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SUMMARY

Quantification of odor emissions in wastewater treatment plants (WWTPs) is key
to minimize odor impact to surrounding communities. Odor measurements in
WWTPs are usually performed via either expensive and discontinuous olfactom-
etry hydrogen sulfide detectors or via fixed electronic noses. We propose a
portable lightweight electronic nose specially designed for real-time odor moni-
toring in WWTPs using small drones. The so-called RHINOS e-nose allows odor
measurements with high spatial resolution, and its accuracy is only slightly worse
than that of dynamic olfactometry. The device has been calibrated using odor
samples collected in a WWTP in Spain over a period of six months and validated
in the same WWTP three weeks after calibration. The promising results obtained
support the suitability of the proposed instrument to identify the odor sources
having the highest emissions, which may give a useful indication to the plant man-
agers as regards odor control and abatement.

INTRODUCTION

Odor annoyance due to industrial gas emissions from wastewater treatment plants (WWTPs) is a recurring

problem that is difficult to manage properly, partly due to the lack of appropriate instrumentation to accu-

rately quantify odor concentrations in situ and in real time (Bourgeois et al., 2003; Lebrero et al., 2011; Van

Harreveld, 2012). Such measurements are key to regularly verify the efficiency of odor abatement systems

(Munoz et al., 2010), identify the main odor sources within the plant (Zarra et al., 2008), and predict off-site

impacts based on atmospheric dispersion models (Naddeo et al., 2012; Stuetz and Frechen, 2001). When

odors are exclusively measured by olfactometry (human panels), the high cost and discontinuous nature of

this technique inevitably leads to an insufficient number of measurements to provide a representative char-

acterization of the odor emissions. When instrumental measurements are based only on surrogate odor

parameters, such as hydrogen sulfide (H2S) or ammonia (NH3), the presence and non-linear interactions be-

tween the different odorants in the mixture are ignored, leading to poor correlations with the odor concen-

tration (Cangialosi et al., 2018; Franke et al., 2009; Lehtinen and Veijanen, 2011; Stuetz and Frechen, 2001).

Among the different ways to express odor concentration, in this article we will use the ‘‘European odor units

per cubic meter’’ðouE $m�3Þ as per the European standard EN13725:2003 (CEN, 2003).

Electronic noses (e-noses), also called sensor arrays or instrumental odor monitoring systems (IOMS), are

currently considered the most promising tools for environmental odor monitoring (Bax et al., 2020; Capelli

et al., 2014). An e-nose is a chemical measurement system based on an array of unspecific chemical sensors

(typically 5–20 sensors) with complementary sensitivities to a wide range of volatile organic compounds

(VOCs) and inorganic gases (Gardner and Bartlett, 1999). Most dominantly used sensors in the field of envi-

ronmental monitoring are metal oxide semiconductors (MOS or MOX), althoughmore andmore frequently

current systems include additional semi-specific sensors (e.g., electrochemical cells) for H2S or NH3 (Alferes

et al., 2017; Naddeo et al., 2016; Qu et al., 2008). By considering the odor mixture as a whole and not by its

individual components, e-noses can produce better correlation with the odor concentration than any other

instrumental method. For that, a pattern recognition (PR) algorithm must be calibrated with parallel olfac-

tometric measurements to find the best possible mapping between the multivariate sensor signals (predic-

tors) and the olfactometric measurement (predictand). After the e-nose is calibrated, it can be deployed

on-site to continuously predict the odor concentration of new samples. The applicability of e-noses for

continuous odor monitoring has been demonstrated in different industrial scenarios, including WWTPs
iScience 24, 103371, December 17, 2021 ª 2021 The Author(s).
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(Alferes et al., 2017; Bottomley, 2010; Haas et al., 2008; Stuetz et al., 1998, 1999), landfills (Cangialosi et al.,

2018), animal farms (Romain et al., 2013), composting plants (Mantovani et al., 2011; Sironi et al., 2007), and

petrochemical plants (Zarra et al., 2021). In these cases, e-noses were typically installed at the outlet of odor

control systems (e.g., deodorization chimneys) to monitor their efficiency in real-time (Alferes et al., 2017;

Haas et al., 2008) or to provide continuous data to atmospheric dispersion models used to predict the off-

site impact (Bottomley, 2010). In some exceptional cases, e-noses have been installed at the plant’s fence

line (Cangialosi et al., 2018) or even at the receptors (Capelli et al., 2008).

