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Abstract: The inhibitory properties of epicatechin-(4β,8)-epicatechingallate (B2-3’-O-gallate),
epicatechin gallate (ECG), and epicatechin (EC) isolated from Rhodiola crenulata toward maltase
and sucrase were investigated. The half-maximal inhibitory concentration (IC50) values for maltase
were as follows: B2-3’-O-gallate (1.73 ± 1.37 µM), ECG (3.64 ± 2.99 µM), and EC (6.25 ± 1.84 µM).
Inhibition kinetic assays revealed the inhibition constants (Ki) of the mixed-competitive inhibitors of
maltase, as follows: B2-3’-O-gallate (1.99 ± 0.02 µM), ECG (3.14 ± 0.04 µM), and EC (7.02 ± 0.26 µM).
These compounds also showed a strong inhibitory activity toward sucrase, and the IC50 values
of B2-3’-O-gallate, ECG, and EC were 6.91 ± 3.41, 18.27 ± 3.99, and 18.91 ± 3.66 µM, respectively.
Inhibition kinetic assays revealed the inhibition constants (Ki) of the mixed-competitive inhibitors
of sucrase as follows: B2-3’-O-gallate (6.05 ± 0.04 µM), ECG (8.58 ± 0.08 µM), and EC (13.72 ±
0.15 µM). Overall, these results suggest that B2-3’-O-gallate, ECG, and EC are potent maltase and
sucrase inhibitors.
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1. Introduction

Over the past three decades, the number of people with diabetes mellitus has quadrupled, with the
result being that diabetes mellitus is now the ninth leading cause of death worldwide. Approximately
1 in 11 adults have diabetes mellitus, and roughly 90% of those cases are type 2. The most pronounced
symptom of diabetes mellitus is an abnormal postprandial increase in blood glucose levels [1,2]. It is
widely believed that control over postprandial hyperglycemia is crucial to the effective treatment of
diabetes mellitus [3]. It is well known that dietary carbohydrates are broken down into monosaccharides
by hydrolytic enzymes, α-glucosidases, which are absorbed into the intestinal brush border membrane.
The final step of carbohydrate digestion can be catalyzed by α-glucosidases. Furthermore, a number of
physiologically important enzymes are involved in the process of digesting dietary carbohydrates [4,5].
Thus, one approach to controlling this digestion process involves delaying the absorption of glucose
by inhibiting α-glucosidase activity [6,7].

α-Glucosidases are divided into four hydrolase types, i.e., maltase (Enzyme Commission (EC)
3.2.0.20), sucrase (EC 3.2.1.48), glucoamylase (EC 3.2.1.3), and isomaltase (EC 3.2.1.10). These
four enzymes form two complexes with different substrate specificities, maltase–glucoamylase and
sucrase–isomaltase complexes [8]. Among them, maltase is the major enzyme responsible for the
digestion and absorption of dietary starch, whereas sucrase can hydrolyze sucrose [9]. Maltase is
a membrane-bound enzyme that binds to microvilli on intestinal enterocytes. It can hydrolyze the
α-1,4 linkages of maltose residues to release a single glucose molecule [10,11]. In addition, sucrase
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is localized in the brush border membranes of the small intestine. This enzyme can hydrolyze the
α-1,2 linkages of sucrose to release glucose and fructose [12]. By acting against these enzymes in the
gut, maltase and sucrase inhibitors reduce postprandial glucose levels by restraining the liberation of
glucose from oligosaccharides and disaccharides [4]. Nijpels et al. [13] reported that diabetes could be
managed by reducing the impact of glycemia by inhibiting maltase and sucrose activity through the
regular consumption of the antihyperglycemic drug acarbose. In one intervention study, the daily
consumption of acarbose for a period of three years was shown to reduce the risk of developing type 2
diabetes by 6%, compared to a control group that was not consuming acarbose.

In a study by Kwon et al. [14], water extracts of Rhodiola crenulata (R. crenulata) were shown to
significantly reduce the inhibitory activity of α-glucosidase. The genus Rhodiola L. (Crassulaceae)
comprises approximately 90 species found throughout the world, and more than 70 species are found
in the western and northern regions of Asia. Among these, R. crenulata, is an important member of the
Crassulaceae family. For centuries, the roots of R. crenulata have been used as a health supplement.
It is possible that these extracts could be used as a supplement for postprandial hyperglycemia
associated with diabetes mellitus. In our previously study, we isolated and characterized α-glucosidase
inhibitory constituents, including epicatechin-(4β,8)-epicatechingallate (B2-3’-O-gallate), epicatechin
gallate (ECG), and epicatechin (EC) from R. crenulata [15]. These results clearly demonstrated the
strong inhibitory effects of B2-3’-O-gallate, ECG, and EC against α-glucosidase activity.

