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Simple Summary: Brain metastases (BMs) are the most common brain malignancy and are projected
to increase in incidence over the coming decades. Historically, brain metastasis studies have focused
on improving survival outcomes, but recently, the importance of evaluating health-related quality
of life (HRQOL) and cognitive function has gained recognition. Although there is a myriad of
validated HRQOL and cognitive assessments available in the radiation oncology clinic, there is an
urgent need to identify tools tailored to patients with BMs and to adopt a uniform set of tests that
measure HRQOL and cognition. This review presents various assessments for measuring HRQOL
and cognitive function, current recommendations to improve standardization, and treatments known
to preserve HRQOL and cognitive function.

Abstract: Brain metastases (BMs) account for a disproportionately high percentage of cancer mor-
bidity and mortality. Historically, studies have focused on improving survival outcomes, and recent
radiation oncology clinical trials have incorporated HRQOL and cognitive assessments. We are
now equipped with a battery of assessments in the radiation oncology clinic, but there is a lack
of consensus regarding how to incorporate them in modern clinical practice. Herein, we present
validated assessments for BM patients, current recommendations for future clinical studies, and
treatment advances that have improved HRQOL and cognitive outcomes for BM patients.

Keywords: brain metastases; radiotherapy; quality of life; cognition; cognitive function

1. Introduction

Brain metastases (BMs) occur in approximately 20% of all cancer patients and are the
most common brain neoplasm [1]. Survival outcomes are improving for Stage IV cancers,
which are unfortunately associated with higher BM incidence [2]. The life expectancy
of BM patients has increased due to advances in radiation treatment (RT) and systemic
therapy [3]; therefore, maintaining health-related quality of life (HRQOL) and cognitive
function during and after treatment are imperative. Many clinical trials have included
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HRQOL and cognitive function assessments, but there is not yet a standardized clinical
approach to assessing these patients in modern clinical practice. There is a pressing need to
(1) identify tools tailored to BM patients and (2) adopt a uniform set of tests that measure
HRQOL and cognition that will facilitate the design of high-quality studies that can improve
the lives of BM patients.

In this review, we highlight validated tools available for measuring HRQOL and
cognitive function, current recommendations to improve standardization and clinical
application, and advances in RT and systemic therapy that have improved HRQOL and
cognitive function.

2. Treatment of Brain Metastases
2.1. Radiation

Historically, whole-brain radiation therapy (WBRT) was the primary radiation treat-
ment for BMs. WBRT can treat local and distant intracranial disease through radiating the
entire brain, including the leptomeninges [4]. Patchell et al. demonstrated that the addition
of surgery to WBRT increases median overall survival (OS) and functional independence [5].
Subsequently, Patchell et al. reported that WBRT in the post-operative setting reduces
recurrence and neurologic death, but did not have a significant impact on OS [6].

The QUARTZ trial was a non-inferiority trial comparing outcomes in NSCLC patients
with BMs unsuitable for surgical resection or SRT, many of whom had poor performance
status, who received either optimal supportive care (OSC) plus WBRT or OSC alone [7]. In
this trial, patient-reported quality-adjusted life-year (QALY) (a measure of disease burden
accounting for quality and quantity of life lived) was designated as the primary outcome,
given the poor prognosis for their patient population. In their study, patients receiving
WBRT were reported to have significantly more episodes of drowsiness, alopecia, nausea,
and dry or itchy scalp. Although the younger patients (<60 yo) and patients with ≥5 BMs
groups appeared to attain improved OS (patients <60 yo had a HR of 1.48 (CI 1.01–2.16) and
patients with ≥5 BMs had a HR of 1.37 (CI 1.01–1.86)), there was not a significant difference
detected in the entire cohort. Chang et al. found that while combining SRS and WBRT
led to an improvement in PFS, there was a significant decline in learning and memory by
4 months compared to SRS alone [8].

Brown et al. also reported greater cognitive deterioration in patients receiving SRS and
WBRT versus SRS alone (91.7% vs. 63.5%) 3 months post-RT [9]. Li et al. conducted a phase
III randomized trial that also suggested cognitive function decline was improved with
SRS alone at 4 months, despite again a demonstration of improved OS [10]. Therefore, the
benefits of WBRT must be weighed against the risks of radiation-related toxicity (e.g., skin
erythema, alopecia, fatigue), as well as chronic adverse effects such as dementia, confusion,
and leukoencephalopathy [11].