While fixed e-nose installations are highly interesting because of the continuous odor measurements they

can provide, such measurements are only representative of a small measurement point located around the

e-nose inlet. This is not a problemwhen the e-nose is installed at the outlet of ducted (channeled) emissions

because the odor is confined in a small channel where the e-nose inlet can be conveniently placed. How-

ever, when the goal is to characterize the odor emissions in larger areas or in an entire plant, the highly

localized measurements provided by a fixed e-nose are clearly insufficient. In these cases, data from

many measurement locations are needed. An exhaustive coverage of an industrial installation using fixed

e-noses would be unfeasible because of economic and practical reasons. Not only because of the sheer

size of these facilities but also because an important part of the odor emissions come from area sources

(e.g., settlers, bioreactors, compost piles), which cannot bemonitored from a singlemeasurement location,

or from fugitive sources (e.g., leaks, openings in buildings, trucks loaded with sludge) that cannot be antic-

ipated. According to a relatively recent market study (Schwarzböck, 2012), costs for a commercial e-nose

system suitable for field monitoring range from 12 kV to 48 kV, or even more depending on the configu-

ration and additional devices (e.g., preconcentrators, filters, etc). An equal amount is typically required for

the initial calibration of the device. For software allowing data analysis, additional costs must be considered

(up to �10 kV or annual fees). Maintenance and recalibration costs must also be considered.

A low-cost and versatile solution that has not been seriously investigated for industrial odor monitoring is

portable e-noses. A portable e-nose is convenient because with a single device one could monitor the odor

concentration in several locations of the plant, thus saving costs and reaching measurement locations un-

suitable for fixed e-noses. For example, such an instrument can be used in walkover odor surveys whereby

many measurements are taken at different spatial locations with the resulting concentrations being plotted

on a map to provide a visual indication of the main odor hotspots and the sources having the highest emis-

sions in terms of odor concentration. This may give a useful indication to the plant managers on where to

concentrate their efforts for further monitoring or odor abatement. Until now, this type of map has been

only possible via H2S measurements with portable hand-held detectors (Stuetz and Frechen, 2001) or

with portable analyzers mounted on a drone (Burgués et al., 2021). The estimation of odor concentration

in the field with a portable e-nose is currently an open problem. One of the main reasons why portable

e-noses are rarely applied for field odor measurements is that the few commercial devices available in

the market are lab-based units mostly intended for quality control in the food, beverage, and perfume in-

dustries. Previous studies that evaluated the feasibility of these commercial systems for real-time odor

monitoring in industrial sites highlighted their poor performance when taken out of the laboratory (Jen-

nings and Cox, 2002; Nake et al., 2005; Schwarzböck et al., 2012). Long response times, sophisticated mea-

surement cycles requiring purging of the sensing chamber with reference to clean air, extensive sample

preparation, and influence of environmental temperature and humidity were some of the alleged

problems.

More promising results were obtained by Nicolas et al. (Nicolas et al., 2000) using a home-made e-nose for

the simpler task of odor classification in various industrial sites (WWTP, printing shop, paint shop, and

compost site). A discriminant analysis (DA) classifier trained with 52 odor samples and 25 clean air samples

was used to predict in real time the odor class as the e-nose was moved to various spots around these sour-

ces. Qualitative conclusions about the e-nose performance for this task were drawn based on the temporal

evolution of the discriminant functions. However, since no threshold was applied to the discriminant func-

tions to declare if an odor was present of not, the typical figures of merit for a classification problem (e.g.,

false positive rate, confusion matrix) were not reported in this study. The lack of a rigorous statistical vali-

dation of the calibration models and the associated figures of merit is a common pitfall of many research

studies involving e-noses (Boeker, 2014). Another weak point of these studies, also pointed out by Boeker

et al., is the use of oversimplified datasets that do not capture the challenging conditions of field sampling.

