[18, 19]. There exist numerous databases of protein inter-
actions which vary in data type, data collection methods,
and content curation [20, 21]. High-throughput interac-
tion data based on yeast two-hybrid assays [22], tandem
affinity purification [23] or gene co-expression [24] are
often subject to high false positive and false negative rates
(e.g. [25–27]). Different approaches to data curation
are used to correct for this. Some databases, such as
STRING [28], HitPredict [29], IntAct [30], and HIPPIE
[31], quantify the strength of the supporting evidence for
each reported interaction by assigning a confidence score
to it. These confidence scores are often a combination

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-3036-6&domain=pdf
http://orcid.org/0000-0003-1388-2252
mailto: deane@stats.ox.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Bozhilova et al. BMC Bioinformatics          (2019) 20:446 Page 2 of 14

of different sub-scores (e.g. based on different evidence
channels in STRING), each of which is calculated in a
custom, source-specific way. The final combined scores
are usually scaled between 0 and 1 but are not readily
interpretable, and, as we illustrate, tend not to be com-
parable across databases. Such scores are designed to
provide a comparison between different interactions (an
interaction with confidence score of 0.40 is supported
by weaker evidence than an interaction with score of
0.90), so researchers can control strength of evidence by
imposing a score threshold. STRING, for example, sug-
gests thresholds of 0.15 (low confidence), 0.40 (medium
confidence), 0.70 (high confidence) or 0.90 (highest con-
fidence), whereas HitPredict identifies all interactions
scoring below 0.28 as medium-high confidence, and
interactions scoring above as high confidence.
Due to the wide range of available resources and quality

assessment tools for protein interaction data a number of
different networks can be built to model the same part of
the interactome. Even when the data type and source are
fixed, a threshold on data quality is often chosen, either
by database curators, or explicitly by researchers during
network construction. Only interactions which meet that
threshold contribute to the final network structure (see
[28] for a discussion on scores and thresholding, and [32]
for a particular example). Such data preprocessing choices
play an important role in PIN structure and we show that
they can have an effect on any further network analysis.
Given interaction detection error rates, and the incom-

plete coverage of interaction detection experiments
[33, 34], it is extremely unlikely that any one PIN is a
perfect representation of the underlying biological pro-
cesses it aims tomodel, regardless of how it is constructed.
The effect of error, or noise, on networks, such as miss-
ing or misplaced edges, is an established research topic
in network science [35], and is often studied via network
perturbation [36]. In the context of PINs, stochastic mod-
els of noise on network edges have been used to re-score
interactions [9], determine optimal score thresholds [37],
and have been incorporated into community detection
[38, 39]. However, these models often rely on assumptions
about the behaviour of the error: for example, they may
assume that interactions are equally likely to be detected
regardless of the properties of the proteins involved. Such
assumptions do not necessarily hold in the context of pro-
tein interaction detection [40]. Moreover, any approach
which incorporates interaction scores directly within PINs
(e.g. by modelling them as weighted networks), implicitly
relies both on the interpretability and the accuracy of the
scores themselves, both of which can change over time
and across data sources. The relative scarcity of high qual-
ity interaction data and lack of sufficiently good PIN-like
random network models further complicate the validation
of such approaches.

Rather than considering a single network, the observa-
tion of which is subject to a difficult to model noise pro-
cess, assessing the robustness of a PIN analysis pipeline
can be done by repeating the analysis across different
networks representing the same part of the interactome.
One way to do this would be to consider building differ-
ent networks from the same scored interaction database
by varying the confidence score threshold. We postulate
that network features which are persistent across different
thresholds are more likely to be informative of the biolog-
ical state of interest than features which are only present
at isolated thresholds. This hypothesis is in line with net-
work research in neuroscience, where a similar heuristic
is employed to identify which parts of a brain network are
active across different observations [41].
In this paper we provide a framework for assess-

ing the robustness of node metrics to threshold
choice. Our framework is based on a measure of rank
similarity described by [42]. We introduce three robust-
ness measures—rank continuity, identifiability, and
instability—which can be used to quantify how consistent
a node metric is across different thresholds. Our method-
ology is particularly relevant to cases where a node metric
is used to identify highly ranking nodes, which may corre-
spond to key proteins in a particular process, for example
for the purposes of drug target identification [16].
By analysing the effects of threshold change on a set of

twenty-five nodemetrics across four scored PINs we show
that some node metrics tend to be more robust—and are
therefore possibly more relevant to biological research—
than others. The node metrics studied include standard
node centralities, such as degree and betweenness, as
well as leave-one-out difference (LOUD) metrics, which
measure the effect of isolating a node on global network
summaries such as the global clustering coefficient. Some
of the metrics are based on ego networks, i.e. networks
formed by taking a node and its nearby neighbours (see
Methods for details). We identify the number of edges in
the step-one ego network, and LOUD average redundancy
[43], LOUD number of edges in the step-one ego network,
and LOUD natural connectivity [44], as significantly more
robust to threshold choice than more commonly used
metrics, such as local clustering coefficient, betweenness
centrality, and in some cases even degree.
Promisingly, our results show good agreement between

networks from different organisms and databases. Com-
plemented with analysis of synthetic data, we further show
that robustness depends both on network topology and on
score allocation across network edges.