In an effort to reduce radiation-induced cognitive deterioration, Brown et al. hypoth-
esized that hippocampal-avoidance WBRT (HA-WBRT) with memantine may prevent
neurocognitive toxicity. In NRG CC001, they found that hippocampal sparing significantly
reduced the risk of cognitive failure, as evidenced by less executive function deterioration
at 4 months and learning memory deterioration at 6 months. Further, patients receiving
hippocampal sparing plus memantine reported less fatigue, difficulty remembering, and
difficulty with speaking [12].

2.2. Surgery

Surgical intervention is important in the management of BMs. Early intervention
can relieve symptomatic mass effect and establish a diagnosis for patients with no prior
history of cancer [4]. Surgical candidates with a single lesion, good Karnofsky Performance
Status (KPS), and a limited number of extracranial metastases have improved survival out-
comes [5,13]. Gross total resection (GTR) is favored over subtotal resection with the caveat
that an aggressive resection is not likely to result in further neurological deficit [14,15]. An
en bloc resection (circumferential dissection along the brain–tumor interface) versus a piece-
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meal resection has been found to decrease the risk of local recurrence and leptomeningeal
dissemination [14,16,17]. More recently, intraoperative neuronavigation, cortical map-
ping [18], and convection-enhanced delivery [19] are techniques used to improve the GTR
rate and morbidity. Laser interstitial thermal therapy (LITT) is a procedure increasing in
popularity that involves neurosurgical stereotactic placement of a probe that kills tumor
tissue with heat [20,21]. In patients with BMs, avoiding functional neural tissue with this
targeted procedure should theoretically lead to less neurocognitive decline compared to
more invasive techniques [22]. A prospective trial reported patients that develop radiation
necrosis or recurrence benefit from LITT [23].

2.3. Systemic Therapy

Although systemic therapy is used to treat patients with disseminated disease, the
blood–brain barrier causes low rates of intracranial penetrance. Multiple studies have
reported that chemotherapy does not improve OS in BM patients that received WBRT [24],
although more recent studies have suggested certain cancer patient populations (e.g.,
NSCLC, breast, melanoma) may benefit [25]. Osimertinib, a tyrosine kinase inhibitor, has
been approved for patients with metastatic non-small cell lung cancer, the leading cause of
BMs [26]. Osimertinib has intracranial efficacy with acceptable toxicity [27]. Patients with
HER2-positive intracranial metastatic breast cancer have also benefited from targeted agents
such as tucatinib combination therapy [28]. Dabrafenib plus trametinib is another targeted
therapy for patients with BRAFV600-mutant melanoma that has demonstrated intracranial
response in patients with BMs [29]. A phase II study utilizing ipilimumab reported a
modest response for melanoma patients with BMs, but is currently not recommended as
standard treatment for larger or symptomatic BMs. Although these results are encouraging,
not all patients with BMs are eligible for these targeted agents. There is an ongoing debate
whether upfront systemic therapy is appropriate in lieu of established local therapies.

2.4. Symptom Control

Corticosteroids and antiepileptic agents are commonly used in BM patients for symp-
tom control. Dexamethasone is a common corticosteroid used to control peritumoral edema
and reduce elevated intracranial pressure (ICP) [30]. Asymptomatic patients typically do
not receive corticosteroids [31,32], but patients with more severe symptoms due to increased
ICP benefit from steroids [33]. The Quality of Life after Treatment for Brain Metastases
(QUARTZ) trial compared optimal supportive care (including dexamethasone) plus WBRT
to optimal supportive care alone in patients unsuitable for surgical resection or SRS [7]. This
study found that WBRT provided little additional clinically significant QOL or OS benefit
in this patient population. While dexamethasone may provide temporary symptomatic
relief, the American Society of Clinical Oncology and the Society for Neuro-Oncology
recommend corticosteroids should be tapered as rapidly as possible [34]. Ideally, steroids
should be tapered and discontinued within 2 weeks after initiation to avoid chronic steroid
use effects [31].

Seizures can occur in up to 25% of BM patients, but there is limited level 1 evidence
regarding the role of antiepileptic agents [35]. Results from meta-analyses suggest that the
use of antiepileptic drugs in patients without a seizure history provides no immediate or
long-term benefit in BM patients [36].

3. Radiation-Induced Cognitive Decline: Mechanisms of Action

Radiation is used to treat many primary brain tumors, BMs, head/neck cancer, and
leukemia/lymphoma involving the central nervous system. Months to years after radiation
exposure, many patients experience deficits in memory, spatial relations, visual motor
processing, quantitative skills, and attention [37,38].