This has often led to overoptimistic claims about the potential performance of e-noses for in-situ odor
2 iScience 24, 103371, December 17, 2021



Figure 1. RHINOS e-nose (left) and base station (right)
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sensing, not supported by follow-up validation studies. Only in very exceptional cases the predictions by an

e-nose in the field have been validated with parallel olfactometric measurements. This is the case of the

work by Alferes et al. (Alferes et al., 2017) in which the predictions by a commercial fixed e-nose installed

at the outlet of a deodorization chimney in a WWTP were validated against nine olfactometric samples

taken along the six weeks following calibration. The excellent qualitative agreement between both mea-

surement methods, together with the fact that the main providers of environmental solutions are increas-

ingly deploying e-noses in WWTPs and other industrial sites, suggests that e-noses can be indeed useful

instruments for field monitoring.

Based on these motivations and in collaboration with one of the largest WWTP operators in Spain (Depu-

ración de Aguas del Mediterráneo), we have developed a portable e-nose for odor quantification in

WWTPs. The device, named RHINOS (Real-time HIgh-speed e-NOSe), can quantify odors in the range

50� 105ouE$m
�3 with an average prediction error of a factor of two of the dynamic olfactometry value. It

is lightweight (1325 g), low power (1 W), and integrates an on-board GPS receiver and wireless radio link

to allow stand-alone operations either as a hand-held device or mounted on a remotely piloted aircraft sys-

tem (RPAS) or small drone. In this article, we describe the architecture of the e-nose, the calibration and

validation of the odor quantification model, and preliminary experimental results of the RHINOS mounted

on a DJI Matrice 600 drone for a rapid assessment of industrial odors in a mid-sized WWTP in Spain.
RESULTS AND DISCUSSION

RHINOS electronic nose

The main outcome of the article is the portable e-nose RHINOS (Figure 1) tailored for real-time measure-

ments of odorous compounds in WWTPs. Its main specifications are given in Table 1. The sensor suite in-

cludes 21 gas sensors of three technologies (metal oxide semiconductor, electrochemical cells, and non-

dispersive infrared) targeting the main odorous compounds of WWTPs such as hydrogen sulfide (H2S),

ammonia (NH3), sulfur dioxide (SO2), mercaptans, amines, short fatty chain acids, and other VOCs (Stuetz

and Frechen, 2001). Two odorless gases, such as carbon dioxide (CO2) and carbonmonoxide (CO), are also

measured due to their link to bacterial activity (Park and Craggs, 2010) and organic waste degradation

(Haarstad et al., 2006), respectively. Environmental parameters such as temperature, relative humidity,

pressure, and flow rate are continuously recorded inside the sensing chamber to either compensate their

effect on the sensor signals (temperature and humidity) or detect failures in the fluidic system (pressure and

flow rate). Other elements of this e-nose are a GPS receiver, internal SD card for data logging, and long-

range point-to-point radio communication to send the measured data to a remote base station.

The internal architecture of the e-nose comprises electronic and fluidic subsystems (Figure 2). The elec-

tronic subsystem is based on a dual microcontroller (mC) architecture in which two mC are interconnected

through a universal asynchronous receiver-transmitter (UART) port using a master-slave configuration. The

master mC controls the electrochemical and NDIR sensors, the temperature, humidity, and pressure sensor,

the GPS receiver, and the radio communication (see Table 2). These gas sensors are individually calibrated

by the sensor manufacturer with temperature and humidity compensation via piecewise calibration func-

tions programmed in the e-nose firmware. Each sensor is plugged into an analog front-end (AFE) socket

which provides a complete signal path solution between the sensor and the microcontroller. The AFEmod-

ule manages the installed gas sensor and converts the analog output signal (voltage or current) to a digital
iScience 24, 103371, December 17, 2021 3



Table 1. Main specifications of the RHINOS e-nose

Parameter Value

Gas sensors 4 3 Electrochemical cells (EC) for NH3, H2S, SO2, CO

1 3 Nondispersive infrared (NDIR) for CO2,

16 3 Metal oxide semiconductor (MOX)

Other sensors Temperature, humidity, pressure, flow rate

Output signals Raw data + calibrated output ðouE $m�3Þ
Odor range 50� 105ouE$m�3

Prediction accuracya 50%–200% of reference value

Sampling frequency 1 Hz (GPS disabled); 0.2 Hz (GPS enabled)

Flow rate 1.8 L/min

GPS accuracy G3 m

Radio link ZigBee 868 MHz (point-to-point)