Results
Thresholding effects
The reliability of a detected interaction between two
proteins is often quantified by a confidence score, with
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lower scores corresponding to weaker interaction evi-
dence. When PINs are constructed from such data, a
threshold on the confidence scores is usually applied in an
attempt to filter out spurious interactions. While it is pos-
sible to incorporate the confidence scores as edge weights
in the network, these scores represent neither interaction
strength, nor distance, making classical weighted net-
work analysis techniques difficult to interpret. Moreover,
confidence scores vary across databases, both in their
derivation and interpretation, as well as in their values.
Confidence scores are designed specifically to allow

researchers a degree of control over data quality, usually
through thresholding. Threshold choice over the confi-
dence scores introduces a trade-off between the numbers
of false positive and false negative interactions. A low
threshold may introduce many interactions which have
been detected experimentally, but which have no biolog-
ical relevance, while a high one will reduce the number
of such false positives, but may also lead to more genuine
interactions being excluded from the network.
Imposing different thresholds will affect PIN structure,

and may affect PIN analysis in complex, and potentially
difficult to predict, ways. Some metrics, such as edge den-
sity, node degree, and natural connectivity, will decrease
monotonically with threshold increase. Other network
metrics, such as clustering coefficients and betweenness
centrality, do not necessarily behave monotonically and it
is unclear how to predict their rate of change (or even its
direction) between thresholds.

To examine the effect of threshold choice we con-
sidered three full organism networks obtained from
the STRING database—Plasmodium vivax (PVX),
Escherichia coli (ECOLI), and Saccharomyces cerevisiae
(YEAST). STRING suggests using one of four thresholds
as a default—low (0.15), medium (0.40), high (0.70), and
highest (0.90). For each threshold, an unweighted net-
work between the proteins is constructed which includes
only those edges for which the score is at least as high as
the threshold. The average degree in each of the three
STRING networks analysed decreased with increasing
thresholds, from over 200 at low confidence, to under 25
at highest confidence (Fig. 1a). In the PVX network, the
average local clustering decreased monotonically from
0.50 down to 0.20 across the four suggested thresholds.
However, in the ECOLI network, average local cluster-
ing increased from 0.24 (low confidence) to 0.40 (high
confidence), before decreasing down to 0.35 (highest
confidence). In the YEAST network, the average local
clustering remained stable around 0.27 between low
and medium confidence, and then steadily increased to
0.36 at the highest confidence threshold before dropping
off again (Fig. 1b). Unlike average degree, average local
clustering is non-linear, and is heavily influenced by low-
degree nodes in sparse networks. A small number of edge
deletions can dramatically change the local clustering
coefficients of such nodes, making it difficult to predict a
priori how the average local clustering will change with
the threshold.
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Fig. 1 Thresholding effects in STRING networks. Average degree (a) and average local clustering coefficient (b) as functions of the threshold in the
three STRING networks. The dotted vertical lines correspond to the four default STRING threshold values
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Figure 1 illustrates two aspects of scored PINs: firstly
that node metrics can vary significantly in their raw values
across thresholds, and secondly, that this variation is qual-
itatively different for different metrics. The incomplete
coverage and experimental error of interaction detec-
tion techniques imply that it is most unlikely that any
particular thresholded network describes perfectly all bio-
logically relevant interactions and only them. Therefore,
any robust, biologically informative PIN analysis pipeline
should ideally show agreement in results obtained across
at least a narrow range of different thresholds. In the con-
text of using node metrics to identify key proteins in a
network, such an agreement may translate to identifying
the same set of highest ranking nodes.
We analysed 25 node metrics, of which 12 were node

centralities, and 13 were global network summaries which
we redefined as leave-one-out difference (LOUD)metrics.
Four scored PINs were considered, spanning three organ-
isms and two databases—the three PINs from STRING,
illustrated in Fig. 1 and the S. cerevisiae network obtained
from HitPredict (HPRED). For each PIN, these metrics
were calculated for all nodes in a set of 85 thresholded
networks, obtained at equidistant thresholds from 0.15
(the lowest recorded) to 0.99 at 0.01 intervals. In addition
we considered two synthetic scored networks—SYN-GNP
based on a Bernoulli random graph, and SYN-PVX, based
on a re-scored subset of the PVX network. The node
rankings induced by a metric at each of the thresholded
networks were used to assess themetric’s rank robustness.

Rank continuity
PIN analysis often aims to identify key proteins in a partic-
ular biological process or context, for example by studying
which nodes in the network attain high values across dif-
ferent node metrics. This problem relates to the node

rankings induced by the metrics (“Which are the nodes
of highest degree?”), rather than to exact metric values
(“What is the degree of these nodes?”).
Exact metric values can be difficult to interpret

and will vary both between PINs and with the PIN
confidence score threshold. For example, ubiquitin
(YLL039C) has degree between 262 and 4254 across
different thresholds of the YEAST network (values
obtained at score thresholds 0.99 and 0.15 respec-
tively). These values are vastly different, and not eas-
ily interpretable or comparable outside the context of
the particular thresholded networks they are obtained
from. In contrast, the fact that ubiquitin is the sin-
gle highest degree node across all thresholds for the
scored YEAST network demonstrates its biological role
more clearly.
We propose that for a node metric to be reliably indica-