Radiation-induced brain injury can either be acute, subacute (6 months post-RT),
and/or chronic [39] and remains an incompletely understood, yet active area of research.
A common presentation of acute RT injury is acute encephalopathy, which can result from



Cancers 2022, 14, 4301 4 of 17

a high dose per fraction (e.g., above 3 Gy per fraction) [40,41]. Subacute complications
include somnolence syndrome, defined by a group of symptoms including extreme drowsi-
ness, clumsiness, lethargy, and slow mental processing. These symptoms are concerning
because they can be irreversible and lead to progressive dementia [42]. Although cognitive
deterioration related to RT is multifactorial, a hypothesized large driving factor is the de-
crease in neurogenesis [43]. Neurogenesis occurs in critical regions of the brain such as the
subgranular zone of the hippocampus and subventricular zone of the lateral ventricles [44].

Historically, radiation injury was thought to arise through two mechanisms: radiation-
induced vascular injury and radiation-induced ablation of glial precursors. However,
neither hypothesis explains why most patients with significant cognitive deterioration lack
signs of overt vasculopathy or demyelination [45]. Another hypothesis proposes radiation
may damage the hippocampal granule cell layer, which undergoes neurogenesis.

The hippocampus has been identified as a prominent brain structure responsible for
consolidation and retrieval of newly learned information [46]. The hippocampus is located
in the ventromedial area of the temporal lobes, lateral to the temporal horn of the lateral
ventricle, and is composed of the dentate gyrus and the cornu ammonis [47]. Neural stem
cells are located in the subependymal zone and subgranular zone of the dentate gyrus and
are capable of self-renewal [48].

Preclinical studies demonstrated that neural stem cells are sensitive to ionizing radia-
tion. In a young adult rat, a single dose of 5 or 30 Gy caused apoptosis of neural stem cells
in the subependymal zone [49]. A subsequent study found a single 10 Gy dose, a clinically
relevant dose in humans, led to apoptosis in the rats’ dentate gyrus [50]. Monje et al.
demonstrated that the decrease in hippocampal neurogenesis is accompanied by alter-
ations in the microenvironment with an increase of microglia [51]. Even a dose of 2 Gy
to human neural stem cells was reported to lead to a decrease in cells undergoing neural
differentiation [52].

Although late toxicity data post-WBRT are limited due to the short median survival
time, clinicians have noted that bilateral and unilateral radiation injury of the hippocampus
led to deficits in learning and memory formation [53]. One study that evaluated 1-year
survivors of a single brain metastasis who received WBRT found no decrease in neurocog-
nitive function nor an increase in leukoencephalopathy if the fraction size was <3 Gy [54].
Another study by Sheline et al. found that a WBRT fraction size of 2.5 Gy was associated
with decreased risk of neurocognitive decline [39]. Although there is still a lack of consen-
sus, these findings collectively suggest the utilization of low-dose per fraction with WBRT
may be efficacious.

4. Measuring Quality of Life and Neurocognitive Function in the Radiation
Oncology Clinic

Historically, improving QOL was secondary to the goals of improving survival out-
comes in numerous clinical trials. Although there is still a focus on maximizing survival
outcomes, clinicians are recognizing that QOL and cognitive preservation are essential [55].
Measuring QOL is challenging due to the subjectivity of physical and psychosocial fac-
tors [56]. Additionally, many patients with BMs experience neurocognitive dysfunction at
the time of diagnosis; therefore, establishing an accurate premorbid baseline is often not
feasible, yet striving for a pretreatment baseline is essential. Researchers and practition-
ers in modern clinical practices have sought to design neurocognitive tests that balance
practicality (e.g., can be administered by staff who do not require neuropsychological
expertise) and sensitivity [8,57,58]. Below, the most common tools for measuring cognition
and quality of life are discussed, although this is not all-encompassing of all available
testing options for patients. Moreover, cognitive assessments are a burgeoning area of focus
internationally, where greater variability in educational attainment/language spoken make
this a particular challenge and area of great interest in neuropsychology.
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4.1. Patient-Reported Outcome Questionnaires
4.1.1. EQ-5D

The EQ-5D is a series of QOL questionnaires that have been validated as a tool for
cancer patients [59–62]. The questionnaires are brief and include items measuring mobility,
self-care, completion of usual activities, pain/discomfort, and anxiety/depression. On the
simplest form, items are simply marked as being present or absent, whereas on other forms,
patients can indicate symptom severity. There is also an item measuring overall perceived
health, rated on a scale of 0–100.

