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Abstract

Background: Recent studies reported the responses of ustekinumab (UST) for

the treatment of Crohn's disease (CD) differ among patients, while the cause

was unrevealed. The study aimed to develop a prediction model based on the

gene transcription profiling of patients with CD in response to UST.

Methods: The GSE112366 dataset, which contains 86 CD and 26 normal

samples, was downloaded for analysis. Differentially expressed genes (DEGs)

were identified first. Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway analyses were administered. Least absolute

shrinkage and selection operator regression analysis was performed to build a

model for UST response prediction.

Results: A total of 122 DEGs were identified. GO and KEGG analyses revealed

that immune response pathways are significantly enriched in patients with

CD. A multivariate logistic regression equation that comprises four genes

(HSD3B1,MUC4, CF1, and CCL11) for UST response prediction was built. The

area under the receiver operator characteristic curve for patients in training set

and testing set were 0.746 and 0.734, respectively.

Conclusions: This study is the first to build a gene expression prediction

model for UST response in patients with CD and provides valuable data

sources for further studies.
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1 | INTRODUCTION

Inflammatory bowel diseases (IBDs), composed of Crohn's
disease (CD) and ulcerative colitis (UC), are chronic, pro-
gressive, and recurring diseases that threaten human
health.1 Any part of the gastrointestinal tract and all layers
of the mucosal wall could be damaged by CD. Intestinal

stenosis or penetration occurs in CD progression in at least
50% of patients. CD is considered a heterogeneous disease
with multiple etiologies, of which the main feature is
immune response to various microbial antigens.2–5 The
pathogenesis of CD has not yet been fully clarified. Some
specific genes concerning CD have been reported recently.
For example, NOD2 is related to bacterial sensing;
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ATG16L1 is associated with inflamed terminal ileum; and
MUC1, MUC2, and MUC4 are connected to the dysregu-
lation of the key epithelial barrier and innate immunity.6–8

The main strategies in CD treatment are the introduc-
tion of corticosteroids, immunosuppression (thiopurines
and methotrexate), or combination therapy with biologicals
(antitumor necrosis factor [TNF] and antiadhesion mole-
cules) in high‐risk patients in addition to frequent in-
flammation control.9–12 Anti‐TNF therapy symbolizes an
important milestone particularly advanced in the clinical
management of moderate to severe CD.13,14 However, pa-
tients with primary nonresponse, secondary loss of re-
sponse, or unbearable side effects to conventional treatment
and TNF antagonists require other alternative treatment
regimens.15 The monoclonal antibody ustekinumab (UST) is
an inhibitor of the p40 subunit shared by proinflammatory
cytokines, interleukin (IL)−12 and IL‐23, that further
dampens the inflammatory cascade and the differentiation
of inflammatory T cells. Clinical trials and clinical practice
have demonstrated the efficacy and safety of UST for anti‐
TNF‐naive and anti‐TNF‐exposed patients.16–20 Emerging
data suggested that microbiome composition may be a
marker of UST response. Validated serological and genetic
markers of response to these agents are currently lacking.21

Nevertheless, some patients are unresponsive to UST.21

Unresponsiveness to UST could be attributed to high pla-
cebo rate and insufficient UST induction dose.17

Sporadic reports are far from revealing the treatment
effect of UST in patients with CD. Additionally, few
studies have assessed the responsiveness of patients to
UST. We envisage that drug responsiveness may be re-
lated to genes. Accordingly, the purpose of this study was
to analyze the expression of genes related to UST re-
sponse by bioinformatic analysis. Bioinformatic analysis
is a critical and scientific method for processing large
amounts of data and acquiring valuable information.
Bioinformatics has been widely used in many fields, such
as the study of lupus nephritis, renal cell carcinoma, and
oral squamous cell carcinoma.22–26 Few studies have
used bioinformatic analysis to characterize UST response
in patients with CD. The present study used the Gene
Expression Omnibus (GEO) database to perform full
gene transcription profiling in patients with CD, develop
a machine learning model for predicting UST response,
and provide valuable data resources for future research.