The above potent maltase and sucrase inhibitors were considered for use in treating diabetes
mellitus. Although the inhibition of α-glucosidases by B2-3’-O-gallate, ECG, and EC has previously
been reported, the inhibitory properties of B2-3’-O-gallate, ECG, and EC toward maltase and sucrase
have not been examined. Thus, this paper describes the inhibition kinetics of B2-3’-O-gallate, ECG, and
EC toward maltase and sucrase. Our primary objective in this study was to elucidate the inhibitory
effects of 2-3’-O-gallate, ECG, and EC on maltase and sucrase.

2. Materials and Methods

2.1. Preparation of B2-3’-O-gallate, ECG, and EC from R. crenulata

Dried roots of R. crenulata were obtained from a traditional Chinese medicine pharmacy in Chiayi
in south Taiwan. The authenticity was confirmed by Dr. Hsiang-Wen Tseng (Industrial Technology
Research Institute, Taiwan) using DNA sequencing technology and an internal transcribed spacer
sequence database. Isolates of B2-3’-O-gallate, ECG, and EC were prepared from a crude extract of R.
crenulata in accordance with the methods reported by Chu et al. [15]. Briefly, a total of 90 g R. crenulata
roots was milled and extracted using distilled water (900 mL). After centrifugation at 12,000 × g for
15 min, the supernatant was collected and freeze-dried to yield 16 g of water extract. The extract that
displayed IC50 value for maltase was 5.23 ± 0.18 µg/mL, whereas the extract that displayed IC50 value
for sucrase was 21.42± 0.45 µg/mL. The water extract underwent column chromatography on a vacuum
manifold using solid-phase extraction (SPE) cartridges. Each sample (50 mg) was chromatographed
on a SPE cartridge. The samples were then eluted stepwise using 0%, 10%, 20%, 30%, and 40%
methanol in distilled water. A total of 5 fractions, one for each methanol elution (20 mL), were collected.
The samples were concentrated using a rotary evaporator and then freeze-dried. The total yield of
the fractions was 92.4%, whereas the yields of the individual fractions were as follows: 0% elution
(67.6%), 10% elution (16.5%), 20% elution (5.1%), 30% (2.3%), and 40% (0.9%). The 30% fraction was
redissolved in distilled water and subjected to column chromatography on a HPLC high-performance
liquid chromatography (HPLC) system comprising a pump (PU-980, JASCO, Tokyo, Japan) and a
detector (UV-970, JASCO) with a C18 packed column (4.6 mm × 250 mm, 5 µm Spherical, Dikma
Technologies Inc.). A gradient elution from H2O/acetonitrile (86:14) to H2O/acetonitrile (72:28) was
used to isolate B2-3’-O-gallate, ECG, and EC. Elution began with a solvent flow rate of 1 mL/min for the
collection of B2-3’-O-gallate, ECG, and EC. The total yields were as follows: B2-3’-O-gallate (8.7 mg),
ECG (6.1 mg), and EC (7.6 mg).
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2.2. Maltase Activity Assay

Maltase activity was characterized using the methods outlined by Adisakwattana et al. [16] with
slight modifications. Maltose and maltase derived from Saccharomyces cerevisiae (S. cerevisiae) were
obtained from Sigma Chemical Co. (St. Louis, MO, USA). A reaction mixture was formulated from
30 µL of maltose (86.3 mM) with 20 µL of maltase (0.33 units/mL) and 50 µL of phosphate buffer
(100 mM, pH 7.0). The mixture was incubated at 37 ◦C for 10 min and then at 100 ◦C for a further 10 min
to stop the reaction. The glucose concentrations released by the reaction mixture were determined
via the glucose oxidase method (glucose assay kit, Sigma Chemical Co., St. Louis, MO, USA) using a
VersaMax microplate reader (Molecular Devices Corporation, Sunnyvale, CA, USA) at an absorbance
wavelength of 540 nm.