4.1.2. Functional Assessment of Cancer Therapy-General

The Functional Assessment of Cancer Therapy-General is a 33-item questionnaire that
was designed to measure QOL in cancer patients [63]. Symptom domains include physical,
social/family, emotional, and functional well-being. Each item is rated on a scale from 0 to
4, and some items are reverse-scored.

4.1.3. Functional Assessment of Cancer Therapy-Brain

A supplementary set of items, referred to as the FACT-Brain (FACT-Br), assesses neuro-
logical symptoms that can occur secondary to primary central nervous system tumors, such
as cognitive and sensory complaints [64]. Although the tool was originally designed for
patients with primary brain tumors, the FACT-Br demonstrated effectiveness for assessing
patients with BM [65].

4.1.4. EORTC Quality of Life Questionnaire

The EORTC QLQ-C30 is a questionnaire designed to assess the QOL of cancer pa-
tients [66,67]. This tool is a multi-dimensional HRQOL that is composed of six functional
scales (e.g., ability to walk, wash self), three symptom scales (e.g., shortness of breath,
trouble sleeping), and additional single-item scales. There is a variety of validated models
for specific disease sites (e.g., cervical cancer, colorectal cancer), including one dedicated to
brain cancer (EORTC QLQ-BN20). Numerous studies have utilized the QLQ-C30 alongside
the QLQ-BN20 for BM patients [68,69]. Other studies have suggested that the QLQ-BN20
in conjunction with the QLQ-C15-PAL (Core 15 Palliative) is an effective way to measure
QOL in BM patients with a lower question burden [70].

A summary of the patient-reported outcome questionnaires is outlined in Table 1.

Table 1. Tools for measuring QOL in BM patients.

Screening Tools Description Number of Questions/Time
to Complete

EQ-5D
Measures mobility, self-care, usual
activities, pain/discomfort, and

anxiety/depression [71].
5 questions, <5 min

FACT-G
Questionnaire measuring

physical, social, emotional, and
functional well-being [72].

33 questions, 10–15 min

FACT-Br Composed of the FACT-G and
brain cancer subscale. 50 questions, 15–20 min

EORTC QLQ

EORTC QLQ-C30 is used to
measure cancer patients’ physical,

psychological, and social
functioning [73]. Other forms are
available; EORTC QLQ-BN20 is

designed for brain
cancer patients.

30 questions, 10 min
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4.2. Neurocognitive Tests
4.2.1. Mini-Mental State Examination

The Mini-Mental State Examination (MMSE) is a popular tool for measuring neurocog-
nitive outcomes. This exam consists of 30 question items and can be completed in under
10 min [74]. This test measures orientation to time and place, short-term memory recall,
attention, working memory, language, and other basic neurocognitive skills. Although
large differences in MMSE scores can reliably indicate clinically significant deterioration in
cognitive function, it is often not a suitable tool for detecting changes in memory function,
executive function, and psychomotor speed seen in patients with brain tumors due to lim-
ited sensitivity [75]. In fact, in patients with primary CNS tumors, the MMSE was no more
sensitive to cognitive impairment than a coin toss [76]. Further, the RTOG 0214 demon-
strated the limitations of the MMSE. A phase III randomized trial compared non-small cell
lung cancer patients who either underwent observation or prophylactic cranial irradiation
(PCI) [77]. While the Hopkins Verbal Learning Test (HVLT) indicated deterioration in
memory, the MMSE demonstrated no between-group differences [78].

4.2.2. The Montreal Cognitive Assessment

The Montreal Cognitive Assessment (MoCA) is another widely utilized cognitive test
that assesses short-term memory recall, visuospatial abilities (clock drawing and copying
a three-dimensional cube), executive function, attention, language, abstract reasoning,
and orientation to time and place [79]. The MoCA was hypothesized to be an effective
cognitive assessment tool for brain tumors for the following reasons: (1) the MoCA has
greater sensitivity than the MMSE in capturing mild cognitive impairment; (2) the test is
less than 10 min (potentially increasing compliance); (3) the test is more extensive than the
MMSE (e.g., assesses attention, learning, and executive function at a greater depth) [80].
Olson et al. compared the MMSE and the MoCA and found that the MoCA had greater
sensitivity and better correlation with self-reported quality of life measures (61.9% vs.
19.0%, p < 0.005) [81]. Although this test has greater sensitivity than the MMSE, it may not
be an ideal screening tool for detecting small changes in cognitive function experienced by
patients with brain tumors [82].