2 | METHOD

2.1 | Data retrieval

The transcription dataset was searched from the GEO
database. The GSE112366 dataset, which contains 388

samples, including 362 patient samples with CD and 26
normal control samples, was retrieved. The effectiveness
of UST induction was evaluated in patients with CD who
have failed conventional treatments. In our study, we
selected cases who were treated with UST 90mg q8w.
Terminal ileum tissues were taken before treatment for
transcriptome sequencing. After treatment for 8 weeks,
the patients were evaluated for a UST response. UST‐
induced responders were defined as a reduction in
Crohn's disease activity index ≥100.27 Eighty‐six samples
from the CD group met the criteria. Then, we down-
loaded the corresponding expression matrix and matched
clinical information.

2.2 | Analysis of differentially expressed
genes (DEGs)

DEGs were analyzed by the Limma package (version
3.42.0) of R 25 after data preprocessing. The adjusted
p value and fold change (FC) were calculated by the linear
fit method, Bayesian analysis, and t test algorithm. The
cut‐off values for significant DEGs were |log2(FC)|>1 and
adjusted p< .05. The ggplot2 (version 3.3.1) software
package was used for visualization.

2.3 | Gene set enrichment analysis
(GSEA)‐based Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway
analysis

GSEA can identify functional enrichment by comparison
of genes with predefined gene sets. A gene set is a group
of genes, which shares localization, pathways, functions,
or other features. The clusterProfiler package (version
3.5) was used to conduct GSEA. The FC of gene ex-
pression was subsequently calculated between the CD
group and the control group, and based on the change of
|log2(FC)|, the gene list was generated. Then, GSEA‐
based KEGG analysis was conducted using the gseKEGG
function in the clusterProfiler package. Adjusted p< .05
was set as the cut‐off criteria.

2.4 | Gene Ontology (GO) enrichment
analysis of significant DEGs

The GO analysis encompassed three independent do-
mains: biological process (BP), cellular component (CC),
and molecular function (MF). In this study, GO enrich-
ment analysis of the identified significant DEGs was
performed using the clusterProfiler package (version 3.5).
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Only GO term with adjusted p< .05 was considered
significantly enriched.

2.5 | Univariate logistic analysis

Univariate logistic regression analysis between sig-
nificant DEGs and UST response was performed using
the fitting generalized linear model function of R studio
with the major augment “family = binomial” to de-
termine UST response‐associated genes. Then, hazard
ratio (HR), 95% confidence interval (95% CI), and p value
were calculated. The results of the univariate logistic
analysis were visualized as random forest plot by using
“forestplot” R package (version 1.9).

2.6 | Samples splitting

The “Handout” method was used for splitting samples.
In detail, all samples were randomly split into a training
set and a testing set by using the classification and re-
gression training (caret) package (version 6.0‐85). Briefly,
the samples were divided into the training and testing
sets at a ratio of 70%:30% using the “createDataPartition”
function in the R package “caret” to keep the data dis-
tribution of the training and testing sets consistent.

2.7 | Construction of multivariate
predictive model using least absolute
shrinkage and selection operator (LASSO)
regression

We applied LASSO regression to gain the final important
predictors related to UST response. This process, which is
one of machine learning methods adopted in several
studies, was performed using the glmnet package (ver-
sion 3.0‐2) in R. A multivariate regression formula was
built based on the gene expression value of significant
DEGs and UST response events under the training set.
Finally, several predictors of significant DEGs with
nonzero LASSO coefficients were obtained. Thus, a
multivariate predictive model was constructed.

2.8 | Evaluation of the multivariate
predictive model

We built receiver operator characteristic (ROC) curves
using the pROC R package (version 1.16.1) to assess the
efficiency of the multivariate predictive model. Similarly,
we performed the same processes in the testing group

and the total dataset to evaluate the efficiency of the
multivariate predictive model constructed by LASSO
regression.

