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Vascular endothelial growth factor and its receptor 
(VEGF-VEGFR) system play a critical role in the regulation of 
angiogenesis and lymphangiogenesis in vertebrates. Each of 
the VEGF has specific receptors, which it activates by binding 
to the extracellular domain of the receptors, and, thus, 
regulates the angiogenic balance in the early embryonic and 
adult stages. However, de-regulation of the VEGF-VEGFR 
implicates directly in various diseases, particularly cancer. 
Moreover, tumor growth needs a dedicated blood supply to 
provide oxygen and other essential nutrients. Tumor metastasis 
requires blood vessels to carry tumors to distant sites, where 
they can implant and begin the growth of secondary tumors. 
Thus, investigation of signaling systems related to the human 
disease, such as VEGF-VEGFR, will facilitate the development 
of treatments for such illnesses. [BMB Reports 2018; 51(2): 
73-78]

INTRODUCTION

Angiogenesis, the physiological process through which new 
vessels form from pre-existing vessels, is responsible for most, 
if not all, blood vessel growth during development (1, 2). 
Various angiogenic proteins, including fibroblast growth factors 
(FGFs), vascular endothelial growth factors (VEGFs/VEGFRs), 
angiopoietin/Tie receptors, platelet-derived growth factors 
(PDGFs/PDGFRs), and EphrinB2/EphB4 (3-8) result in the 
stimulation of angiogenesis. This process is tightly regulated 
depending on the balance of pro- and anti-angiogenic factors 
(9). However, if the angiogenesis is not properly controlled, 
various diseases are induced. For example, excessive 

angiogenesis can lead to chronic disease states such as tumor 
growth and metastasis, and several disease, such as ulcers and 
ischemic heart disease, are the result of insufficient angiogenesis 
(10). Among the angiogenic proteins, VEGF-VEGFR is a crucial 
regulator of pathological angiogenesis such as in cancer as 
well as physiological vasculogenesis and angiogenesis in early 
embryonic and adult stages (11).

VEGFs bind to the VEGFRs on the cell surface, and stimulate 
cellular responses by causing the receptors to dimerize and 
become activated through transphosphorylation (12). When 
cells are deficient of oxygen, namely in hypoxia, the cell 
produces hypoxia-inducible factor (HIF), which can stimulate 
the release of VEGF. Thus, hypoxia may be an essential 
regulator of VEGF expression. Additionally, several diseases 
characterized by excess angiogenesis are associated with 
hypoxia-driven de-regulated VEGF expression (12, 13). Several 
antiangiogenic drugs target the VEGF-VEGFR system, including 
VEGF-neutralizing antibody (bevacizumab), small molecule 
kinase inhibitors (sunitinib, sorafenib, and apatinib), and 
humanized monoclonal antibody targeting the extracellular 
domain of the VEGFR (ramucirumab). However, the resistance 
mechanisms of cancer and the side effects of drugs limit the 
use of these drugs in chemotherapy (14). Consequently, a 
more detailed investigation focused on the pathological 
angiogenesis, as a therapeutic target, is required for the 
development of safe and continuously available drugs.

In this review, we describe the structural and functional 
information regarding the VEGF-VEGFR system to increase 
understanding of angiogenesis in physiological and pathological 
processes.

STRUCTURE AND BIOCHEMICAL PROPERTIES OF 
VEGFRs WITH ITS LIGANDS

Genes encoding novel tyrosine kinase receptors were isolated 
in the early 1990s, and the tyrosine kinase receptors that 
positively and negatively regulate the formation of blood and 
lymph vessels were denoted VEGFRs (15, 16). Three genes are 
encoding three full-length receptors (VEGFR-1, -2, and -3) and 
one soluble molecule (sVEGFR-1), and most VEGFRs show 
similar overall structures that comprise of three primary 
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Fig. 1. Structure of the VEGFR-1 extracellular domain in complex 
with VEGF-A. (A) Schematic representation of the domain 
organization of VEGFR is shown. (B) Complex crystal structure of 
VEGFR-1 extracellular domain with VEGF-A (PDB ID: 5T89) is 
shown. We have shown the structure in a ribbon representation 
with each chain depicted by a different color. The chains of the 
VEGF-A homodimer are shown in light blue and gray, and the 
VEGFR-1 D1-D6 chains in deep blue and magenta.