Radio range 2 km

Power consumption 1 W

Main (external) battery LiPo 3S 11.1V 5100 mAh

Internal battery LiPo 2S 3.7V 500 mAh

Autonomy 5 h of continuous measurements

Dimensions 15 3 25 3 10 cm3

Weight 1325 g (incl. battery)

aStandard deviation of relative errors in prediction
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calibrated value. For that, the AFE module uses an integrated analog-to-digital converter (ADC) and the

sensor-specific calibration parameters stored in a non-volatile EEPROM memory. The master mC periodi-

cally requests data to the slave mC through the UART interface, packs the received data with its own sensor

data and GPS location, and sends it to the base station via a point-to-point radio link (ZigBee 868 MHz pro-

tocol). Table 3 shows themetal oxide sensors included the slave board. The TGS 2602 has high sensitivity to

low concentrations of odorous gases, such as NH3 and H2S, which are the main markers of WWTP odors

(Stuetz and Frechen, 2001). The TGS 2611 is relatively selective to methane (CH4), a byproduct of the bio-

logical wastewater treatment processes (Campos et al., 2016). The TGS 2620 has high sensitivity to alcohols

and organic solvent vapors (e.g., ketones), which can be found in wastewaters from pharmaceutical, textile,

and paint-making industries (Modla and Lang, 2012).

Regarding the fluidic subsystem, all sensors are housed inside an optimized aluminum chamber with a

miniature design (96 cm3 internal volume) in which the gas sample is introduced at a constant flow rate
Figure 2. Block diagram of the RHINOS e-nose hardware architecture

4 iScience 24, 103371, December 17, 2021



Table 2. Specifications of electrochemical, NDIR and environmental sensors

Technology Range Accuracy Response time (T90)

Temperature Integrated �40 to +85�C G1�C <2 s

Humidity Integrated 0 to 100% RH G3% RH <2 s

Pressure Integrated 30 to 110 kPa G0.1 kPa <2 s

Flow rate Ultrasonic �33 to +33 L/min G3% m.v. <1 s

CO2 NDIR 0 to 5000 ppm G100 ppm <60 s

CO Electrochemical 0 to 100 ppm G0.5 ppm <20 s

H2S Electrochemical 0 to 20 ppm G0.1 ppm <20 s

NH3 Electrochemical 0 to 100 ppm G0.5 ppm <90 s

SO2 Electrochemical 0 to 20 ppm G0.1 ppm <45 s
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of 1.8 L/min by a diaphragm vacuum micropump sitting downstream of the chamber (Figure 3). The sen-

sors, connectors, and screws are surrounded with polytetrafluoroethylene (PTFE) thread seal tape to ensure

air-tight fitting. The chamber walls have been thinned to a fewmm thickness (except around the screws and

connectors) to further reduce the chamber weight to <200 g. All fluidic components are interconnected us-

ing PTFE tubing of 1/80 diameter. A digital flow sensor sitting at the inlet of the sensor chamber continu-

ously monitors the flow rate of the input gas stream to detect any potential problem in the fluidic system

(e.g., pump failure, gas leak, tubing obstruction).

The base station is a laptop computer with a USB antenna and a proprietary software with a graphical user

interface (GUI) that allows the operator to visualize the e-nose signals in real-time, log the measured data,

and plot the calibrated e-nose output ðouE $m�3Þ as a 2D odor concentration map (Figure 4). Wind infor-

mation coming from an in-situ anemometer can also be displayed. A button on the GUI allows the operator

to remotely activate an odor sampling device connected to the e-nose in order to collect odor samples into

polymer bags that can be analyzed by dynamic olfactometry to obtain ground truth for e-nose calibration

and validation.

Integration into a drone

The RHINOS e-nose has been especially designed to be used as a payload for small drones with limited

payload capacity. A lightweight custom-made mounting plate (180 g) allows an easy installation in most
Table 3. Specifications of the MOX sensors included in the slave board