tive of the biological state described by a scored PIN, it
should identify similar sets of key, i.e. highest ranking,
proteins at a range of thresholds. In particular, rankings
obtained at consecutive thresholds (e.g. at 0.40, the pro-
posed medium confidence threshold in STRING, and at
the slightly higher 0.41) should be in good agreement.
Large differences could imply that (a) the metric is too
influenced by pre-processing decisions to be informative,
or (b) that the confidence score distribution is highly con-
centrated between these two thresholds and moving from
one to the other significantly changes network topology.
For each analysed node metric, rank similarity was

measured using Trajanovski’s k-similarity (see Methods)
between each two consecutive thresholds, across all
scored networks—the three STRING networks, the S.
cerevisiae network from HitPredict, and two synthetic
networks (Fig. 2, Additional file 1: S1-S4). In the analysed
PINs, three different modes of behaviour were observed:
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Fig. 2Metric rank similarity between consecutive thresholds. a In the four PINs, metrics were either consistently stable (e.g. degree and LOUD
natural connectivity), consistently unstable (e.g. local clustering coefficient), or showed decreasing stability (e.g. betweenness). b The synthetic
network based on a randomly rescored subset of the PVX network, SYN-PVX, and the network based on a Bernoulli random graph, SYN-GNP,
exhibited different behaviour, with metrics showing the least similarity across thresholds in the SYN-GNP network



Bozhilova et al. BMC Bioinformatics          (2019) 20:446 Page 5 of 14

some metrics exhibited consistently high similarity, some
consistently low, and for others k-similarity steadily
decreased with threshold increase (Fig. 2a, Additional
file 1: S1 and S2).
We propose a rank continuity measure based on how

often k-similarity between consecutive thresholds reaches
0.90 (details in Methods). Continuity was measured for
our set of twenty-five metrics (Methods and SI for details)
across the six scored networks (Additional file 1: Tables
S1 and S5). Between 7 and 16 metrics were found to have
continuity measures over 0.90 for the medium-high con-
fidence region in each of the scored PINs. The value of
0.90 was chosen since we believe robust metrics should
produce nearly identical sets of high-ranking nodes across
most pairs of consecutive thresholds. Seven metrics were
found to have continuity measures over 0.90 in all four
networks, and an additional four metrics had high con-
tinuity in three out of the four networks (all but the
PVX network). Eleven of the twenty-five metrics—degree,
redundancy, PageRank, harmonic closeness, LOUD natu-
ral connectivity, LOUD global clustering, LOUD average
redundancy, and four of the ego-network based metrics—
had an average score across the four PINs above 0.90.
Nine metrics, including the commonly used local cluster-
ing coefficient and betweenness centrality, did not achieve
a high continuity measure in any of the four PINs.
Spearman rank correlations of the continuity measures

(Additional file 1: Table S2) showed extremely good agree-
ment between the three STRING networks (all correla-
tions were above 0.95), and very good agreement between
the STRING networks and the HPRED network (corre-
lations between 0.89 and 0.92). These were higher than
correlations between the STRING networks and either
of the synthetic networks (between 0.30 and 0.68), sug-
gesting that how edge scores are placed over the network
(biased as opposed to random) plays an important role in
metric rank continuity. Finally, continuity in the synthetic
Bernoulli network, SYN-GNP, was considerably lower
across all metrics (Fig. 2b, Additional file 1: Table S5).
This implies that the metric continuity is sensitive to net-
work structure—the reported continuity values will not
necessarily hold for other types of networks (e.g. social,
transport, etc.), where other node metrics may be more
stable.
Our continuity analysis suggests that nearly half of the

tested node metrics are robust to small threshold per-
turbation in PINs. However, incremental changes in the
set of overlapping nodes between consecutive thresholds
may result in a high continuity measure but low similarity
between rankings at more distant thresholds. This can be
undesirable, since often confidence scores are not readily
interpretable and there may exist a wide range of permis-
sible thresholds (e.g. anywhere between 0.15 and 0.90 in
STRING).

Rank identifiability
In order to assess the robustness of a node metric across a
range of medium-high confidence score thresholds, over-
all ranks were calculated and compared to ranks induced
at single thresholds. These ranks were designed to repre-
sent the relative position (i.e. importance) of each node
across a range of medium-high confidence thresholds,
and were calculated as rank averages across the thresh-
old region. For example, consider two proteins X and Y.
Suppose that for thresholds 0.60 to 0.70, X is the highest
degree node in the network, and Y is the second highest,
and vice versa for thresholds 0.71 to 0.90. Since it is more
often the case that Y has higher degree than X, Y would be
the overall highest ranking node with respect to degree.
We define a rank identifiability measure which quantifies
the ability to recover the set of overall highest ranking
nodes by considering any single threshold in the region.
Our identifiabilitymeasure is based on an asymmetric ver-
sion of k-similarity, which we introduce and call α-relaxed
k-similarity (defined in Methods). Intuitively, a rank iden-
tifiability measure of 0.90 implies that at least 90 of the
100 overall highest ranking nodes are also among the top
150 at any given threshold. So if only a single threshold
was considered, it would still contain themajority of nodes
which rank highly across the entire region.
In each of the three STRING networks, 5 (for PVX)

or 6 (for YEAST and ECOLI) node metrics were
found to have rank identifiability measures above 0.90
(Additional file 1: Table S6). In the HPRED network,
where the medium-high confidence region is shorter
than in STRING, identifiability measures were higher
and 16 metrics attained a score above 0.90. Of these,
four metrics—redundancy, number of edges in the
step-one ego network, LOUD natural connectivity, and
LOUD average number of edges in the step-one ego
network—had identifiability measures above 0.90 across
all four PINs.
The similarities of rankings induced at thresholds out-

