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Abstract: Objectives: Objective measurements using

built-in smartphone sensors that can measure physical

activity/inactivity in daily working life have the potential to

provide a new approach to assessing workers’ health ef-

fects. The aim of this study was to elucidate the charac-

teristics and reliability of built-in step counting sensors on

smartphones for development of an easy-to-use objec-

tive measurement tool that can be applied in ergonomics

or epidemiological research. Methods: To evaluate the

reliability of step counting sensors embedded in seven

major smartphone models, the 6-minute walk test was

conducted and the following analyses of sensor preci-

sion and accuracy were performed: 1) relationship be-

tween actual step count and step count detected by sen-

sors, 2 ) reliability between smartphones of the same

model, and 3) false detection rates when sitting during

office work, while riding the subway, and driving. Re-

sults: On five of the seven models, the inter-class corre-

lations coefficient (ICC (3,1)) showed high reliability with

a range of 0.956-0.993. The other two models, how-

ever, had ranges of 0.443-0.504 and the relative er-

ror ratios of the sensor-detected step count to the ac-

tual step count were ±48.7%-49.4%. The level of

agreement between the same models was ICC ( 3,1 ):

0.992-0.998. The false detection rates differed be-

tween the sitting conditions. Conclusions: These re-

sults suggest the need for appropriate regulation of

step counts measured by sensors, through means

such as correction or calibration with a predictive

model formula, in order to obtain the highly reliable

measurement results that are sought in scientific in-

vestigation.
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Introduction

In recent years, the health effects of physical inactivity,

which exists as a variable independent of physical activity

(exercise habit, intensity, and amount) after adjusting for

potentially confounding factors, have attracted broad in-

terest1,2). Physical inactivity is generally taken to be lack

of routine physical activity or exercise, but physical inac-

tivity as dealt with in occupational epidemiology research

refers mainly to sedentary behaviors3-5). Recent systematic

reviews, including meta-analyses, show that such physical

inactivity raises the risks of cardiovascular disease, can-

cer, type 2 diabetes, and other diseases6,7).

Physical inactivity as an exposure factor, however, is in

most cases determined by subjective responses about sit-

ting time on self-administered questionnaires. A limited

number of studies 4,8) exist based on objective measure-

ments using acceleration sensors or other devices with

small subject samples, but methods that enable large-

scale, objective, and simple measures on a population ba-

sis, such as frequency and interval for physical activity or

cumulative sitting time, have not been established.

Widely used smartphones that include standard internal 3-

axis accelerometers, gyroscopes, or step counting sensors

hold potential as one means of overcoming this problem.

With regard to the step counting sensors used in deter-
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Table　1.　List of smartphones tested in this study

Product name Model Manufacturer Date released
Android 

OS version

Major common sensor information 

extracted in the smartphonesa

AQUOS ZETA SH-01G

Sharp Corporation

2014 

November

v.4.4

ST: Step counting sensor

LI: Illumination sensor

AC: Accelerometer sensor

GR: Gravity sensor

GY: Gyroscope sensor

MG: Magnetic field sensor

PX: Proximity sensor

RO: Rotation vector sensor

OR: Orientation sensor

GE: Geomagnetic rotation vector sensor

Galaxy S7 edge SCV33

Samsung

2016

February

v.6.0

Xperia Z3 SO-02G

Sony Corporation

2015

May

v.5.0.1

Xperia Z4 SOV31

Sony Corporation

2015

June

v.5.0.1

Xperia Z5 SO-01H

Sony Corporation

2015

September

v.5.1.1

X performance 502SO

Sony Corporation

2016

February

v.6.0.1

X Compact SO-02J

Sony Corporation

2016

September

v.6.0.1

a: Sensor information extracted via SensorManager provided by Android OS. Sensor information can be basically ex-

tracted from built-in hardware sensors, but step counting sensor defined by Android OS is calculated using specific 

algorithm applied to the accelerometers. The algorithm depends on each developer and is not disclosed generally.

mining levels of physical activity and inactivity, however,

there is to our knowledge no information on the reliability

of walking measurements that are needed and can be used

in academic research.