Sensor Model Target gases Heater voltage

M1 TGS 2600 H2, CO, Ethanol 1.6 V

M2 TGS 2600 H2, CO, Ethanol 3.2 V

M3 TGS 2600 H2, CO, Ethanol 4.0 V

M4 TGS 2600 H2, CO, Ethanol 4.9 V

M5 TGS 2602 H2S, NH3, Toluene 1.6 V

M6 TGS 2602 H2S, NH3, Toluene 3.2 V

M7 TGS 2602 H2S, NH3, Toluene 4.0 V

M8 TGS 2602 H2S, NH3, Toluene 4.9 V

M9 TGS 2611 CH4, Hydrocarbons 1.6 V

M10 TGS 2611 CH4, Hydrocarbons 3.2 V

M11 TGS 2611 CH4, Hydrocarbons 4.0 V

M12 TGS 2611 CH4, Hydrocarbons 4.9 V

M13 TGS 2620 Alcohols, ketones 1.6 V

M14 TGS 2620 Alcohols, ketones 3.2 V

M15 TGS 2620 Alcohols, ketones 4.0 V

M16 TGS 2620 Alcohols, ketones 4.9 V

iScience 24, 103371, December 17, 2021 5



Figure 3. RHINOS sensingchamber hosting 21 chemical sensors and a combo sensor for temperature, humidity,

and pressure
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commercial drones (Figure 5). The piece, which is fabricated in acrylonitrile butadiene styrene (ABS) mate-

rial, can hold payloads up to 10 kg and can also accommodate an odor sampling device for in-flight cali-

bration and validation of the e-nose. As a proof of concept, we mounted the RHINOS into a DJI Matrice

600 drone for mapping the odor concentration in a WWTP. The inlet of the e-nose was connected to a

10-m PTFE tubing that hangs vertically from the drone to take samples without the influence of the turbu-

lent downwash region produced by the propellers (Figure 6). A small weight (�150 g) is attached at the end

of the tubing to keep it as stable as possible during flight. The required length of the tubing was deter-

mined by measuring the downwash with a hand-held anemometer placed below the fully loaded drone

during hovering at multiple altitudes. The delay introduced by the tubing in the sample transport to the

sensing chamber is compensated by the RHINOS firmware. The total weight of the payload including

the e-nose, the mounting plate, and the tubing is �1.8 kg.
Test site

A medium-sized WWTP in the south of Spain was used as the test site for the calibration and validation of

the RHINOS e-nose. This plant has an extension of 35,000 m2 and serves a population of 290,000 inhabi-

tants. The sampling was performed around the four most problematic odor sources known by the plant

managers: pretreatment building, settlers, bioreactors, and deodorization chimney (Figure 7). The latter

one is located on the ceiling of the sludge dewatering building and corresponds to a chemical scrubbing

tower (Alinezhad et al., 2019). This scrubber collects fumes from different parts of the plant (pre-treatment

stage, sludge dehydration, sludge thickener, sludge storage building, and sludge hoppers) and filters them

with a two-phase system involving NaClO and NaOH scrubbing (Chen et al., 2001; González-Sánchez et al.,

2008) to reduce the amount of H2S gas released to the atmosphere.

A total of 31 odor samples were collected from these sources in three measurement campaigns spanning a

period of 6 months (Table 4). Each source was sampled at three heights (0.5 m, 2 m, and 5 m) using a

remotely operated vacuum sampler with capacity for 10-L Nalophan bags mounted on the DJI Matrice

600 drone. The sampling was randomized to reduce the contaminating effects of potential nuisance vari-

ables (e.g., ambient temperature, wind, operating regime of the plant). The obtained samples were stored

in opaque containers and sent to a certified laboratory where they were analyzed by dynamic olfactometry

in less than 30 h, complying with EN13725:2003.

Dynamic olfactometry was carried out using a T08 olfactometer (Odournet GmbH) configured with the

‘‘yes/no’’ method and four panelists. The uncertainty of the olfactometry measurements was estimated

by the laboratory as a factor of two. After determining the odor concentration of a given sample, the re-

maining content in the bag was used for e-nose calibration and validation (See STAR Methods).
6 iScience 24, 103371, December 17, 2021



Figure 4. Graphical user interface (GUI) running on the base station
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E-nose response time

The response time is a key parameter of any mobile sensing system. The shorter the response time, the

faster the sensing instrument can move without degrading the spatial resolution of the measurements.