2.9 | Statistics analysis

DEG, univariate logistic regression, LASSO regression,
ROC, GSEA‐based KEGG, and GO analyses were per-
formed using the R‐studio platform (v. 3.5.1). Adjusted
p< .05 was considered statistically significant difference.
All involved R software packages have been described
previously.

3 | RESULTS

3.1 | Workflow of the study

Figure 1 shows our workflow. A total of 112 legal sam-
ples from the GSE112366 dataset, including 86 CD cases
and 26 normal control, were used in this study. The ex-
pression data of protein‐coding genes were extracted
from the gene expression matrix, and then differential
gene analysis was performed. Based on GSEA, GO and
KEGG analyses were conducted on the DEGs. The most
significant 122 DEGs (|FC|>2 and adjusted p< .05) were
screened out for univariate logistic analysis and regres-
sion analysis. The CD samples were divided into a
training set and a testing set at a ratio of 70%:30%. We
built a multivariate predictive model of UST response in
the training set first and then evaluated the model's
performance in the testing set.

3.2 | GSEA‐based KEGG analysis

As shown in Figure 2A, the 24 most prominent KEGG
pathways, containing activated and suppressed path-
ways, were screened out. The absolute value of their
normalized enrichment score was concentrated between
1 and 3. Among the activated pathways, “chemokine
signaling pathway,” “Salmonella infection,” “human
papillomavirus infection,” and “human T‐cell leukemia
virus 1 infection” were connected to cellular immunity.
However, suppressed pathways, such as “chemical car-
cinogenesis,” “metabolism of xenobiotics by cytochrome
P450,” “drug metabolism—cytochrome P450,” and “ser-
otonergic synapse,” were concentrated on drug metabolic
process. The plots of GSEA‐based KEGG enrichment
analysis of representative gene sets from activated
pathways, including “chemokine signaling pathway”
(adjusted p= .0086) and “Salmonella infection” (adjusted
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p= .0086), are shown in Figure 2B,C. Most of the upre-
gulated genes were concentrated at the front of the se-
quence, which indicates that their upregulation was
concentrated on the CD group. The GSEA‐based KEGG
enrichment plots of representative gene sets from sup-
pressed pathways, including “drug metabolism−cyto-
chrome P450” (adjusted p= .0131) and “primary
immunodeficiency” (adjusted p= .0131), are shown in
Figure 2D,E, respectively. The majority of the upregu-
lated genes were centered on the control group; there-
fore, the expression of this group of genes was inhibited
in the disease group.

3.3 | GO enrichment analysis of the
significant DEGs

The volcano plots of downregulated, upregulated, and non-
significant genes in CD samples versus those in normal
samples are shown in Figure 3A. The red plot represents the

upregulated genes, and a plot far from the baseline indicates
a more outstanding upregulation. The outstanding upregu-
lated genes include S100A8, FOLH1, DUOX2, and LCN2.
The blue plot represents downregulated genes, and the
outstanding downregulated genes include FDCSP, SLC10A2,
SLC13A1, and TMEM252. In BP, the top five most enriched
GO terms are “neutrophil migration,” “chemokine‐mediated
signaling pathway,” “response to chemokine,” “cellular re-
sponse to chemokine,” and “humoral immune response.”
Figure 3B shows that many genes, such as CXCL1, CXCL6,
and CXCL8, play the role of a bridge. Some unique genes are
also displayed. For example, IL1RN, CD177, and CR2 are
related to only one GO term. Most of the genes were related
to “chemokine response” and “humoral immune response.”
The top five GO terms in CC include “apical part of cell,”
“apical plasma membrane,” “anchored component of
membrane,” “cytoplasmic vesicle lumen,” and “vesicle
lumen” as shown in Figure 3C. The bridge genes include
CEACM5, CEACM7, and CPO. The unique genes include
CA2, DUOXA2, GP2, FCGR3B, FLAUR, and CD177. Most