The aim of this study was to elucidate the characteris-

tics and reliability of built-in smartphone step counting

sensors for development of an easy-to-use objective

measurement tool that can be applied in ergonomics or

epidemiological research.

Methods

The Institutional Review Board for medical research at

the Nagoya City University, Japan approved this study

design and procedures.

Apparatus and smartphone application development
Seven major smartphone models that use the Android

OS and had a domestic Japanese share of more than 70%

of Android smartphone shipments were used in this study

(Table 1). A Lifelog application for academic research,

Motion Logger ver. 1.6, was developed (available from ht

tp://www.med.nagoya-cu.ac.jp/hygiene.dir/MotionLogge

r/). This application extracts time-series log data from the

various sensor information defined by Android OS in

these smartphones. With Android applications, the em-

bedded hardware sensors in smartphones cannot be di-

rectly accessed and controlled, but raw data can be ob-

tained from the SensorManager that is provided as a func-

tion of the Android OS. Data acquired from the Sensor-

Manager and information from 10 main sensor informa-

tion that are compatible with Android OS ver. 4.4 and

later, such as a step counting sensor, 3-axis accelerome-

ter, and magnetic field sensor, can be continuously meas-

ured for one week at a sampling rate of 500 ms (in the

case of GPS, 0.5-60 sec). In this study we used the step

counting sensor data from among this sensor information

to distinguish levels of physical activity/physical inactiv-

ity, and tested the reliability of the information.

Subjects and Procedures
The test subjects were five healthy male volunteers

(age = 31.2 ± 8.5 years, height = 172.0 ± 5.5 cm, Body

Mass Index = 26.0 ± 4.0). Prior to the reliability tests, it

was necessary to determine whether there were differ-

ences in the step counting sensor detection level due to

differences in the subjects’ gait characteristics. To verify

the accuracy of the step counting sensor, the 100-step

walking test that was used in a previous study9) was im-

plemented with repeated measures a total of five times for

each subject.

The following three tests were performed to elucidate

the characteristics and reliability of the step counting sen-

sors of the various smartphone models.

1) Relationship between actual step count and step count

detected by sensors: precision and accuracy

The 6-minute walk test (6MWT) was used. The 6MWT

measures the distance an individual can walk in 6 minutes

and his/her gait characteristics, and is used mainly in the

field of rehabilitation to assess not only patients with car-

diopulmonary diseases but also patients with locomotive/

motor dysfunction 10) . We plan to implement additional

function to the next MotionLogger version that can evalu-

ate gait characteristics obtained from sensor information

during 6MWT. For that reason, with a view to implemen-

tation of future test protocols in the MotionLogger smart-
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phone application currently under development, the

6MWTs were applied and conducted to verify the reli-

ability of each sensor in the 6MWT. Using a bust band,

the 7 smartphone models were attached to the chest of

each of the five subjects and we conducted the 6MWT a

total of three times. The wearing positions of the seven

smartphones were randomly assigned for eliminating the

possibility of biases caused by the directions of the sen-

sors’ axes. The actual number of steps walked in 6 min-

utes was recorded by experimenters’ direct observation.

At the same time, the number of steps detected by the

sensors was recorded.

2) Reliability between smartphones of the same model :

Test of individual smartphone differences

To compare the reliability between smartphones of the

same model, pairs of phones were obtained for 4 of the 7

models and the 6 MWT was performed following the

same protocol described above.

3) Test of the false detection rate during sitting

When sitting, posture is not always restrained; people

change postures, stretch, reposition themselves, twist,

cough, and move in various other ways. There are also ef-

fects from swaying or acceleration when they are seated

while driving a car or riding on a subway. It is necessary

to investigate the degree to which false detection occurs

in step counting sensors in these situations. We therefore

had two subjects carry different smartphone models in

their chest pockets and sampled sensor data independ-

ently in various sedentary settings as they performed of-

fice work, rode the subway (sitting posture, Meijo Line of

Nagoya Municipal Subway) , and drove in their actual

daily activities (traveling on local road and Tomei Ex-

pressway, the car models: Prius and Alphard, Toyota Cor-

poration).