2.3. Maltase Inhibitory Activity of B2-3’-O-gallate, ECG, EC, and Quercetin

In this study, we focused on B2-3’-O-gallate, ECG, EC, and quercetin, with quercetin (Sigma
Chemical Co., St. Louis, MO, USA) as positive controls. All of the samples were assessed in terms of
maltase inhibitory activity under a range of concentrations (0–30 µM). Maltase inhibitory activity was
evaluated by dissolving the samples directly in phosphate buffer solution (100 mM, pH 7.0). Note that
each sample was assayed in triplicate. Inhibitory activity was estimated in terms of IC50 values based
on percent inhibition, as follows:

percent inhibition (%) = [(Awithout sample − Awith sample)] × 100%/Awithout sample (1)

2.4. Sucrase Activity Assay

Estimates of sucrase activity were obtained using the method outlined by Akkarachiyasit et
al. [17] with slight modifications. Sucrose and sucrase derived from Leuconostoc mesenteroides were
obtained from Sigma Chemical Co. (St. Louis, MO, USA). The reaction mixture comprised 40 µL of
sucrose (480 mM) with 10 µL of sucrase (0.33 units/mL) in 50 µL of phosphate buffer solution (100 mM,
pH 7.0). The mixtures were incubated at 37 ◦C for 60 min and then at 100 ◦C for a further 10 min to
stop the reaction. The glucose concentrations released from the reaction mixtures were estimated via
the glucose oxidase method (glucose assay kit, Sigma Chemical Co., St. Louis, MO, USA) using a
VersaMax microplate reader (Molecular Devices Corporation, Sunnyvale, CA, USA) at an absorbance
wavelength of 540 nm.

2.5. Sucrase Inhibitory Activity of B2-3’-O-gallate, ECG, EC, and Quercetin

In this study, we focused on B2-3’-O-gallate, ECG, EC, and quercetin, with quercetin (Sigma
Chemical Co., St. Louis, MO, USA) as positive controls. All samples were assessed in terms of sucrase
inhibitory activity under a range of concentrations (0–50 µM). Inhibitory activity was assessed by
dissolving samples directly in phosphate buffer solution (100 mM, pH 7.0). Inhibitory activity was
estimated in terms of IC50 values based on percent inhibition, as follows:

percent inhibition (%) = [(Awithout sample − Awith sample)] × 100%/Awithout sample (2)

2.6. Lineweaver–Burk Plots and Dixon Plots

Lineweaver–Burk plot analysis was used to identify the mode of inhibition of B2-3’-O-gallate,
ECG, EC, and quercetin on maltase and sucrase. Kinetics assays were conducted using substrates
of various concentrations with and without inhibitors. Maltose was used as a substrate for maltase,
where the initial velocity was expressed as the rate of absorbance at 540 nm per min. Sucrose was
used as a substrate for sucrase, where the initial velocity was expressed as the rate of absorbance at
540 nm per 18 min. Dixon plot analysis was used to determine the competitive inhibition constant
(Ki) and uncompetitive inhibition constant (Ki’). Ki was used as the equilibrium constant for the
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inhibition of binding to maltase and sucrase, whereas Ki’ was used as the equilibrium constant for the
inhibition of binding to maltase–maltose and sucrase–sucrose complexes. The Ki and Ki’ values of
the maltase inhibitors were derived from Dixon plots in accordance with the methods described by
Cornish-Bowden [18].

2.7. Statistical Analysis

Data are expressed as the mean ± standard deviation. All data analysis was performed using
Statistical Analysis System (SAS software release 9.4 for Windows, version 13.2, SAS Institute, Inc.,
Cary, NC, USA). Statistically significant differences between treatment groups were determined using
one-way ANOVA followed by Duncan’s multiple range test. Three replicates of each sample were
assayed, and the level of significance was set at p < 0.05.