FIGURE 1 Workflow of the study
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FIGURE 2 GSEA‐based KEGG enrichment analysis. (A) Remarkably enriched activated and suppressed KEGG pathways. The vertical items
are the names of KEGG terms, and the X‐axis represents the normalized enrichment score (NES). The adjusted p value is shown as the depth of
color. Circle size means gene counts in the graph. (B) The plots of GSEA‐based KEGG enrichment analysis of representative gene sets from
activated pathway: Chemokine signaling pathway. (C) The plots of GSEA‐based KEGG enrichment analysis of representative gene sets from
activated pathway: Salmonella infection. (D) The plots of GSEA‐based KEGG enrichment analysis of representative gene sets from suppressed
pathway: drug metabolism−cytochrome P450. (E) The plots of GSEA‐based KEGG enrichment analysis of representative gene sets from
suppressed pathway: primary immunodeficiency. GSEA, gene set enrichment analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes
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FIGURE 3 GO and univariate logistic analyses of significant DEGs in UST response. (A) Volcano plot of DEGs. DEGs in CD samples
comparable to those in normal samples. Downregulated, upregulated, and nonsignificant genes are highlighted blue, red, and gray plots,
respectively. The horizontal axis denotes the log2 (FC), and the vertical axis denotes—log10 (adjusted p value); The dots above the
horizontal line represent the significant DEGs. (B) Top 5 GO terms in BP. Adjusted p< .05 was considered significant. (C) Top 5 GO terms in
CC. Adjusted p< .05 was considered significant. (D) Top 5 GO terms in MF. Adjusted p< .05 was considered significant. (E) Random forest
plot of genes that may be related to UST response. BP, biological process; CC, cellular component; CD, Crohn's disease; DEGs, differentially
expressed genes; GO, Gene Ontology; MF, molecular function; UST, ustekinumab
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of the genes were connected with “apical plasma mem-
brane.” Figure 3D shows the top five GO terms in MF,
namely “chemokine activity,” “chemokine receptor bind-
ing,” “cytokine activity,” “G protein‐coupled receptor
binding,” and “receptor–ligand activity.” The bridge genes
include CXCL1, CXCL2, CXCL5. The unique genes com-
prise TFF1, SAA2, APOA1, PROK2, and FPR1. Most genes
in MF were related to “receptor–ligand activity.”

3.4 | Univariate logistic regression
analysis

After conducting univariate regression analysis on the 122
significant DEGs, we obtained 16 potential predictors and
visualized the results using a random forest plot.
Figure 3E shows that HSD3B1 (HR 1.36, p= .00849),
CDHR1 (HR 1.94, p= .00410), PAQR5 (HR 1.46,
p= .03000), and NELL2 (HR 1.85, p= .01487) may be
better predictors of UST response. However, DUOX2 (HR
0.75, p= .00784), LCN2 (HR 0.69, p= .01493), CXCL5
(HR 0.83, p= .0.2897), MUC1 (HR 0.68, p= .01294),
IL1RN (HR 0.75, p= .02709), IGLL5 (HR 0.69, p= .03181),
ADGRF1 (HR 0.71, p= .03712), PDZK1IP1 (HR 0.58,
p= .01728), CFI (HR 0.41, p= .00150), CCL11 (HR 0.51,
p= .01136), C2 (HR 0.51, p= .02012), and MNDA (HR
0.73, p= .02981) may be better predictors of UST
nonresponse.