Fig. 2. Schematic illustration of the VEGF-VEGFR system. The 
VEGF family including VEGF-A, VEGF-B, VEGF-C, VEGF-D and 
PIGF binds to its specific receptor. We have depicted its ligands 
in yellow, VEGFR-2 and its ligands in pink, and VEGFR-3 and its 
ligands in green.

domains. VEGFRs are typically composed of an extracellular 
ligand-binding domain (ECD) with a seven immunoglobulin 
(Ig)-like domain, a transmembrane domain and a tyrosine 
kinase domain split by a kinase insert and a carboxy terminus 
(Fig. 1A) (11, 17). The kinase domains of VEGFRs are the most 
conserved region, with high sequence identities (78-80%). The 
VEGF-VEGFR system plays a central role in the regulation of 
tumor angiogenesis and can be a potential target for 
anti-angiogenic therapy. There are five VEGF family members 
(VEGF-A, VEGF-B, VEGF-C, VEGF-D, and placental growth 
factor) encoded from the mammalian genome (3, 18). Moreover, 
alternative splicing of primary RNA transcripts from the VEGF 
gene family generates various isoforms. For example, the 
isoforms of human VEGF-A are labeled as VEGF-A121, 
VEGF-A145, VEGF-A165, VEGF-A189 and VEGF-A206, and 
homodimeric VEGF-B exists as two different transcripts, 
VEGF-B167 and VEGF-B186 (19). Among them, VEGF-A (known 
as VEGF) is one of the most critical factors for blood vessel 
formation during early embryogenesis (11). VEGF-A binds to Ig 
domains 2 and 3 localized in the ECD of VEGFR-1 and 
VEGFR-2 (20, 21). Interestingly, the affinity of VEGF-A to 

VEGFR-1 is about one order of magnitude higher than that to 
VEGFR-2, but the tyrosine kinase activity of VEGFR-2 in 
response to VEGF-A is much higher than that of VEGFR-1 (17, 
22). VEGF-B and placenta growth factor (PIGF) bind to 
VEGFR-1, but their mechanisms that activate the receptor are 
different (23). Specifically, VEGF-B stimulates Tyr1213 
phosphorylation of VEGFR-1, whereas PIGF stimulates Tyr1309 
phosphorylation (24). VEGF-C and VEGF-D are specific ligands 
for VEGFR-3, which plays a critical role in angiogenesis and 
lymphangiogenesis in adults (Fig. 2) (25).

To date, many structural studies of the VEGF/VEGFR complex 
based on single-particle electron microscopy, small-angle 
X-ray scattering, and X-ray crystallography show how the 
ligand binds to the membrane distal Ig domains. Moreover, 
studies of other Ig domains of the VEGFR suggest the 
possibility of receptor-receptor interactions (19, 26-29). The 
first complete and recently reported VEGF/VEGFR ECD 
complex structure provides insightful information regarding 
the ligand binding and ligand-induced homotypic interactions 
of VEGFR (30). The structure of full-length VEGFR-1 ECD in 
complex with VEGF-A exists as two sets of 1:1 complexes in 
the asymmetric unit and two receptors linked by the dimeric 
VEGF-A bound to the Ig domains (Fig. 1B) (30). Unlike 
previous VEGFR-1 complex structures that contained only Ig 
domain 2, the recently reported complex structures include 
the complete ECD of the receptor with VEGF-A that interacts 
with both Ig domains 2 and 3 of VEGFR-1 (19, 30-32). The 
results of these studies also suggest that the homotypic 
receptor-receptor contacts in Ig domains 4-7 increase the 
binding affinity of VEGFR-1 ECD for VEGF-A based on the 
finding that the binding affinity is 20 times higher in the 
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Fig. 3. Signaling pathways activated by VEGFR2. The phosphory-
lation of tyrosine residues creates docking sites for the recruitment 
of downstream signaling effectors. Subsequently, signaling cascades 
activated by VEGFR2 can regulate gene expression, cell proliferation,
survival, and migration.

presence of homotypic interactions (30). Moreover, researchers 
have conducted many studies targeting the structure-based 
design of VEGFR-2 inhibitors as therapeutic agents since the 
crystal structure of the catalytic kinase domain of VEGFR-2 
was determined (33-36). The overall fold and catalytic residue 
positions of the VEGFR-2 kinase domain are similar to those 
observed in other tyrosine-kinase structures. There are two 
lobes (N-lobe and C-lobe), and the catalysis of phosphotransfer 
takes place in the cleft between the two lobes (34). Despite 
differences in the kinase activity of VEGFRs in response to its 
ligands, the available structural information regarding the 
kinase domains of VEGFR-1 and VEGFR-3 remains sparse. 
Thus, more detailed investigations based on the molecular 
structure of the remaining VEGFR kinase domains are required 
to improve understanding of their catalytic and signal 
transduction mechanisms.