side the medium-high confidence region to the over-
all ranks were also calculated, although these simi-
larities did not contribute to the rank identifiability
scores. Since the overall ranks were calculated over the
medium-high confidence region for each network, it is
natural to expect α-relaxed k-similarities to be higher
within the region than outside it (Fig. 3, Additional
file 1: S5-S8). This trend is observed even in the case
of the truly randomised SYN-GNP network (Fig. 3b).
In the HPRED network, for example, some metrics
showed high rank similarity for thresholds as high as
0.45. This indicates that the exact boundaries of the
region do not necessarily heavily influence identifiability
results.
Like rank continuity, rank identifiability is a context-

dependent property of network metrics. The three
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Fig. 3 Relaxed similarity between overall and threshold ranks in the scored PINs. a The overall ranks have been calculated over the medium-high
confidence regions—0.60 to 0.90 for the three STRING networks (black dotted lines) and 0.15 to 0.28 for the HitPredict network (pink dotted lines). b
The STRING medium-high confidence interval was also used for the synthetic networks. The SYN-GNP network, where both structure and score
allocation are uniform, exhibits lower relaxed similarity. The SYN-PVX network has inherently heterogeneous network structure, on which scores are
assigned randomly. Score thresholding introduces the same rate of change in different parts of the network, so that the relative node degree, for
example, may remain largely unchanged across a series of thresholds. In contrast, the heterogeneous score allocation in PINs makes rank
reorderings more likely, and identifiability may be expected to be lower

STRING networks closely agreed in identifiability mea-
sures (Spearman correlations between metric identifiabil-
ity scores were all 0.94 and above), and were more similar
to measures obtained from analysing the HPRED net-
work (correlations above 0.81) than any of the synthetic
networks (Additional file 1: Table S3).
While rank identifiability can be used to quantify rank

conservation across many thresholds, it does not account
for all types of rank variability. Intuitively, a metric which
preserves the exact same ranking in the set of top n nodes
at every threshold is more robust than one in which the
top node set is preserved, but re-ranked. However, since
our rank continuity and identifiability measures are both
based on set overlap only, in both the preserved and the
re-ranked case the metrics would achieve a perfect score
of 1. To take this difference into account we introduce a
measure for rank instability.

Rank instability
A different way of assessing how well top-ranking nodes
(or nodes in general) preserve their ranks across different
thresholds is to calculate the ranges of ranks they attain.
A robust metric should result in relatively narrow rank
ranges. In particular, overall top ranking nodes should
have relatively narrow rank ranges.
In order to quantify this behaviour we define rank insta-

bility as the scaled average rank range of the overall top 1%
ranking nodes (details in Methods). Unlike the rank con-
tinuity and identifiability measures, where values close to
one represent robustness, instability values close to zero
correspond to narrower rank ranges, and therefore more

consistent node metric behaviour. The instability measure
was lower in the HPRED network, where the medium-
high confidence interval is shorter, and similar across the
three STRING PINs (Fig. 4a and Additional file 1: Table
S7). Only four metrics had instability measures below 0.01
in all PINs—number of edges in the step-1 ego network,
LOUD natural connectivity, LOUD average redundancy
and LOUD average number of edges in the step-1 ego
network.
Rank instability measures in the synthetic networks

were generally higher than in the scored PINs (Fig. 4b
and Additional file 1: Table S7). Spearman correlations
of metric rank instability were higher across the scored
PINs than they were between PINs and either of the syn-
thetic networks (Additional file 1: Table S4), suggesting
once again that PINs exhibit context-specific behaviour.
Overall, the three measures for rank robustness of node

metrics described here—rank continuity, identifiability,
and instability—agree across the four studied protein
interaction networks and identify four node metrics to
be robust to thresholding: number of edges in the step-1
ego network, LOUD natural connectivity, LOUD average
redundancy and LOUD average number of edges in the
step-1 ego network. Measures of rank continuity, identifi-
ability, and instability for all 25 analysed metrics averaged
over the four PINs can be found in Additional file 1:
Table S1.

Discussion
Protein interaction network analysis typically starts with
network construction—some interaction data of interest
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Fig. 4 Rank instability of metrics in the scored networks. a Rank instability in the four PINs. The dotted lines correspond to 1%. Instability measures in
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been plotted for comparison. Note the different scales between plots in a and in b

is obtained, either experimentally or from publicly avail-
able databases, and is then pre-processed before being
used to create a network. Different types of protein inter-
actions, experimental systems for detecting them, and
data clean-up choices mean that multiple networks can
be built to represent the same underlying biological pro-
cess. Since typically only one of these will be analysed, it
is not immediately clear how much these network mod-
els of cellular biology and any conclusions drawn from
them might differ. In this paper we have demonstrated
that varying the confidence score threshold for interac-
tions can result in structurally different networks, both
in terms of density and in terms of properties like aver-
age local clustering coefficient. We propose that if PIN
analysis aims to provide reliable, reproducible biological
insight, it should show some agreement across alterna-
tive network models. This property is desirable in a range
of contexts: any network analysis pipeline which relies on
thresholding in cases where an optimal threshold cannot
be identified with high confidence should produce simi-
lar results across different thresholds. Such analysis may
have different goals, such as protein function prediction
or community detection, andmay employ a range of tools,
such as explicit node metrics and machine learning tools.
In this paper, we have focused on one frequent goal of