3.5 | Multivariate predicative model

Figure 4A,B shows the results of the LASSO regression
analysis of the 122 candidate DEGs. A multivariate lo-
gistic regression equation, which was composed of four
genes and has the predictive ability for UST response,
was built. The final predictive model using LASSO
regression was composed of HSD3B1 (regression
coefficient = 0.10506761, p= .000087), MUC4 (regres-
sion coefficient =−0.01419220, p= .0000065), CF1
(regression coefficient =−0.41004617, p= .000000099),
and CCL11 (regression coefficient =−0.01087779,
p= .00000034) as shown in Figure 4G. Subsequently, an
individual risk score was calculated for each patient in
the training set through the multivariate predictive
model. We categorized the patients into high‐score or
low‐score groups according to the optimal cut‐off point
determined by the highest sensitivity and specificity of
the ROC curve (Figure 4C). Patients with scores ≥ 0.13
were assigned to the high‐score group, while the re-
maining patients belonged to the low‐score group.
Figure 4D shows the actual UST response of patients in
the training set. Patients who scored high are more

likely to have a better response to UST, whereas patients
with low scores are more likely to poorly respond to
UST. Figure 4E describes the expression level of the four
genes of the prediction equation in each sample.
HSD3B1 and MUC4 were expressed evenly in every
sample in the training set. Additionally, CF1 and CCL11
expressed some differences in different samples; how-
ever, the overall expression is still consistent in the
training set. Figure 4F shows the ROC curve for patients
under the training set. In this figure, the area under the
ROC curve (AUC) of the predictive model for UST
response is 0.746, which indicates that the predictive
ability of the model is good. Figure 4G shows the
Boxplot of the expression value of each gene in
the predictive model. The figure shows that HSD3B1
(p= .000087) was upregulated in the normal group
and downregulated in the patient group. MUC4
(p= .000006.5), CF1 (p= .000000099), and CCL11
(p= .00000034) were upregulated in the patient group
but downregulated in the normal group.

3.6 | Evaluation for the multivariate
predictive model

We performed the same analyses in the testing set and
the total dataset to verify the results in the training
set. The risk score of each patient in the testing set
and total dataset was calculated using the multi-
variate predictive model. The cut‐off score was 0.14,
which is close to the value of the training set. The
results are shown in Figure 5A,E. The UST responses
of patients under the testing set and total dataset are
shown in Figure 5B,F, respectively. The expression
profiles of HSD3B1, MUC4, CF1, and CCL11 in the
two datasets (Figure 5C,G) are similar to those in the
training dataset. The AUCs in the testing set and total
dataset were 0.734 and 0.746, respectively. This ob-
servation confirmed the predictive power of the final
model in the testing set (Figure 5D,H). Therefore, the
predictive model has a good prediction for the UST
response of patients with CD.

4 | DISCUSSION

We searched all datasets related to inflammatory bowel
disease (IBD) in GEO, and find only this dataset
(GSE112366) includes UST using. To reduce data bias, all
samples were divided randomly to training (70%) and
testing (30%) sets using the “createDataPartition” func-
tion in the R package “caret.” This function can keep
each categorical variable of the data in the subset
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FIGURE 4 Training for the multivariate predictive model by LASSO regression and evaluation. (A) The tuning parameter (λ) selection
in the LASSO model through tenfold cross‐validation was plotted as a function of log (λ). The y‐axis is for partial likelihood deviance, and
the lower x‐axis for log (λ). The average number of predictors is represented along the upper x‐axis. Red dots indicate average deviance
values for each model with a given λ, where the model is the best‐fit to data. (B) LASSO coefficient profiles of the 122 DEGs. The gray dotted
vertical line is the value selected using tenfold cross‐validation in (A). (C) Distribution of risk score under the training set. (D) UST response
of patients under the training set. The black dotted line represents the optimum cutoff point that divides patients into low‐ and high‐risk
groups. (E) Heat map of the gene expression values of the final predictors under the training set. (F) ROC curves for patients under the
training set. (G) Boxplot of the expression value of each gene in the predictive model. AUC, area under the curve; DEGs, differentially
expressed genes; LASSO, least absolute shrinkage and selection operator; UST, ustekinumab
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FIGURE 5 Testing the multivariate predictive model. (A–D). Testing the model under the testing set. (A) Distribution of risk score
under the testing set. (B) UST response of patients under the testing set. (C) Heat map of the gene expression values of the final predictors
under the testing set. (D) ROC curves for patients under the testing set. (E–H). Testing the model under the total dataset. (E) Distribution of
risk score under the total set. (F) UST response of patients under the total set. (G) Heat map of the gene expression values of the final
predictors under the total set. (H) ROC curves for patients under the total set. ROC, receiver operator characteristic; UST, ustekinumab
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consistent with the original proportion of the overall
data. In the present study, we performed the bioinfor-
matics method to acquire the significant genes related to
UST response in patients with CD. Furthermore, we
constructed an independent and efficient predictive
model. Some related genes and predictive models of IBD
have been reported in previous studies using bioinfor-
matics analysis.25,28–31 However, these studies focused on
IBD and did not further discuss CD or UC separately.
Besides, Leal et al.32 have elucidated inflammatory
mediators in patients with CD who are unresponsive to
anti‐TNFα therapy. However, no information on the
bioinformatics analysis of the UST response of patients
with CD was available. This study is the first to explore
the genes with predictive power for UST response using
bioinformatic analysis and the first to construct a pre-
dictive model for patients with CD who intend to try UST
treatment. This study found by GSEA‐based KEGG
analysis that most of the activated pathways are in con-
nection with cellular immunity, which is in agreement
with previous reports.28,31,33,34 Besides, we uncovered the
potential functions of DEGs using GO analysis. The most
significantly enriched GO terms among BP and MF
pathways are related to inflammation. This finding is also
consistent with previous studies; therefore, the results of
the GO analysis in our study were reasonable.32,35–38