BIOLOGICAL FUNCTION OF VEGF-VEGFR SYSTEM

VEGF-VEGFR system is crucial to vascular development and 
neovascularization in physiological and pathological processes 
of both embryos and adults, and many studies have investigated 
anti-VEGF-VEGFR molecules disturbing signal transduction by 
the VEGF-VEGFR system to improve anti-angiogenic therapy 
(12). VEGFR-1 is expressed in vascular endothelial cells and 
non-endothelial cells, including haematopoietic stem cells, 
macrophages, and monocytes. Fong et al. reported that 
VEGFR-1 knockout mice died at embryonic day 8.5-9.0 
because of overgrowth of endothelial cells and disorganization 
of blood vessels in the embryo (37). Moreover, to identify how 
VEGFR-1 negatively regulates angiogenesis during early 
embryogenesis, mice expressing only the VEGFR-1 extracellular 
and transmembrane domains were generated. Interestingly, 
angiogenesis in mice was almost average, indicating that the 
ECD of VEGFR-1, not the kinase domain, plays a critical role 
as a suppressor of vascular formation by trapping VEGF-A and 
thereby preventing VEGFR-2 activation (38). Autophosphory-
lation on tyrosine residues of VEGFR-1 and coupling to 
intracellular signal transducers can trigger weak signals for 
growth and survival of endothelial cells and pericytes, as well 
as for cell migration of macrophages (17). Phospholipase C 
(PLCγ) involved in the mitogen-activated protein kinase 
(MAPK) pathway adheres to the phosphorylated Tyr1169 of 
VEGFR-1 for regulation of endothelial cell proliferation (39, 
40). The p85 subunit of phosphoinositide 3-kinase (PI3K) has 
also been reported to bind to the activated and phosphorylated 
VEGFR-1 (41).

The VEGFR-2 expression is detected in not only vascular 
endothelial and lymphatic endothelial cells, but also 
megakaryocytes and haematopoietic stem cells (42). In 
VEGFR-2 knockout mice, there were defects in vasculogenesis 
and haematopoietic development, resulting in death at 
embryonic stage 8.5-9.0 (43). These results show that VEGFR-2 
acts as a positive signal transducer in growth and differentiation 

of endothelial cells. Consequently, these findings indicate that 
VEGFR-1 and VEGFR-2 collaborate in the regulation of 
vascular formation as a negative and positive regulator, 
respectively (17). Among the autophosphorylated tyrosine 
residues in VEGFR-2, phosphorylated Tyr1175 leads to 
binding of PLCγ, which stimulates the MAPK pathway 
involved in the regulation of DNA synthesis, and binding of 
PI3K involved in cell survival (17, 44). It has also been 
reported that Tyr951, another phosphorylated residue in 
VEGFR-2, leads to adaptation of T cell-specific adapter (TSA), 
which regulates actin stress fiber organization and migratory 
responses of endothelial cells by associating with the 
cytoplasmic tyrosine kinase Src (Fig. 3) (45). VEGFR-3 is 
primarily expressed in lymphatic endothelial cells, and 
activation of VEGFR-3 by interaction with VEGF-C results in 
proliferation, migration, and survival of lymphatic endothelial 
cells. Additionally, VEGFR-3 plays an essential role in the 
development of the vascular network and the cardiovascular 
system during embryonic development (46, 47). There are five 
tyrosine phosphorylation sites in the VEGFR-3 kinase domain, 
and the receptor mainly mediates activation of the MAPK 
pathway (17, 48).