4.2.3. Repeatable Battery for the Assessment of Neuropsychological Status

The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS)
consists of 12 subtests that assess immediate memory, visuospatial abilities, language,
attention, and delayed memory [83]. The test takes approximately 30 min to administer and
has two forms for serial testing. Historically, this test has been extensively used for patients
with dementia, multiple sclerosis, Parkinson disease, and other neurological disorders [84].
Although there is currently limited studies utilizing the RBANS in neuro-oncology, some
studies have found the RBANS to be an effective screening tool for patients with primary
brain tumors [85].

4.2.4. Trail Making Test

The Trail Making Test (TMT) is a timed neuropsychological test that assesses process-
ing speed and attention shifting. There are two parts to the test. Part A tests visual scanning
and sequencing; patients are asked to connect numbers 1–25 in ascending order, which
are scattered on a piece of paper. Part B tests attention shifting [86]; patients are asked
to connect numbers and letters in alternating sequencing in ascending and alphabetical
order, which are also scattered on a piece of paper. The test is scored based on completion
time (including time necessary to correct errors), balancing speed and accuracy. Although
this test was originally designed to detect cognitive impairment in dementia patients, it is
extensively used across patient populations, including BM patients [87].
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4.2.5. Hopkins Verbal Learning Test-Revised

The Hopkins Verbal Learning Test-Revised (HVLT-R) includes three learning trials
of 12 orally presented words, a 25-min delayed recall trial, and a recognition trial during
which patients are asked to identify words with a “yes” or non-target words with a “no”.
Over the past two decades, the HVLT-R has demonstrated reliability and validity across
clinical populations [88,89]. Numerous RT BM trials have utilized this test to assess the
effects of RT on neurocognitive function [8,78,90].

4.2.6. Controlled Oral Word Association Test

The Controlled Oral Word Association Test (COWAT) is a measure of verbal fluency.
During the phonemic fluency trials, patients are given three 1 min opportunities to state
as many words as possible that begin with a specified letter [91]. The test is scored based
on the summation of different words produced for all three letter trials. Error patterns
(e.g., repetition of a word) are also noted [92]. The resulting scores are useful in evaluating
patients with stroke, traumatic brain injury, and dementia, but have also demonstrated
sensitivity in patients with BMs [93].

A summary of the neurocognitive tests are outlined in Table 2.

Table 2. Tools for measuring cognitive function in BM patients.

Screening Tools Description Number of Questions/Time to Complete

MMSE Brief screen measuring mental status, including
orientation, language, memory, and other abilities [74]. 30 questions, 10 min [94]

MoCA

Assesses short-term memory recall, visuospatial
abilities (clock drawing and copying a 3-dimensional
cube), executive function, attention, language, abstract

reasoning, and orientation to time and place.

30 points, <10 min

RBANS Tests immediate memory, visuospatial abilities,
language, attention, and delayed memory. 12 subtests, 30 min

TMT Assesses visual scanning, graphomotor speed, and
executive function [95]. 2 tests, 3–5 min

HVLT-R Assesses verbal learning, immediate recall, delayed
recall, and recognition [96]. Various forms available.

12 items for 3 learning trials, a free recall and
recognition section, 10–15 min plus delayed

recall time

COWAT Measures phonemic verbal fluency [91]. 3 letters, 3 min total

5. Current Recommendations for Assessing HRQOL and Neurocognition

Neuropsychological evaluations are considered the “gold standard” for evaluating
cognitive function, especially for clinical purposes [97]. Neuropsychological evaluations are
particularly powerful given the flexibility of tailoring tests administered to assess specific
cognitive functions combined with patient-specific treatment recommendations rendered
based on each individual’s neuropsychological profile [98]. The primary drawback of
these assessments is accessibility, particularly for research purposes [99]. In the context
of research, specifically, there has been an effort to establish standardized neurocognitive
tests that can be completed in a reasonable amount of time with adequate sensitivity by
appropriately trained research staff.

The current recommendations for evaluating HRQOL and neurocognitive function
in patients with BMs stem from previous recommendations for patients with non-CNS
and glioma tumors; these recommendations are briefly discussed below to provide greater
context. The recommendations for patients with BMs are outlined at the end of this section.
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5.1. Patients with Non-CNS Tumors

The International Cognition and Cancer Task Force (ICCTF) has presented cognitive
test recommendations for patients with non-CNS tumors; these tests include the HVLT-
R, Trail Making Test (TMT), and Controlled Oral Word Association Test (COWAT) for
patients with non-CNS tumors [100]. When choosing specific tests, the ICCTF focused
on measuring learning and memory; processing speed; and executive function. The goal
was assessing cognitive domains that would be affected by chemotherapy (e.g., frontal
subcortical circuitry). Additionally, the ICCTF selected tests with adequate sensitivity that
require little overall time to administer.