Statistical Analysis
The step data obtained in the 100-step walking test

were tested for a main effect and interactions with three-

way ANOVA for each of the subject factors, smartphone

model factors, and measurement factors. The ratio of the

number of steps detected by the sensors to the actual

number of steps was obtained to assess the precision of

the step counting sensor. As an indicator of accuracy, R2

values of a linear regression model were obtained. Fur-

thermore, the inter-class correlation coefficients ( ICC

case 3) showing the relationship between the actual num-

ber of steps and the number of steps detected by the sen-

sor were calculated. The ICC criteria, following the

Landis-Koch scale11) , were applied with �0.8 as almost

perfect. In testing the reliability between smartphones of

the same model, ICC case 3 was obtained as an indicator

showing the level of agreement between the models.

Inter-coefficient of variations (inter-CVs) was calculated

to evaluate random error. Unstandardized beta coeffi-

cients were shown as indicators of proportional bias from

Bland-Altman analysis, and the mean differences with the

95% confidence interval between two models were also

estimated as an indicator of fixed bias. With respect to

tests of the false detection rate during sitting, sedentary

behavior has been defined as “Any waking behavior char-

acterized by an energy expenditure �1.5 METs while sit-

ting or reclining”5) in studies related to exercise epidemi-

ology. Since the exercise intensity in walking is about 2

METs, it is theoretically possible when discriminating be-

tween physical activity and physical inactivity to differen-

tiate at the 0/1 step level using step count. We obtained

the false detection rate (steps/hour) during the sampling

time under the three conditions of office work, riding the

subway, and driving, respectively, and calculated the

mean false detection rate from the weighted arithmetic

means according to the sampling time. This was taken as

an indicator of the false positive rate. All statistical analy-

ses were performed using the statistical software package

SPSS 22.0 (SPSS, Chicago, IL, USA).

Results

In the results of the three-way ANOVA of step data ob-

tained in the 100-step walking test, a significant differ-

ence was seen in the factor of smartphone model only

(F [6, 16.7] = 434.2, p<0.0001). No main effect was seen

for subject or number of measurement factors. An interac-

tion was seen for model × subject only (F [24, 96] = 1.86,

p = 0.02); no significant differences were seen for other

combinations.

Fig. 1 shows the relationship between the actual num-

ber of steps and the number of steps detected by the sen-

sors. R2 values were obtained from linear regression mod-

els for each smartphone model. For five smartphone mod-

els, AQUOS ZETA, Galaxy S7 edge, Xperia Z3, Xperia

X Performance, and Xperia X Compact, the range of

ICC (3,1) was 0.956-0.993, all meeting the criteria for al-

most perfect of �0.8. The relative error ratios of the

sensor-detected step number to the actual step number

were ±0.1%-0.7%, and the R2 value was also�0.91. Thus,

the model goodness of fit was also high. With two smart-

phone models, however, the Xperia Z4 and Z5, the reli-

ability between the actual number of steps and sensor-

detected number of steps was low, with an ICC ( 3,1 ) of

0.504 for Xperia Z4 and 0.443 for Xperia Z5. The relative

error ratios of the sensor-detected number of steps to the

actual number of steps were ±48.7%-49.4%, showing a

tendency for the step number to be approximately double-

counted. The R2 values for these two models were 0.827

to 0.844, and the model goodness of fit to the regression

line was high.