ANGIOGENESIS AND ANTI-ANGIOGENIC THERAPY 
IN CANCER

Uncontrolled cell growth and proliferation cause cancer, one 
of the most common diseases in humans. There are several 
biological hallmarks of cancer, including self-sufficiency in 
growth signals, insensitivity to anti-growth signals, evading 
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apoptosis, limitless replicative potential, sustained angiogenesis, 
tissue invasion and metastasis, abnormal metabolic pathways, 
evading the immune system, and genome instability (49). 
Blood vessel growth is essential for the growth and metastasis 
of solid tumors; thus, angiogenesis is considered one of the 
most critical targets for investigation of tumor therapy (50). The 
VEGF-VEGFR system is known as a primary regulator of tumor 
angiogenesis, and inactivation of the system has been reported 
in a variety of human diseases such as tumor angiogenesis, 
tumor-dependent ascites formation, metastasis, and inflammatory 
diseases including rheumatoid arthritis, rheumatoid psoriasis, 
hyperthyroidism and atherosclerosis (3, 18). VEGFR-1 may 
contribute to pathological angiogenesis by stimulating the 
activation of endothelial cells and the recruitment of bone 
marrow progenitor cells (51, 52). Additionally, sVEGFR-1 
expressed in the trophoblast layer is a splice variant of 
VEGFR-1, and may play a critical role in the formation of a 
regulatory barrier against abnormal vascular permeability and 
abnormal angiogenesis (11). The finding that artificial 
overexpression of sVEGFR-1 in a pregnant rat model induces 
hypertension and proteinuria strongly suggests that increased 
sVEGFR-1 is a crucial causative factor of the preeclampsia 
symptoms (hypertension and proteinuria) (53). VEGFR-2 has 
also been directly linked to tumor angiogenesis and blood 
vessel-dependent metastasis. Specifically, VEGFR-2 is up-
regulated under the hypoxic stress that occurs during the rapid 
growth of tumor cells (11). Either dysfunction or increased 
activation of VEGFR-3 can be involved in human pathological 
conditions. Inactivation of VEGFR-3 can aggravate congenital 
lymphedema that results from decreased transport capacity of 
the lymphatic vessels and features chronic and disabling 
swelling of tissues (54, 55). Another lymphedema caused by 
filariasis, trauma or infection may be treated with VEGF-C, 
alleviating the increased activation of VEGFR-3 (17). 

The VEGF-VEGFR system has been confirmed to be useful as 
a target of new drugs to suppress a range of diseases, 
particularly malignancies. There are several anti-angiogenic 
compounds including VEGF-neutralizing antibody (bevacizumab) 
and tyrosine kinase inhibitor (sunitinib and sorafenib), which 
inhibit growth and metastasis of tumors. When tumors show 
drug-resistance to standard cytotoxic therapy, anti-angiogenic 
compounds may be the ideal drugs for treating cancer patients 
(11). Bevacizumab is a humanized monoclonal antibody 
targeting VEGF-A that can selectively neutralize VEGF-A, but 
not other VEGF family members. The FDA approved 
Bevacizumab in 2004 for the treatment of cancer. However, it 
was withdrawn in late 2011 because it has no clear efficacy 
data on overall survival in large-scale phase III clinical 
researches such as E2100, AVADO and RIBBON-1 clinical 
trials (11, 56). Bevacizumab has some adverse effects that can 
be life-threatening, including hypertension, proteinuria, 
rhinorrhagia, thrombosis and bleeding (57). Additionally, 
certain cancers are resistance to bevacizumab through several 
mechanisms, such as the enhancement of alternative 

pro-angiogenic signaling pathways, recruitment of bone 
marrow-derived pro-angiogenic cells to the tumor, and 
increasing of pericyte in tumor (58). Sunitinib malate and 
sorafenib tosylate can selectively target some protein 
receptors, including VEGFRs, and inhibit their kinase activity. 
Moreover, they can be widely applied because they cause few 
adverse reactions (59). In addition, the development of other 
anti-VEGF-VEGFR drugs such as VEGF-Trap and humanized 
anti-VEGFR antibodies is consistently ongoing to overcome 
adverse drug effects. Recent studies suggest that VEGF 
pathway appears to be useful for prognosis of several cancers 
patients including breast cancer and is also conducted as the 
most critical pathway regulating liver and lymph node 
metastasis of breast cancer (60-62). Therefore, we can use 
VEGF-VEGFR system as a potential target of new drugs, and 
more detailed structure-based insightful information regarding 
the VEGF-VEGFR system is essential to improve the 
anti-angiogenic therapy for the improved quality of life of 
cancer patients.
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