5.2. Patients with a Glioma

The Response Assessment in Neuro-oncology (RANO) criteria suggest that the as-
sessment of clinical benefit or deterioration in low-grade gliomas should include cognitive
function tests and HRQOL (e.g., measuring symptom burden) [101]. To assess cognitive
dysfunction, they recommend using the MMSE to stratify patients at baseline. Additionally,
the RANO suggests utilizing a series of more sensitive neurocognitive tests (HVLT-R, TMT
(Parts A and B), COWAT) at baseline and at longitudinal follow-up time points. These tests
are designed to measure memory, executive function, and processing speed in a reasonable
timeframe (20–30 min). Regarding the measurements of HRQOL, the EORTC QLQ-C30
with QLQBN-20, EQ-5D-3L or -5L, or FACT-BR have each demonstrated robust psychomet-
ric properties and can be completed within 5-20 min [102,103]. The HRQOL questionnaires
should be administered before treatment initiation, at regular intervals during and after
treatment, and continued in the event of tumor progression [100,101,104].

5.3. Patients with Brain Metastases

For the patients with BMs, the RANO-BM and ICCTF recommend using the HVLT-
R, TMT (Parts A and B), and COWAT to assess neurocognitive function [105]. These
tests should be administered at various time points to distinguish acute versus long-term
treatment toxicity. Although neurocognitive tests do not always correlate with QOL, there
is evidence that neurocognitive decline is associated with a reduction in HRQOL and
ADLs [75]. To assess HRQOL in patients with BMs, the RANO recommends using the
following validated tools: the EORTC QLQ C30 and QLQ BN-20, FACT-Br, or EQ-5D-3L or
-5L. The RANO recommends clinical trials include endpoints of QOL and neurocognitive
function in later-phase studies.

6. Challenges Measuring and Interpreting Quality of Life and Cognitive Outcomes

From the early 2000s, neurocognitive tests post-RT have been included in randomized
control trials, but the actual impact of RT has been difficult to define due to the lack of
standardized measurements. There is also a lack of standardized HRQOL tools specifically
designed for patients with BM that measure important factors (e.g., well-being, pain, mood).

Existing neurocognitive evaluations and QOL measurements available for cancer
patients are typically lengthy, which may limit feasibility by increasing participant burden
in clinical trials. One study found the compliance rate was 56% at 6 months for cancer
patients completing self-reported QOL examinations [106]. Clinicians have recognized
the importance of using succinct tools to lower question burden for patients. Walker et al.
found the largest cause of missing data was administrative failure; they recommended
that studies monitoring QOL find avenues to minimize sources of missing data and record
reasons for non-compliance. Bae et al. evaluated patient factors associated with missing
data using a variety of brain cancer trials and found institutional error and request to
not be contacted were frequent causes for missing data, but a majority of cases were
unspecified [94].

Verhaak et al. conducted a systematic review of HRQOL outcomes for BM patients
who received SRS [107]. Although some studies reported stable HRQOL scores at the
group level, individual changes have been challenging to deduce given that test scores
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can remain constant in the event of improvement in some symptoms and declines in
others [108]. Furthermore, different questionnaires were utilized across studies (e.g., EQ-
5D, FACT-Br), leading to incongruent results; studies that used EQ-5D reported a decline
in physical HRQOL [109–111], whereas studies using FACT-Br reported stable scores over
time [112–114]. This lack of standardization prevents the pooling of study results for
meta-analyses.

The setting where the questionnaire is completed may also affect the results. In some
studies, follow-up questionnaires are sent via mail [112]. Although there is a possibility that
completing the forms at home could induce less stress or anxiety than in the hospital setting,
there is also a possibility that the patients will be influenced by others or not complete the
test correctly [107]. Patients may also lose the questionnaires and/or be unmotivated to
complete the questionnaires once returning home.

Furthermore, interpreting HRQOL data from patients can be complicated by a range
of other factors including the effects of non-radiation treatment (e.g., chemotherapy, im-
munotherapy, surgery), additional medication (e.g., steroids, anti-depressants), and dis-
ease progression.