3. Results and Discussion

3.1. Maltase and Sucrase Inhibitory Activity of B2-3’-O-gallate, ECG, EC, and Quercetin

Potent maltase and sucrase inhibitors have been considered for use for treating diabetes
mellitus [19]. Thus, we investigated the inhibition of maltase and sucrase by B2-3’-O-gallate, ECG,
and EC derived from R. crenulata. Figure 1 compares the inhibitory activity of B2-3’-O-gallate, ECG,
and EC with that of quercetin, which is a leading candidate for the treatment of diabetes mellitus [20].
Quercetin was used in this study as a standard inhibitor, which reduces the hydrolysis of maltose
by inhibiting the activity of maltase. Wang et al. [21] reported that quercetin showed high inhibitory
activity, with an IC50 value of 4.8 ± 0.4 mM against rat maltase. We assessed the inhibitory effects
of B2-3’-O-gallate, ECG, EC, and quercetin on maltase at various concentrations. The addition of
B2-3’-O-gallate, ECG, EC, and quercetin at a concentration of 10 µM was shown to significantly enhance
maltase inhibition, as follows: B2-3’-O-gallate (90.7%), ECG (87.7%), EC (66.3%), and quercetin (56.3%).
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Figure 1. Inhibitory effects of epicatechin-(4β,8)-epicatechingallate (B2-3’-O-gallate), epicatechin gallate
(ECG), epicatechin (EC), and quercetin on maltase. Each value is represented as the mean ± standard
deviation of triplicate measurements.

Table 1 lists the structures of B2-3’-O-gallate, ECG, EC, and quercetin. The IC50 values for maltase
were as follows: B2-3’-O-gallate (1.73 ± 1.37 µM), ECG (3.64 ± 2.99 µM), EC (6.25 ± 1.84 µM), and
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quercetin (8.33 ± 3.91 µM). The strength of the IC50 values was in the following order: B2-3’-O-gallate
< ECG < EC < quercetin. We also compared the inhibitory activities of B2-3’-O-gallate, ECG, EC,
and quercetin toward sucrase. As shown in Figure 2, the addition of B2-3’-O-gallate, ECG, EC, and
quercetin at a concentration of 20 µM was shown to significantly enhance sucrase inhibition, as follows:
B2-3’-O-gallate (84.6%), ECG (56.1%), EC (51.4%), and quercetin (51.7%).

Table 1. Structure, molecular weight, molecular formula, and IC50 values of maltase and
sucrase inhibitors.

Inhibitor Structure
Molecular

Weight
Molecular
Formula

IC50 (µM) a

Maltase Sucrase

Epicatechin-(4β,8)-epicatechingallate
(B2-3’-O-gallate)
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As shown in Table 1, the IC50 values for sucrase were as follows: B2-3’-O-gallate (6.91 ± 3.41 µM),
ECG (18.27 ± 3.99 µM), EC (18.91 ± 3.66 µM), and quercetin (18.98 ± 2.53 µM). The strength of the IC50

values was in the following order: B2-3’-O-gallate < ECG < EC < quercetin. We can see that the inhibitory
effects of quercetin on sucrase were far less pronounced than those of B2-3’-O-gallate, ECG, and EC
(p < 0.05). There has already been considerable research into the use of these polyphenols as maltase and
sucrase inhibitors as an alternative to pharmaceutical treatments such as acarbose for the management
of type 2 diabetes. Pyner et al. [22] reported that the IC50 values of polyphenol-rich green tea extract,
acarbose, and epigallocatechin gallate for rat maltase were 0.035 ± 0.005 mg/mL, 0.42 ± 0.02 µM, and
14.0 ± 2.0 µM, respectively. Furthermore, the IC50 values of polyphenol-rich green tea extract, acarbose,
and epigallocatechin gallate for rat sucrase were 1.8 ± 0.3 mg/mL, 12.3 ± 0.6 µM, and 950 ± 86 µM,
respectively. In addition, quercetin showed inhibitory activities with IC50 values of 3.5 ± 0.3 mM
against rat sucrose [21]. Furthermore, mogroside IV (IC50 = 12 mM), siamenoside I (IC50 = 10 mM), and
mogroside III (IC50 = 1.6 mM) isolated from Siraitia grosvenori also have maltase inhibitory activity [23].
Kim et al. [24] isolated a bromophenol, bis (2,3-dibromo-4,5-dihydroxybenzyl)ether, from the red
alga Polyopes lancifolia. That compound had an IC50 value of 1.00 ± 0.03 mM against sucrose in rats.
According to the above results, B2-3’-O-gallate, ECG, and EC have the potential to be maltase and
sucrase inhibitors.