PIN analysis—identifying key proteins (nodes) in a partic-
ular piece of biological architecture (network). This can
be done by calculating node metrics, such as degree or
betweenness centrality, and then identifying the set of
nodes which rank highest based on metric performance.
There are many different metrics one can use in this
context, and it is not always clear which are the most
suitable. We argue that one desirable feature a suitable
metric should posses is rank robustness, or the ability to
identify the same or at least largely similar sets of top

ranking proteins when the network construction process
is altered. Here we have considered robustness to varia-
tion in the confidence score threshold required to include
an interaction in the network.
Networks constructed at lower thresholds are denser

and potentially include more spurious interactions than
networks constructed at higher thresholds. Increasing
the stringency of data quality, however, may result in
potentially important but under-studied interactions to be
omitted. Different scoring procedures across databases,
and even within different versions of the same database
(Additional file 1: Figure S9), make optimal threshold
choice difficult. Therefore, a level of rank robustness
across different thresholds is desirable for node met-
rics. We have proposed three measures with which to
assess such robustness—rank continuity, identifiability,
and instability. The relevance of each measure will depend
on the research question at hand and on the reliability of
the confidence scoring procedure.
Rank continuity captures the effect of small threshold

perturbations. This measure may be of particular inter-
est when a narrow band of permissible thresholds has
been identified. For example, if researchers are only inter-
ested in high confidence STRING interactions (threshold
0.75), they may wish to explore whether any metrics they
use have high rank continuity scores, and in particular
whether results obtained at thresholds 0.74 to 0.76 are
similar.
Rank identifiability compares ranks at given thresholds

against overall ranks. It may be particularly informative
when there are no known optimal threshold values. For
example, if researchers are uncertain of their threshold
choice, they may wish to use metrics with high rank iden-
tifiability, since thesemetrics show good agreement across
a wider range of thresholds.
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Finally, rank instability assesses the variation in thresh-
old ranks for the overall top 1% of nodes. It is our most
stringent measure, requiring not only that highly ranked
proteins remain highly ranked but also that they retain
their ordering across thresholds. It should be used when
absolute rank is important. For example, if the researchers
are not only interested in what the key (i.e. top ranking)
nodes in the network are, but also how they are ordered,
they should focus on metrics with low rank instability. If
the top three nodes by degree were A, B and C at every
threshold, but these were differently ordered—say A-B-C
at threshold 0.75 and C-B-A at threshold 0.76, etc.—then
rank continuity and rank identifiability would not penalise
the reordering, while rank instability would.
We calculated the rank continuity, identifiability, and

instability of 25 node metrics in each of six scored net-
works, four of which were PINs and two of which were
synthetically generated. We limited ourselves to networks
with fewer than 7000 nodes because of the computational
cost associated with metric extraction, and in particular
with calculating LOUD natural connectivity. Calculating
natural connectivity for a single node at a single threshold
for our largest network, the STRING network for yeast,
takes approximately 88 seconds on a standard desktop
computer. Since often subnetworks from higher eukary-
otes, such as disease networks, are analysed, we believe
our methodology will be useful for a wide range of appli-
cations.
Our rank continuity measure, which is based on a rank

similarity measure originally proposed by [42], quanti-
fies the agreement between node rankings obtained at
consecutive thresholds. If networks obtained at two close
thresholds, say 0.50 and 0.51, yield considerably differ-
ent rankings, this may suggest that threshold choice plays
an overwhelmingly important role in network construc-
tion, and may obscure any underlying biological signal
that could otherwise be detected. Conversely, high conti-
nuity measures correspond to rankings which are unlikely
to significantly change with small threshold perturbations.
Confidence scores are not always readily interpretable,

which might make threshold choice more difficult.
Therefore, agreement over a wider threshold region
might also be desirable. Small differences in consec-
utive thresholds might be responsible for large dis-
crepancies between more distant thresholds (say 0.50
and 0.70), while still preserving a high rank continu-
ity measure. In order to take this effect into account,
we introduce rank identifiability to measure the agree-
ment between different threshold rankings and a single
overall ranking.
Finally, our rank instability measure provides an alterna-

tive way of analysing rank robustness which is not based
on rank overlap but instead focuses on the different ranks
a particular node attains at different thresholds. High

instability corresponds to the overall top ranking nodes
attaining a wide range of individual threshold ranks.
Our analysis identified four node metrics—number of

edges in the step-one ego network, LOUD average redun-
dancy, LOUD average number of edges in the step-one ego
network, and LOUD natural connectivity—which induce
robust ranks across all four analysed PINs. More com-
monly used metrics such as degree, local clustering coeffi-
cient, betweenness, and closeness did not perform as well.
For example, when comparing the top 100 nodes obtained
at the start and the end of the medium-high confidence
region for the YEAST network (thresholds set at 0.60 and
0.90 respectively), node sets obtained using LOUD natu-
ral connectivity showed a three quarter overlap (75 out of
100). In contrast, the overlap of the top ranking sets identi-
fied by betweenness was less than half (41 out of 100), and
the overlap between sets identified using local clustering
coefficient was less than 10% (9 out of 100).
Spearman rank correlations between robustness mea-