In an e-nose, the response time is normally dominated by the speed in filling and cleaning the sensing

chamber. We measured the filling and cleaning time of the RHINOS chamber (see STAR Methods). As

shown in Figure 8, a filling and cleaning time of �10 s can be observed in the signal of the miniPID con-

nected to the exhaust of the chamber. The response of the H2S electrochemical sensor, also depicted in

Figure 8, reveals a rise time for this sensor of �30 s regardless of the odor concentration, and a recovery

time ranging from 40 to 60 s depending on the gas concentration. Since electrochemical sensors are slower

than MOX and NDIR sensors, their response time will dominate the response time in our sensor array.
Dynamic olfactometry results

The odor concentration of the original and diluted samples obtained in the three campaigns is listed in Ta-

ble 5. For the original bags, it ranges from 40 ouE$m
�3 (bag 2-12, sample taken at 5 m above the
iScience 24, 103371, December 17, 2021 7



Figure 5. Integration of the RHINOS e-nose underneath the DJI Matrice M600 drone using a custom payload bay
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deodorization chimney) to 96,653 ouE$m
�3 (bag 2-4, sample taken at 50 cm above the bioreactor surface).

After diluting these bags, we had a total of 64 samples (56 odor samples +6 blanks) in the dataset. Among

these, 40 of them (first and second campaigns) were used for model optimization and the remaining 24

(third campaign) for external validation. In general, there is a good coverage of the concentration range

between 1 and 105ouE$m
�3 except in the range 104 � 105ouE$m

�3 which only contained one sample

(bag 3-8). The chosen sampling heights and the coarse granularity of the dilution device made impossible

to fill that concentration range with more samples.
E-nose calibration and validation

Figure 9 shows the sequence of presentation of the samples and the corresponding MOX sensor signals

during the first calibration experiment. A good correlation between the sensor responses and the odor

concentration of the samples can be observed. We can also observe a fast stabilization and baseline recov-

ery of the sensor signals, except for the highest concentrated odor sample where some of the sensors

reached their saturation level.

We now compare the e-nose predictions to olfactometry, and how a model based only on the H2S sensor

would perform (Figure 10). In the latter case we see a good correlation above 103ouE$m
�3 but limited

sensitivity below this value. Despite 93% correlation was obtained, the average prediction error in external

samples is 87% of the measured odor concentration. In contrast, the e-nose output has linear sensitivity in

the range 50� 105ouE$m
�3, higher correlation of 97%, and lower RMSEP of 51%. We can see that the worst

predictions occur at concentrations <50 ouE$m
�3 where the sensors operate near their LOD and dynamic

olfactometry is more prone to errors, and in the range 104 � 105ouE$m
�3 where the only available sample

was used for external validation. A Shapiro-Wilk test could not reject the null hypothesis of normal distri-

bution of the residuals in the logarithmic scale (5% risk). The bias between the e-nose output and dynamic

olfactometry is negligible and the 95% limits of agreement are [0.413, 1.973]. This intuitively means that

roughly 95% of the predictions made by the e-nose will fall within this uncertainty band, regardless of the

type of odor source. This is a remarkable performance considering that previous works reported major

problems with quantification of odors from more than one source with the same predictive model (Stuetz

et al., 1999). The performance obtained in our experiments is however difficult to benchmark against the

literature because none of the works we are aware of have ever quantified the prediction error of an e-

nose in external samples.
Sensor importance for prediction

We studied the importance of each sensor in the array for odor prediction by computing the VIP scores of

the PLSR model (Figure 11). Using the cut-off threshold of VIP = 1, the most relevant sensors are four spe-

cific sensors (mainly H2S and NH3, followed by SO2 and CO2 and a subset of four non-specific MOX sensors

(M1: TGS 2600 at 1.6 V, M3: TGS 2600 at 4.06 V, M6: TGS 2602 at 3.25 V, andM7: TGS 2602 at 4.06 V). The fact

that the best predictive power is achieved by a combination of specific and non-specific sensors agrees

with the results reported by Qu et al. during the analysis of samples from manure swings using a commer-

cial e-nose with 32 non-specific conducting polymer (CP) sensors and two specific detectors for H2S and

NH3 (Qu et al., 2008). They found that combining the signals of the specific detectors with a subset of 3
8 iScience 24, 103371, December 17, 2021



Figure 6. Final assembled system on flight using a 10-m weighted sampling tube
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CP sensors was more effective for predicting the odor concentration in external validation samples than

using the CP sensors or the external detectors independently (R-squared of 0.75 vs 0.51). In our experi-

ments, the combination may be advantageous because MOX sensors can compensate the reduced sensi-

tivity of electrochemical sensors in the low concentration range. In this way, the calibration model can give

more weight to theMOX sensors at low concentrations and rely more on the electrochemical cells at higher

concentrations. It is also worth mentioning the relevant contribution of CO2 sensor to the predictive model,

which may be due to the correlation of CO2 with bacterial activity in the biological treatment processes.