The results for reliability between the same model of

smartphone are shown in Table 2. The level of agreement

between the same models was ICC ( 3,1 ): 0.992-0.998, all

meeting the criteria for almost perfect of �0.8. All of the
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Fig.　1.　Relationship between actual step count and sensor step count.
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AQUOS

ICC(3,1): 0.987(0.963-0.996)

y=0.952x+32.6, R2=0.976

Relative error ratio: 0.5%

Galaxy S7 edge

ICC(3,1): 0.993(0.980-0.998)

y=1.03x-20.42, R2=0.988

Relative error ratio: 0.3%

Xperia Z3

ICC(3,1): 0.956(0.875-0.985)

y=0.922x+52.43, R2=0.915

Relative error ratio: 0.7%

Xperia Z4

ICC(3,1): 0.504(0.008-0.800)

y=3.08x-695.13, R2=0.844

Relative error ratio: 48.7%

Xperia Z5

ICC(3,1): 0.443(-0.070-0.771)

y=3.496x-936.61, R2=0.827

Relative error ratio: 49.4%

X performance

ICC(3,1): 0.978(0.936-0.993)

y=0.959x+23.07, R2=0.957

Relative error ratio: 0.3%

X Compact

ICC(3,1): 0.991(0.975-0.997)

y=0.972x+17.09, R2=0.983

Relative error ratio: 0.1%

intra-CVs, which show the error rate for the mean value

of three repeated measurements, were less than 10%. The

proportional bias with the Xperia Z4 model showed a

slight decreasing trend of beta = －0.05 in the regression

line slope (p = 0.03), but, with the other models, no pro-

portional bias was seen between the same models. For the

fixed bias, there was no significant difference in the dif-

ference in mean values between the same models and no

fixed bias was observed.

Table 3 shows the false detection rate of the step

counter under the conditions of sitting during office work,

on the subway, and while driving. During office work, it

was 0.00-1.53 (steps/hour), showing stability with almost

no false detection. In contrast, the false detection rate was

0.00-15.84 (steps/hour) on the subway and 0.00-201.63

(steps/hour) during driving. The false detection rate was

thus found to differ considerably depending on the smart-

phone model.

Discussion

The aim of this study was to explore the reliability of

built-in step counting sensors in smartphones with a spe-

cial focus on the detection of physical activity/inactivity.

There are limited studies comparing the difference be-

tween gait characteristics obtained with a smartphone and

those obtained with a conventional accelerometer 12) , or

validating a smartphone-based measurement for quantifi-

cation of level walking13). A few studies focusing on inter/

intra smartphone reliability in actual walking tests can

also be found. In this regard, it is worth noting that the

present study provides valuable knowledge for develop-

ment of smartphone-based gait measurement tools that

can be applied in ergonomics or epidemiological research.

The results of the 100-step walking test in this study

showed no significant differences within or between sub-

jects, but significant differences were seen in factors be-
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Table　2.　Results of assessment of reliability between smartphones of the same model

Smartphone Models
ICC (3,1)

a 

(95%CI)

Random error Systematic bias (Bland Altman analysis)

CVsb Proportional bias Fixed bias

Model a Model b Betac p
Mean differencesd 

(95%CI)
p

Pooled 

meane

AQUOS (a)/(b) 0.992 

(0.983, 0.997)

7.45% 7.42% 0.01 

(–0.05, 0.06)

0.80 1.88 

(–25.76, 29.52)

0.89  653.7

Xperia Z3 (a)/Z3 (b) 0.998 

(0.997, 0.999)

9.57% 9.69% –0.01 

(–0.03, 0.01)

0.38 1.56 

(–34.26, 37.38)

0.93  654.0

Xperia Z4 (a)/Z4 (b) 0.994 

(0.986, 0.997)

6.24% 6.58% –0.05 

(–0.09, –0.06)

0.03 4.68 

(–43.18, 52.54)

0.84 1311.8

Xperia Z5 (a)/Z5 (b) 0.994 

(0.986, 0.997)

5.02% 9.81% 0.03 

(–0.02, 0.07)

0.22 7.36 

(–67.85, 82.57)