We first constructed a predictive model through ap-
plying LASSO regression analysis for candidate DEGs.
The model, which was composed of HSD3B1, MUC4,
CF1, and CCL11, showed good predictive capacity for
drug response. Compared with multivariate COX re-
gression, which is chosen to build a multivariate model
by focusing on several variables, LASSO regression is
preferably suitable for the regression of massive and
multivariate variables.22,39–42 Herein, we adopted LASSO
regression to obtain the final important predictors to
build the predictive model. Subsequently, this study
showed that the AUC manifested favorable sensitivity
and specificity in the training set. Moreover, the AUCs of
the multivariate predictive model in the test group and
the total dataset were similar, which indicates that the
predictive model has a favorable performance and could
provide a potential therapeutic strategy for decision
making on the use of UST treatment among patients
with CD.

As one of the four most powerful predictors, MUC4 is
transmembrane mucin universally expressed in the small
and large intestines and plays a critical role in cell pro-
liferation and the differentiation of epithelial cells by
inducing the specific phosphorylation of ERBB2. MUC4
is commonly disturbed in the intestinal samples of
patients with IBD; thus, it acts as a crucial player in

IBD.8,43–48 Das49 demonstrated that MUC4 drives
intestinal inflammation and inflammation‐associated
tumorigenesis using a novel Muc4−/− mouse model.
However, the occurrence of IBD is likely related to the
disturbed epithelial cells of the intestines.27,50 As another
predictor in the model, CCL11 is a potent eosinophil
chemoattractant that is constitutively expressed in the
small intestine and colon. Besides, CCL11 is highly ex-
pressed in active CD, contributes to tissue eosinophilia,
and regulates intestinal inflammation.51,52HSD3B1, as a
steroidogenesis gene, is associated with GC resistance.53

CF1 is associated with metabolism.54 Interestingly, the
participation of HSD3B1 and CF1 in CD was unknown
and first unveiled to be related to the UST responsiveness
of patients within our study.

This study has several limitations. First, the degree of
UST response of each patient was not reported in detail.
Besides, as a clinical predictive model, the model has not
yet been validated by external data. The model will be
validated in our future study.

5 | CONCLUSIONS

Our study provided new insight into the expression of
genes related to the UST response of patients with CD.
This study unveiled the important DEGs in this field and
built a powerful predictive model, which could possibly
provide valuable data sources for further basic and clin-
ical studies in the future.
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