Regarding the importance of the different MOX sensor models included in the array, the TGS 2602 (targeting

H2S and NH3) and TGS 2600 (targeting ethanol and hydrogen) were considered the most relevant MOX sensor

models, which agrees with the results obtained by Oliva et al. in an odor classification problem where the TGS

2602 achieved the highest correlation with the studied odor classes (refining plant, municipal solid waste, and

coffee aroma) (Oliva et al., 2021). Regarding the operating voltage, it is surprising that the nominal voltage
iScience 24, 103371, December 17, 2021 9



Figure 7. Aerial view of the WWTP used as test site, with the main odor sources highlighted in different colors
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recommended by the manufacturer (i.e., 5 V) was not considered optimum for odor prediction in our dataset.

None of the TGS 2611 and TGS 2620 sensor units (sensitivity tuned to methane and organic solvents, respec-

tively) was considered important by the model, which makes sense as methane is odorless and organic solvents

may only be present in wastewater from specific industries such as painting houses.

Assessing which are the sensors with higher predictive importance not only allows for improving the model

performance (i.e., by refitting the model only with the selected variables, thus reducing the overfitting due

to noise generated by irrelevant features) but also to design tailored instrumental devices. In particular, the

information provided in Figure 11 is very useful to reduce the size, weight, and power consumption of future

versions of the RHINOS. Since MOX sensors dominate the power consumption of the e-nose, by removing

12 of them (i.e., the ones with lowest predictive power) we could save 75% of the power consumption, lead-

ing to an overall consumption of�250 mW. Also, a smaller number of sensors could allow for a smaller and

lighter sensing chamber with faster filling and cleaning time. The costs and maintenance of the e-nose will

also benefit from a reduced sensor set.
E-nose validation on the drone

Validation measurements with the RHINOS mounted on a small drone were carried out during the third

campaign. Figure 12 compares the real-time odor predictions made by the e-nose and the parallel olfac-

tometric measurements, both made at the same sampling location. In general, there is a good qualitative

agreement between both measurement methods. In 10 out of 13 olfactometric measurements (�75%), the

e-nose predictions lie within the uncertainty band of olfactometry. These results illustrate how important it

is to validate the e-nose in the field, as the correlation observed in the field (72%) was considerably lower

than the one obtained in the lab (97%). A drop in performance was expected because of the challenging

conditions of field operation, most notably the fact of applying a calibration model developed for

steady-state signals to predict odor concentration based on dynamic (transient) sensor signals. Nonethe-

less, the results are clearly better than our expectations. An interesting follow-up research question is if the

field performance of the e-nose could be improved by calibrating it with real-time transient signals

measured in the field rather than with steady-state signals obtained during exposure to odor bags.
Conclusions

This paper has described the design of a portable e-nose for real-time odor quantification and demon-

strated its application in a real WWTP. The developed prototype was able to predict real-time odor
Table 4. Sampling plan used to collect odor samples for e-nose calibration and validation

Campaign Date # Samples

Sources

BLK MHL PRE BIO SET SLT CHI

1 28/01/20 5 2 1 0 1 1 1 0

2 25/06/20 13 2 0 3 3 3 0 3

3 15/07/20 13 2 0 3 3 3 0 3

TOTAL 31 6 1 6 7 7 1 6

BLK, Blank; MHL, Manhole; PRE, Pretreatment; BIO, Bioreactor; SET, Settler; SLT, Sludge Thickener; CHI, Chimney.
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Figure 8. Characterization of the filling and cleaning time of the sensing chamber

The blue trace is the response of a fast (<1 ms) photo-ionization detector (miniPID) placed at the exhaust of the chamber.