7. Strategies for Improving Cognition and Quality of Life in Brain Metastases Patients
7.1. Omitting Whole-Brain Radiation Therapy

Although WBRT significantly improves tumor control after SRS, the utilization of
WBRT remains controversial due to its association with cognitive decline and decreased
QOL [8]. Brown et al. addressed this controversy by comparing cognitive deterioration at
3 months after SRS plus WBRT versus SRS alone [9]. In this randomized trial, patients with
1 to 3 BMs treated with SRS alone experienced less cognitive deterioration, better QOL, and
no difference in OS. These findings suggest patients with three or fewer BM may benefit
from the omission of WBRT.

7.2. Utilizing Stereotactic Radiosurgery

Compared to WBRT, SRS is highly precise with a sharp dose gradient and has the
ability to spare healthy brain tissue, reducing the risk of long-term toxicity [115,116].
Verhaak et al. conducted a systematic review of HRQOL in BM patients who received
SRS [107]. Of the nine reviewed studies, four reported stable HRQOL up to 12 months
following RT [58,112–114] and three studies found a decline in overall HRQOL. Several
of these studies noted a decline in HRQOL after disease progression. Serizawa et al.
conducted a multivariate analysis of patients undergoing SRS (up to 10 metastases) and
found that involvement of the temporal lobe, parietal lobe, and brainstem resulted in QOL
decline [117].

Bunevicius et al. conducted a prospective study evaluating QOL in BM patients who
underwent SRS [118]. QOL was measured using the EQ-5D index score, which found no
statistically significant change between the first and last post-SRS visit (first post-SRS visit
was at median of 2.59 months; last post-SRS visit was a median of 14.72 months). Predictors
of post-SRS QOL deterioration included a higher recursive partitioning analysis (RPA)
class, upfront WBRT, and greater intracranial disease burden.

SRS is an excellent option for suitable BM patients, which can result in cognitive
preservation with equivalent OS [119,120]. With the increasing availability of SRS and the
concerns regarding WBRT-related cognitive decline, more radiation oncologists are treating
BM patients with SRS [2,11]. Historically, SRS alone was used to treat 1 to 3 lesions, but
prospective trials suggest treating 5 to 10 lesions is also safe and effective [116].

7.3. Hippocampal-Avoidance Whole-Brain Radiation Therapy

WBRT has been associated with a decline in memory and patient-reported QOL [121].
Following reports of memory decline in WBRT patients, hippocampal avoidance using
intensity-modulated radiation therapy (IMRT) has been explored to reduce the radiation
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dose to the hippocampus [122,123]. The hippocampus is thought to contain cells necessary
for neurogenesis that are exquisitely radiosensitive [51].

The RTOG 0933 demonstrated superior cognitive preservation with hippocampal
avoidance [124]. The RTOG 0933 reported patients receiving HA-WBRT versus standard
WBRT had a mean relative decline of 7% and 30% at 4 months, respectively (p < 0.001).
Subsequently, the NRG-CC001 trial compared WBRT with HA-WBRT with both arms
receiving memantine post-RT [125]. Standardized neurocognitive function (NCF) tests
were performed at baseline, and the primary endpoint was time to NCF failure. The
HVLT-R, TMT, and COWAT were used to detect NCF failure. Neither treatment arm had a
significant difference in baseline NCF, OS, or intracranial progression-free survival, but the
time to NCF failure was significantly longer in the HA-WBRT with memantine arm.

Hippocampal sparing was also explored in patients undergoing prophylactic cranial
irradiation (PCI) by Redmond et al. [126]. Patients with small cell lung cancer (SCLC) were
prospectively evaluated for cognitive function and intracranial failure patterns following
hippocampal-sparing PCI and were found to have no significant decline in performance
on the HVLT-R, COWAT, and TMT between baseline and 12 months. More recently, the
PREMER phase III study evaluated the incidence of BM within the hippocampal avoidance
zone in SCLC patients receiving hippocampal-avoidance-PCI [127]. In this study, delayed
free recall was assessed using the Free and Cued Selective Reminding Test at 3 months.
The authors found that sparing the hippocampus led to less cognitive decline with no
differences in intracranial relapse, OS, and QOL compared to standard PCI. Finally, the
NCT01780675 phase III trial reported that patients with SCLC receiving HA-PCI did not
have an increase in BMs at 2 years or a lower probability of cognitive decline compared to
conventional PCI [128]. The NRG-CC003 is an ongoing phase II/III trial for patients with
SCLC evaluating whether HA-PCI (1) results in non-inferior intracranial relapse rates and
(2) reduces cognitive deterioration at 6 months compared to conventional PCI.