0.84 1332.6

a: Inter-class correlations coefficient (ICC) between smartphones of the same model, (a) and (b)
b: Coefficient of variations (CVs), calculated as the ratio of the standard deviation to the mean showed as precision of the smart-

phone sensors
c: Unstandardized beta coefficients of regression lines by Bland Altman plots
d: Mean differences are an indicator of whether fixed bias exists between two measurements. If the mean difference is not signifi-

cantly equal to 0, fixed bias exists. p: Welch’s t-test with adjustment of degrees of freedom
e: Pooled mean shows merged mean steps of models (a) and (b) measured by smartphone sensor in the 6-min test

Table　3.　False detection rate of step counter sensors in various sitting situations

Sitting during office work Sitting on the subway Sitting during driving

Mean false 

detections 

(steps/hour)a

SD

Total 

Sampling 

time 

(min)

Mean false 

detections 

(steps/hour)a

SD

Total 

Sampling 

time 

(min)

Mean false 

detections 

(steps/hour)a

SD

Total 

Sampling 

time 

(min)

AQUOS 0.00 0.00 662  0.00 0.00 125   5.52 1.29 1227

Galaxy S7 edge 0.00 0.00 662  0.00 0.00 125   0.00 0.00 1129

Xperia Z3 0.18 0.07 662  5.76 3.33 125  29.33 8.77 1262

Xperia Z4 0.63 0.26 662 11.52 6.65 125 201.63 87.91 1129

Xperia Z5 1.53 0.69 470 15.84 9.15 125   0.00 0.00   98

X performance 0.45 0.09 662  1.92 1.11 125  10.84 2.93 1129

X Compact 0.93 0.38 645  2.88 1.27 125   9.04 0.07  478

a: Weighted arithmetic means (which is accomplished by weighting the false detection rate by the sampling time in each trial test)

SD: standard deviation

tween smartphone models. This shows the possibility that

differences in phone model have a greater effect on meas-

urement reliability than the individual differences in us-

ers’ gait characteristics. However, the fact an interaction

was seen in model × subject suggests the possibility of

large variations in measurement accuracy depending on

the sensor characteristics of each model and users’ gait

characteristics. Whereas the tests in this study were per-

formed with only five healthy males and did not analyze

gait characteristic parameters in detail, gait characteristics

are known to differ with individual characteristics such as

the presence or absence of chronic disease 14) . Further

study will be needed with a larger number of subjects to

reveal the association.

Next, it was demonstrated from the relationship be-

tween actual step count and sensor step count that the sen-

sor value was double-counted with some smartphone

models. This shows that when step counting sensor infor-

mation from a smartphone is used in assessing physical

activity/inactivity, the level of physical activity may be

overestimated if sensor information is collected and ana-

lyzed uniformly. R2 values and precision are both high

even with Xperia Z4 and Z5 models, which double-count

sensor measurement values. Thus, if a prediction regres-

sion model is made, it should be possible to appropriately

estimate the actual step count. As shown in Fig. 1, the

step count measured with sensors may need to be appro-

priately adjusted, such as by preparing a prediction re-
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gression line model for each smartphone model as a pro-

file of that model or employing a calibration setting dur-

ing use of the application.

In examining the reliability between smartphones of

same model, we assumed that the subjects are specified

and that no interaction exists between subjects. Under

these assumptions, the results of reliability for single

measurements between smartphones of the same model

showed high reliability. For the proportional bias, a slight

regression line slope of －0.05 was seen with the Z 4

model, but this is thought to be a level that has almost no

effect on the actual step count estimate. Moreover, since

no fixed bias was seen, it is possible that the measurement

stability will remain high even with different individuals

if the smartphone model is the same. In this study, how-

ever, we tested only four smartphone model pairs.

Whether similar results will be obtained with other indi-

vidual smartphones, that is, whether these results can be

generalized, will need to be determined in tests with a

greater number of subject smartphone models.