sures across the four different PINs were consistently high
(0.81 and above). In particular, the two yeast networks—
YEAST, obtained from STRING, and HPRED, obtained
from HitPredict—were in good agreement, meaning
that the same metrics appeared as robust across both
networks, despite the different types of data and scor-
ing procedures used (Spearman correlation coefficients
for metric robustness across the two networks are 0.89
for rank continuity, 0.81 for rank identifiability, 0.92 for
rank instability, Additional file 1: Tables S2-S4). The anal-
ysed PINs varied in organism, database, confidence scor-
ing methodology, and even interaction type, yet the rank
robustness results across them were very similar. This
implies that the presented robustness results may be read-
ily applicable to other PINs. In contrast, the lower corre-
lations observed when scored PINs were compared with
the two synthetic networks (Spearman correlations below
0.64, Additional file 1: Tables S2-S4) indicate that rank
robustness is context-specific. The differences observed in
the SYN-GNP network imply that network topology (i.e.
how the edges are placed across nodes) plays a role in
metric robustness. Meanwhile, the differences observer in
the SYN-PVX network show that even if network topol-
ogy resembles that of a PIN, how scores are allocated to
network edges also plays a role in rank robustness.

Conclusions
Protein interaction data can be obtained using a range
of techniques and is subject to different types of experi-
mental error. The uncertainty associated with interaction
detection can be quantified by confidence scores. Apply-
ing a threshold to these scores provides researchers with
a degree of control over the false positives and false
negatives present in protein interaction networks. Nev-
ertheless, we argue that if PIN analysis aims to capture
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biological insight, it should show a level of agreement
across networks obtained at different thresholds.
We present a methodology for assessing metric rank

robustness in scored protein interaction networks. By
analysing a set of networks from different organisms
and databases, we demonstrate that metric robust-
ness is similar across different PINs. Finally, we iden-
tify a set of node metrics which are consistently
robust across different networks—therefore making our
results directly applicable to other, possibly larger
networks.

Methods
Protein interaction and synthetic networks
In order to assess the rank robustness of different
network metrics, four scored protein interaction net-
works were used. The networks ranged across two
databases and three organisms. A confidence score
quantifying the reliability of available interaction evi-
dence was available for each detected edge across all
four networks.

Three organism networks—P. vivax (retrieved March
2018), E. coli, and S. cerevisiae (both retrieved Feb 2018)—
were obtained from STRING [28]. STRING contains both
physical and functional association data, collected across
a range of experimental and in silico interaction detection
techniques. The organisms were chosen because they are
model organisms with higher-than-average coverage of
protein-protein interaction screens, while also having rel-
atively small proteomes, thus reducing the computational
cost of our analysis.
In order to allow for a comparison between databases,

the interaction network for S. cerevisiae was also down-
loaded from HitPredict [29]. Unlike STRING, HitPredict
is a curated database containing only high-confidence
physical interactions.
Filters were applied to remove duplicate interaction

records, self-interactions, and interactions to proteins of
other organisms. Only combined interaction scores were
considered in all four cases, ignoring any available sub-
scores. Confidence score distributions for the four net-
works can be seen in Fig. 5.
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Fig. 5 Confidence score distributions in each of the four studied PINs. Bin width in all four cases has been set to 0.01. Scores from the HitPredict
network (bottom right) follow a different distribution and cannot necessarily be interpreted in the same way as STRING scores
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Two synthetic scored networks were also analysed. One
was generated using a Bernoulli random graph model
on N = 500 nodes and with edges sampled indepen-
dently at random with probability p = 0.06. The value
of p was chosen to be close to network density in the
STRING PINs before thresholding. Edge scores were sam-
pled with replacement from the P. vivax confidence score
distribution. The second network was an induced random
subgraph of the P. vivax network on N = 1000 nodes.
The available edge scores for the subgraph were randomly
rearranged and placed over the fixed edges. This resulted
in a network which is PIN-like in topology, but which
contains no local dependency between edge scores. A
summary of all six analysed networks can be found in
Table 1.

Thresholding
Applying a threshold θ to a scored PIN means discard-
ing all edges in the network with scores strictly lower than
θ and creating a simple, unweighted network from the
remaining edges. The node set is not altered. Figure 6
gives a schematic of how thresholds are applied.
All reported confidence scores in the analysed PINs

were between 0.15 and 1.00. Thresholds were applied
from 0.15 to 0.99 inclusive at 0.01 intervals, resulting in
a set of 85 distinct thresholded networks for each of the
scored PINs. The same node set was preserved across
all 85 thresholded networks, even when thresholding
resulted in isolating nodes from the rest of the network. In
order to minimise the effect of extreme thresholding, both
the full threshold region and a truncated, medium-high
confidence region were analysed for each network.
The majority of interactions in STRING are re-scored

across different database releases (Additional file 1: Figure
S9) which indicates that the scores themselves should be
treated with some error tolerance. In order to take this
into account while retaining score interpretability, a wide
medium-high confidence region was set between 0.60 and
0.90. Medium-high confidence scores in STRING occur at
similar, low frequencies across organisms (Fig. 5). HitPre-
dict generally contains higher quality data and employs a

different, more stringent scoring procedure—while inter-
action scoring 0.40 in STRING would be considered
medium confidence, the same score in HitPredict would
indicate high confidence. The truncated medium-high
confidence region for the HPRED network was therefore
set between 0.15 and 0.28, since HitPredict scores above
0.28 are considered to be high-confidence [29].
An overly stringent threshold may remove so many

interactions that the network structure is destroyed. How-
ever, even at the highest thresholds we consider, a giant
connected component accounts for most of the nodes in
each protein interaction network (91% of nodes in PVX,
79% in ECOLI, 93% in YEAST, and all but two nodes in
HPRED).