7.4. Fractionated Treatment

Accelerated hyperfractionation (AH) WBRT has been explored as an alternative to
accelerated fractionation (AF) WBRT for BM treatment. Theoretically, administering mul-
tiple daily fractions should decrease the tumor cell repopulation during RT without an
increase in late tissue toxicity [129]. To assess the effects of altered fractionation, the RTOG
91-04 compared AH-WBRT (54.4 Gy in 1.6 Gy BID fractions) with AF-WBRT (30 Gy in 3 Gy
fractions) in patients with unresected BM [130]. Regine et al. reported there was not a
significant difference in neurocognitive outcomes (measured by the MMSE), but acknowl-
edged the limitations of using a single global screening tool to measure neurocognition.
ALLIANCE A071801 is an ongoing trial comparing QOL in single versus fractionated
SRS to assess whether fractionation may decrease local failure (LF). Many validated tests
(e.g., FACT-Br, Linear Analog Self-Assessment (LASA) overall QOL) are used in this study,
which may detect differences in QOL outcomes caused by a hypothesized increased rate of
LF [131].

7.5. Neuroprotective Agents

Memantine is an N-methyl-D-aspartate (NMDA) receptor antagonist that has been
used as a neuroprotective drug for dementia [132–134]. Researchers became interested in
the utility of memantine as a neuroprotective agent for brain irradiation after promising
preclinical findings [135]. The RTOG 0614 found memantine may delay time to cognitive
decline and reduce the rate of decline in memory and executive function in patients under-
going WBRT [136]. The primary endpoint did not reach statistical significance, likely due to
significant patient loss, but the benefits of memantine have still led to widespread adoption
in the radiation oncology clinic. Investigators randomized patients to receive memantine or
placebo in addition to WBRT. Memantine was given daily with WBRT and afterwards for
a total of 24 weeks. The primary endpoint was preservation of cognitive function, which
was assessed with the HVLT-R at 24 weeks. Patients who received memantine experienced
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significantly longer time to cognitive decline (HR 0.78, 95% CI 0.62–0.99, p = 0.01). The
memantine patients also had superior COWAT performance at 16 weeks (−0.05 versus
−0.42, p = 0.038) and for the Trail Making Test Part A at 24 weeks (0.075 versus −0.37,
p = 0.014). Although reports show that memantine attenuates radiation-induced cognitive
decline, there is room for improvement (at 24 weeks post-RT, cognitive preservation was
31% with memantine and 20% with placebo). Attention-enhancing medications such as
methylphenidate and modafinil have failed to improve symptoms or QOL [137,138].

7.6. Cognitive Rehabilitation Training

Cognitive rehabilitation therapy provides exercises that are designed to improve vari-
ous domains of cognition: attention, memory, language, and executive function [139]. The
techniques that are utilized are retraining (repeating targeted exercises) and compensation
(patients are encouraged to create goals that increase functionality) [140]. Studies have
found that patients with brain-tumor-related epilepsy with cognitive deficits benefited from
cognitive rehabilitation training [141]. Notably, Maschio et al. found short- and long-term
verbal memory significantly improved with training. Neurocognitive rehabilitation has
shown to be effective for patients recovering from chemotherapy, bone marrow transplant,
or as a part of cancer survivorship [142–145]. Historically, rehabilitation might not have
been presented to many brain metastases patients given the quick decline following diag-
nosis and short life expectancy. However, with new radiographic and system therapies
demonstrating promising life extension, this is an important future area of inquiry. There is
one known study prospectively evaluating neuropsychologic rehabilitation for patients
receiving radiation for brain metastases (NCT05503251).

8. Conclusions

BMs are currently the most common brain tumor in adults and are projected to increase
in incidence as systemic therapies and other treatment modalities improve. When BM
patients are introduced to treatment options, studies have found patients rate HRQOL
among the most important factors when making treatment decisions [107]. Historically,
clinical studies have focused on increasing survival outcomes; only in recent decades
have studies incorporated endpoints for neurocognitive function and HRQOL. As clinical
trials are initiating the inclusion of these measurements, there is a need to harmonize the
instruments used across studies. We are now equipped with validated tools to measure
cognitive function and HRQOL for patients with BMs and, therefore, should design later-
phase trials to include a standardized battery of tests that have potential for adoption in
both the academic and community setting.
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