3.2. Mode of Inhibition of B2-3’-O-gallate, ECG, EC, and Quercetin Toward Maltase

We also evaluated the inhibition kinetics of B2-3’-O-gallate, ECG, EC, and quercetin toward
maltase. In this study, the Michaelis constant (Km) of maltase was 1.01 mM, whereas in the study by
Pyner et al. [22], the Km value of maltase was 7.5 mM. The Lineweaver–Burk plots of B2-3’-O-gallate
(Figure 3A), ECG (Figure 3B), EC (Figure 3C), and quercetin (Figure 3D) did not intersect the x- or
y-axis, which is indicative of mixed-type inhibition. A number of mixed-type maltase inhibitors have
previously been reported. In a previous study, kinetic analysis revealed that maltase was inhibited by
cinnamic acid derivatives, including caffeic acid, ferulic acid, and isoferulic acid, in a mixed-inhibition
manner [16]. Our previous results indicated that B2-3’-O-gallate (Ki = 0.30 ± 0.03 µM, Ki’ = 1.42 ± 0.01
µM), ECG (Ki = 0.21 ± 0.04 µM, Ki’ = 2.34 ± 0.06 µM), and quercetin (Ki = 1.44 ± 0.04 µM, Ki’ = 9.33 ±
0.10 µM) were mixed-competitive inhibitors of α-glucosidase [15]. Furthermore, a Lineweaver–Burk
plot indicated that epigallocatechin gallate was a competitive inhibitor against maltose substrate for
maltase, and the Ki calculated from a Dixon plot was 5.93 ± 0.26 µM [25].
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The Dixon plots in Figure 4 revealed that all of the compounds were mixed-type inhibitors of
maltase with the following Ki values: B2-3’-O-gallate (1.99 ± 0.02 µM; Figure 4A), ECG (3.14 ± 0.04 µM;
Figure 4B), EC (7.02 ± 0.26 µM; Figure 4C), and quercetin (7.81 ± 0.10 µM; Figure 4D). The strength of
the Ki values was as follows: B2-3’-O-gallate < ECG < EC < quercetin. The Ki’ values were as follows:
B2-3’-O-gallate (3.73 ± 0.08 µM), ECG (6.38 ± 0.04 µM), EC (18.88 ± 0.22 µM), and quercetin (14.97 ± 0.75
µM). Note that all of the Ki values were lower than the Ki’ values. As mentioned previously, Ki is the
equilibrium constant for the inhibition of binding to maltase, whereas Ki’ is the equilibrium constant
for the inhibition of binding to the maltase–maltose complex. In a previous report by Cortés et al. [26],
Ki values are smaller than Ki’ values in cases of reversible mixed-competitive inhibition. This is an
indication that inhibitor–enzyme binding affinity exceeds inhibitor–enzyme–substrate binding affinity,
resulting in the mixed-competitive inhibition of maltase. These findings suggest that B2-3’-O-gallate,
ECG, EC, and quercetin may bind to either maltase or the maltase–maltose complex. Nonetheless, the
binding sites and underlying mechanisms of inhibition have yet to be elucidated.
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Figure 4. Dixon plots for the inhibition of maltase by maltase inhibitors, with maltose as the substrate.
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3.3. Mode of Inhibition of B2-3’-O-gallate, ECG, EC, and Quercetin Toward Sucrase

In our analysis of the inhibition kinetics of B2-3’-O-gallate, ECG, EC, and quercetin toward
sucrose, the Michaelis constant (Km) was 100.4 mM. In a previous report by Pyner et al. [22], the
Km value of sucrase activity was 9.5 mM. The Lineweaver–Burk plots of B2-3’-O-gallate (Figure 5A),
ECG (Figure 5B), EC (Figure 5C), and quercetin (Figure 5D) did not intersect the x- or y-axis, which is
indicative of mixed-type inhibition. In previous studies, a number of mixed-type sucrase inhibitors
have been reported. Cyaniding-3-rutinoside (a natural anthocyanin) was found in litchi and sweet
cherry. Kinetics analysis revealed that sucrase was inhibited by cyanidin-3-rutinoside in a mixed-type
manner [27]. In addition, ferulic acid and isoferulic acid inhibited sucrase in a mixed-type manner [16].
Furthermore, a Lineweaver–Burk plot indicated that valienamine was a competitive inhibitor against
the sucrose substrate of sucrase, and the Ki calculated from a Dixon plot was 0.77 µM [12].
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Figure 5. Lineweaver–Burk plots for the inhibition of sucrase by sucrase inhibitors, with sucrose as the
substrate. (A) B2-3’-O-gallate. (B) ECG. (C) EC. (D) Quercetin.