Metric extraction and ranking
The rank robustness of twenty-five node metrics was
studied. These included twelve node centralities, and thir-
teen leave-one-out difference (LOUD) global network
summaries.
Commonly used metrics, such as degree, local clus-

tering coefficient, betweenness and closeness centralities
were included in the node metric set. In addition, metrics
based on the size and density of the step-one and step-two
ego networks for each node were calculated. The step-one
ego network for a node v was formed by taking the sub-
graph induced by v and its immediate neighbours (graph
distance 1); in addition, the step-two ego-network also
included nodes within graph distance 2 from v.
The LOUD metrics were used as a way to assess the

effect of perturbing the network by isolating each node
in turn. These included, wherever applicable, local met-
rics averaged over the entire network (e.g. average local
clustering coefficient), as well as metrics which are by
definition global (e.g. global clustering coefficient). The
set also included natural connectivity, a spectral metric
designed to measure the overall robustness of a network
[44]. Due to the associated computational costs, LOUD
metrics were only calculated for nodes with degree at least
two. Metric values for leaves and isolated nodes were set
to NA (not available).

Table 1 Summary statistics for the six analysed networks

Name Network Number of nodes Number of edges Edge density

PVX P. vivax, STRING 3255 344691 ∼ 0.065

ECOLI E. coli, STRING 4144 583440 ∼ 0.068

YEAST S. cerevisiae, STRING 6418 939998 ∼ 0.046

HPRED S. cerevisiae, HitPredict 5673 113001 ∼ 0.007

SYN-GNP Synthetic, Bernoulli 500 7459 ∼ 0.060

SYN-PVX Synthetic, randomised P. vivax 1000 30516 ∼ 0.061

The left-most column corresponds to the names the networks are referred as later in the text. The number of edges and edge density refer to the all scored edges before any
threshold is applied to the network
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Fig. 6 Thresholding scored networks. A scored network, with edge widths corresponding to confidence scores (left). At a low threshold, only the
lowest scoring edge CD is removed (middle). At a higher threshold, only the highest scoring edges AB and BC remain in the network (right). Edge
scores are otherwise ignored in the thresholded networks

The nodes in each thresholded network were ranked
by each of the metrics, with high ranks corresponding to
highmetric values. Node ranks for nodes for which LOUD
metrics were not evaluated were set to first, i.e. smallest.
Ties were resolved at random, independently across dif-
ferent metrics and different thresholds. A full list of node
metrics can be found in Table 2. Further details on their
computation are given in the SI.

Evaluation of rank robustness
As the threshold applied to the scored networks increases,
the networks become lower in edge density and nodemet-
ric values will be affected—for example, node degrees will
decrease. In order to assess the robustness of each met-
ric to changes in threshold, the node rankings induced by
the metric at different thresholds were compared instead
of the calculated values.
Rank similarity is typically measured by a rank cor-

relation coefficient such as Spearman or Kendall. These
coefficients are used to compare whole rank vectors. In
the context of bioinformatics applications, node metrics
are often used to identify the key actors in a particular
process, and therefore it is natural to focus on the highest
ranking nodes only. In order to do this, robustness analy-
sis was based on the rank similarity measureMk proposed
by [42] as follows.
A ranking A is a vector A = {A(v) : v ∈ {1, . . . ,N}}

of ranks assigned to the network nodes v ∈ {1, . . . ,N},
e.g. by considering their degree at a particular threshold.
The k-similarity of two rankings Aθ and Aμ, obtained at
thresholds θ and μ respectively, is the overlap between
their 100k% highest ranking nodes, where k ∈ (0; 1],

Mk(Aθ ,Aμ|k) = |{v : Aθ (v) > N(1−k) ∧ Aμ(v) > N(1−k)}|
Nk

.

This measure of rank similarity is symmetric, and is
therefore useful for cases where both rankings carry the
same meaning, e.g. when they are obtained at consecu-
tive thresholds. However, it is too restrictive when the

rankings being compared are interpreted differently. The
α-relaxed k-similarity of a ranking A to some ranking B is
the proportion of the top 100k% highest ranking nodes in
B which are also within the set of 100kα% highest ranking
nodes in A, α > 0, and k, kα ∈ (0; 1]:

Mα
k (A,B|k,α) = |{v : A(v) > N(1 − kα) ∧ B(v) > N(1 − k)}|

Nk
.

Our relaxed k-similarity allows for more user control
when the rankings compared are not interpreted in the
same way, and need therefore not be treated in the same
way. For example, if A is obtained from a single threshold
A = Aθ , and B is some overall ranking, relaxed k-similarity
may be used to identify whether the top 10 nodes overall,
i.e. in B, are among the top 20 for the particular observed
threshold, i.e. in Aθ .