The false detection rate of step counting sensors had al-

most no effect when subjects were sitting during office

work, but false detection becomes larger depending on

the phone model for sitting while riding the subway or

driving. This result is in line with the findings of a previ-

ous research15) that examined the reliability of an accelera-

tion sensor under the condition of riding in a motorized

vehicle on paved roads. This includes the possibility that

physical activity may be overestimated and physical inac-

tivity may be underestimated when attempting to make

assessments with smartphone step counting sensors only.

Smartphones have built-in GPS information and accelera-

tion sensors, and so it may be that developing a hybrid

determination algorithm for this information in order to

assess physical activity/inactivity with a smartphone ap-

plication can contribute to improving the reliability of

measurements.

Practical Implications and Study Limitations
Reliability and validity have been tested in several

studies for the development of applications for gait analy-

sis using smartphones12,16,17) , but few studies have exam-

ined the effects of inter/intra smartphone reliability in ac-

tual walking tests. The need has also been shown for

smartphone model profiles or advance calibration set-

tings, but very few studies are seen that have demon-

strated error detection characteristics during movement.

This study therefore provides valuable information on re-

liability associated with use in actual environments.

Big data analysis using lifelog data from internal smart-

phone sensors holds potential as a new research method

in the fields of occupational epidemiology and occupa-

tional ergonomics. For example, in addition to subjective

evaluations based on self-administered questionnaires, in-

formation on physical activity and physical environment

information, such as illumination and temperature, can be

measured simultaneously on smartphones, and improve-

ments in analysis granularity are expected. Using general

smartphones of the types that are owned by most people,

it is possible to inexpensively measure time-series data.

This method is promising for application to large-scale

epidemiological studies. Moreover, to clarify the relation-

ship between physical activity and various health out-

comes, which is a research topic of much interest in re-

cent years, the ability to acquire data on activity over time

is a huge advantage. Further parameters such as the fre-

quency or intervals of physical inactivity and the cumula-

tive sitting time can be available besides. Such new tech-

nologies that can gather information comprehensively,

continuously, and for long times in work and life settings

appear promising for application to epidemiological re-

search.

For smartphone makers and developers, this study can

also provide beneficial knowledge on identifying where

the cause of the error is and how to improve the reliability

of step counting sensor. The step counting sensor defined

by Android OS19) is calculated using specific algorithm

applied to the accelerometer. The algorithm itself depends

on each developer and is not disclosed generally. Particu-

larly, regarding false detection of step counting sensors

under mobile environment, this research could suggest

the direction for optimizing algorithm.

The limitations to this study are that the number of sub-

jects was only five and that a limited number of smart-

phone models were assessed. Also, iPhones, which have a

top share in the domestic Japanese market, were not in-

cluded in the assessments. Furthermore, in commercially

available pedometers with an embedded 3-axis accelera-

tion sensor, the certain interval mask time (i.e., certain in-

activity time) is excluded so as not to count the number of

steps when the detection of acceleration does not continue

for a certain period of time in order to reduce false detec-

tion of steps18). Although this algorithm is reasonable for

detecting the number of steps, on the other hand it can

lead to overestimation of the amount of physical inactiv-

ity. Since the sampling time of the step counting sensor

used in this study was 5 seconds, a similar problem may

exist. Careful consideration is therefore needed in gener-

alizing the findings of this study. Thirdly, socio-cultural

aspects should be considered when smartphone-based

survey is conducted. In many cases, women do not have

their smartphones on the chest pocket, thereby limiting

smartphone-based investigation for women’s physical in-

activity.

Conclusion

The step counting sensors built into smartphones have

a high level of stability in measurements even with differ-

ent phones of the same model. This suggests the possibil-
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ity that differences between phone models have a larger

effect on measurement reliability than the individual gait

characteristics of users. There is also a possibility that in

measurements of physical inactivity during travel, physi-

cal activity may be overestimated and physical inactivity

underestimated depending on the smartphone model.

These results suggest the need for appropriate regulation

of step counts measured by sensors through means such

as correction or calibration with a predictive model for-

mula in order to obtain the highly reliable measurement

results that are sought in scientific investigation.
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