The Dixon plots in Figure 6 indicated that these compounds were mixed-type inhibitors of
sucrase with the following Ki values: B2-3’-O-gallate (6.05 ± 0.04 µM; Figure 6A), ECG (8.58± 0.08 µM;
Figure 6B), EC (13.72 ± 0.15 µM; Figure 6C), and quercetin (14.05 ± 0.03 µM; Figure 6D). The strength
of the Ki values was as follows: B2-3’-O-gallate < ECG < EC < quercetin. The Ki’ values were as
follows: B2-3’-O-gallate (31.84 ± 0.34 µM), ECG (15.74 ± 0.32 µM), EC (21.36 ± 0.30 µM), and quercetin
(18.54 ± 0.07 µM). Note that the Ki values of B2-3’-O-gallate, ECG, EC, and quercetin were lower
than the Ki’ values, indicating that these compounds were mixed-competitive inhibitors of sucrase.
These findings suggest that B2-3’-O-gallate, ECG, EC, and quercetin may bind to either sucrase or the
sucrase–sucrose complex. Nonetheless, the binding sites and underlying mechanisms of inhibition
have yet to be elucidated.
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3.4. Inhibition Scheme of B2-3’-O-gallate, ECG, EC, and Quercetin for Maltase and Sucrase

Figure 7 presents the inhibition schemes of the maltase and sucrase inhibitors (B2-3’-O-gallate,
ECG, EC, and quercetin). Figure 7A shows that maltase hydrolyzes carbohydrates by acting on 1,4-α
linkages. Maltase inhibitors counter enzymes in the gut to restrain the liberation of glucose from
oligosaccharides and disaccharides, resulting in a reduction in postprandial glucose levels [4]. In the
maltase inhibitory activity assay, maltase could hydrolyze maltose to glucose, while maltase inhibitors
prevent this maltase activity. Ki and Ki’ are the dissociation constants of the maltase–inhibitor complex
and the maltase–maltose–inhibitor complex, respectively. According to our results, B2-3’-O-gallate (Ki
= 1.99 ± 0.02 µM, Ki’ = 3.73 ± 0.08 µM), ECG (Ki = 3.14 ± 0.04 µM, Ki’ = 6.38 ± 0.04 µM), EC (Ki =

7.02 ± 0.26 µM, Ki’ = 18.88 ± 0.22 µM), and quercetin (Ki = 7.81 ± 0.10 µM, Ki’ = 14.97 ± 0.75 µM) are
mixed-competitive inhibitors of maltase. Note that mixed-competitive inhibitors bind at sites that are
distinct from maltose active sites; however, they bind to either maltase or the maltase–maltose complex.
Moreover, a similar inhibition scheme was also observed in the results of B2-3’-O-gallate, ECG, EC, and
quercetin against sucrase (Figure 7B). In the sucrase inhibitory activity assay, sucrase could hydrolyze
sucrose to glucose, while sucrase inhibitors prevent this sucrase activity [28]. Ki and Ki’ are the
dissociation constants of the sucrase–inhibitor complex and the sucrase–sucrose–inhibitor complex,
respectively. According to our results, B2-3’-O-gallate (Ki = 6.05 ± 0.04 µM, Ki’ = 18.54 ± 0.07 µM),
ECG (Ki = 8.58 ± 0.08 µM, Ki’ = 15.74 ± 0.32 µM), EC (Ki = 13.72 ± 0.15 µM, Ki’ = 21.36 ± 0.30 µM), and
quercetin (Ki = 14.05 ± 0.03 µM, Ki’ = 31.84 ± 0.34 µM) are mixed-competitive inhibitors of sucrase.
Mixed-competitive inhibitors bind at sites that are distinct from sucrose active sites; however, they
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bind to either sucrase or the sucrase–sucrose complex. Note that B2-3’-O-gallate, ECG, and EC all had
significant inhibitory effects on maltase as well as sucrase.Foods 2019, 8, x FOR PEER REVIEW 11 of 13 
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4. Conclusions

B2-3’-O-gallate, ECG, and EC isolated from R. crenulata displayed maltase and sucrase inhibitory
properties in a mixed-competitive mode. The IC50 values of these compounds for both maltase
and sucrose were in the following order: EC > ECG > B2-3’-O-gallate. Among these compounds,
B2-3’-O-gallate had the highest maltase and sucrose inhibitory activities. We observed that the IC50

values of B2-3’-O-gallate, ECG, and EC were lower than those of quercetin, which means that they have
greater potential for the prevention of hyperglycemia associated with maltase or sucrase. Our findings
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clearly identify B2-3’-O-gallate, ECG, and EC as likely candidates for the treatment of diabetes mellitus,
warranting further in vivo studies.
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