Rank continuity
We introduce rank continuity of each metric in each net-
work, i.e. the similarity between rankings induced at con-
secutive thresholds. In all cases a set of values for the
proportion of nodes k considered to be the top ranking
were used, ranging from 0.001 to 0.05 at 0.001 inter-
vals. An overall continuity measure was calculated based
on how often the observed similarity was high (0.90 or
above).
Suppose that a metric f induces node rankings

Aμ,Aμ+0.01, . . . ,Aν at each threshold within the medium-
high confidence region [μ, ν]. Then we define the rank
continuity of f as the fraction of cases where the k-
similarity between consecutive Aθ and Aθ+0.01 is over 0.90
for θ ∈ {μ,μ + 0.01, . . . , ν} and k ∈[ 0.001, 0.002, . . . , 0.05]:

rank continuity(f ) ∝ |(θ , k) : Mk(Aθ ,Aθ+0.01|k) ≥ 0.90|.

Since a range of different values of k up to 0.05 was
considered in calculating a single continuity measure,
higher ranking nodes contribute more to the overall rank
continuity of a metric.
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Table 2 The complete set of twenty-five standard and LOUD metrics, calculated at each node v

Name Details

Degree Number of neighbours of v

Local clustering Proportion of pairs of neighbours of v which are also connected

Redundancy (Local clustering) × (Degree - 1) [43]

PageRank Calculated with the default damping factor d = 0.85 [45]

Closeness Reciprocal to the sum over all u of node-to-node distances d(u, v) [46]

Harmonic centrality The sum over all u of 1/d(u, v) [47]

Betweenness Measures how many shortest paths a node v contributes to [46]

eone(v) Number of edges in the step-one ego-network of v

ntwo(v) Number of nodes in the step-two ego-network of v

ndiff (v) Number of nodes that have exactly distance two to v

nsqdiff (v) A measure of relative local density calculated as ntwo(v) − degree(v)2

nratio(v) The ratio of step-one to step-two neighbourhood sizes for v

LOUD Average local clustering f (G) is the average local clustering

LOUD Global clustering f (G) is the global clustering, i.e. the proportion of connected triplets of nodes which form triangles

LOUD Average redundancy f (G) is the average redundancy

LOUD Average closeness f (G) is the average closeness

LOUD Average path length f (G) is the average path length

LOUD Number of connected pairs f (G) is the number of pairs of nodes, which are in the same connected component

LOUD Average betweenness f (G) is the average betweenness

LOUD Natural connectivity f (G) is the natural connectivity [44]

LOUD Average eone(v) f (G) is the average eone(v)

LOUD Average ntwo(v) f (G) is the average ntwo(v)

LOUD Average ndiff (v) f (G) is the average ndiff (v)

LOUD Average nsqdiff (v) f (G) is the averagensqdiff (v)

LOUD Average nratio(v) f (G) is the average nratio(v)

Standardmetrics are above the line break. LOUDmetrics are below the line break. LOUDmetrics are based on global metrics f calculated both for each thresholded network G,
and for the same network, where in turn each node v has been isolated from its neighbours Gv . The difference between the twometrics is recorded as fLOUD(v) = f (G)− f (Gv)

Rank identifiability
Further, for each metric an overall ranking was calcu-
lated for the truncated threshold region. The overall ranks
for all nodes were calculated by first averaging over node
ranks at all relevant thresholds, and then ranking the
resulting values. Ties were resolved at random.
For our definition of rank identifiability, for each met-

ric the α-relaxed k-similarity between overall ranks B and
threshold ranks Aθ for each threshold θ in the medium-
high confidence region was calculated. The rank identifia-
bility score for each metric f was defined as the minimum
observed relaxed similarity between overall and threshold
ranks.

rank identifiability (f )=minθ

{
Mα

k (Aθ ,B|k=100/N ,α = 1.5)
}
.

In all cases apart from the Bernoulli network, which
had the smallest number of nodes, the ability to recover
the top n = 100 nodes overall (i.e. k = 100/N) among
the top 150 (i.e. α = 1.5) at any threshold was tested. In

the Bernoulli network, n was lowered to n = 20, and the
parameter α remained fixed at α = 1.5.

Rank instability
Another way to assess rank robustness is through the
instability of node ranks attained by different thresholds.
For each metric f , the top 1% overall top ranking nodes

U = {v|B(v) > 99%N} were identified. Then the rank
ranges attained by each of these nodes over the medium-
high confidence region were calculated as:

range(v) = maxθ (Aθ (v)) − minθ (Aθ (v)),

where {Aθ }θ∈[μ,ν] are the ranks obtained from the same
metric f over the medium-high confidence region. For
example, ubiquitin, which is always the highest degree
node in the YEAST network, would have a rank range of
zero. We define the rank instability as the average scaled
rank range for the nodes in U:
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rank instability (f ) = 1
|U|

∑

v∈U
range(v)/N .

If ranks remain very stable under f, then rank ranges
would be low and rank instability would be close to zero.
Conversely, if the ranks were relatively unstable, or near-
random, rank ranges would be high, and rank instability
would be closer to one.
Choices for all parameters discussed above were made

so that rank robustness measures capture information
about the highest ranking nodes. Overly stringent param-
eter choices would make the different measures reward
only perfect or near-perfect rank agreement and ignore
persistent trends of good rank overlap. Conversely, lenient
parameters would reward bad as well as good rank agree-
ment. Provided either extreme is avoided, parameters can
be set in a number of ways. In test cases, we find per-
turbations from the values used above do not lead to
qualitatively different results. While we provide these as
recommended values, our methodology is fully flexible
and allows users to explore different options. A worked
example of metric extraction, ranking, and robustness
analysis can be found in the SI.

Additional file

Additional file 1: Supplementary Information. (PDF 356 kb)
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