The red, yellow, and purple lines are the responses of the H2S electrochemical sensor to three odor samples with

increasing H2S concentration (1, 5, and 20 ppm). The vertical solid lines at t = 1 min and t = 3 min indicate the start and end

of the odor exposure. (b) Is a zoom in of the area selected in the main plot.

ll
OPEN ACCESS

iScience
Article
concentration ðouE $m�3Þ in the field three weeks after calibration with slightly worse accuracy than the

reference method (dynamic olfactometry). This promising performance must be validated over longer

time periods and under different operating and weather conditions to gain more confidence into its suit-

ability for the intended application. Validation in other WWTPs would be also desirable to check the gener-

alization capabilities of the PLSR predictive model implemented in the e-nose. The results obtained in this

study encourages the development and application of portable e-noses to other industries concerned with

odor problems, such as landfill sites, composting plants or livestock farms (Capelli et al., 2014).

This study also demonstrated that odor quantification from drone-based measurements is feasible with a

dedicated e-nose and a sampling system that avoids the downwash from the propellers. Installing the e-

nose on a drone allowed measuring in dangerous and hard-to-reach measurement locations, such as

the deodorization chimney, without any human risk. The utility of drones for gas measurements was already

demonstrated in a previous work where we used the same drone equipped with electrochemical sensors

for mapping H2S concentration in a WWTP (Burgués et al., 2021). That work also demonstrated the poten-

tial capabilities of drone-mounted e-noses for odor source identification. The present work is the first re-

ported attempt of estimation of odor concentration from drone measurements, and we expect many

more works to come in this direction since the field of environmental gas sensing using small drones is

growing exponentially (Burgués and Marco, 2020). A ‘‘flying e-nose’’ can become a powerful tool for envi-

ronmental odor monitoring. In the short term, plant operators can use it for measuring odors in hard-to-

reach or dangerous locations, identifying the major odor sources in their plants, or for mapping the

odor concentration over vast (3D) areas. In a medium-term future, the above tasks could be carried out

semi-autonomously (with limited human intervention) or fully autonomously thanks to map-based (Burgués

et al., 2019) or bioinspired (Harvey et al., 2008; Lochmatter, 2010; Neumann et al., 2013) search strategies.

For that to become a reality, more research on techniques to improve the performance of low-cost gas sen-

sors is encouraged, especially in terms of response time, sensitivity (Dey, 2018; Wang et al., 2010), and po-

wer consumption (Burgués and Marco, 2018; Palacio et al., 2020).

In the longer term, portable e-noses could be used to obtain odor emission rates (OER), expressed in o.u./

s, needed to feed atmospheric dispersion models that can predict off-site impact (Schauberger et al.,

2011). While source-specific sampling methods, such as flux chambers, and complex mathematical models

are currently required to estimate OERs (Frechen, 2004), odor concentration data could be used in combi-

nation with measured flow rates from point-like (channeled) sources and complex micrometeorological

methods (Prata et al., 2021) to indirectly estimate OERs. This is an interesting line of research that is

currently far from being state-of-the-art.
Limitations of the study

The measurements presented in this paper were collected in a single WWTP during the first six months of

the year; therefore, it is not easy to state how the e-nose would perform in otherWWTPs or in other seasons.
iScience 24, 103371, December 17, 2021 11



Table 5. Set of bags used for calibration

Bag ID Date Source Distance

Odor concentration ðouE $m�3Þ
Original 1/10 1/100 1/1000

1–1 28/01/20 Bioreactor 0.5m 76,111 7,611 761 76

1–2 28/01/20 Sludge thickener 0.5m 6,222 622 62 6

1–3 28/01/20 Settler 0.5m 2,165 216 21 2

1–4 28/01/20 Influent manhole 0.5m 477 47 4.7 0.47

2–1 25/06/20 Settler 0.5m 9,742 974 97 –

2–2 25/06/20 Settler 2m 3,069 – – –

2–3 25/06/20 Settler 5m 304 – – –

2–4 25/06/20 Bioreactor 0.5m 96,653 9,665 966 –

2–5 25/06/20 Bioreactor 2m 2,896 289 – –

2–6 25/06/20 Bioreactor 5m 483 – – –

2–7 25/06/20 Pretreat 0.5m 3,444 344 – –

2–8 25/06/20 Pretreat 2m 323 – – –

2–9 25/06/20 Pretreat 5m 256 – – –

2–10 25/06/20 Chimney 0.5m 91,952 9,195 919 91

2–11 25/06/20 Chimney 2m 3,649 365 – –

2–12 25/06/20 Chimney 5m 40 – – –

3–1 15/07/20 Settler 0.5m 609 61 – –

3–2 15/07/20 Settler 2m 76 – – –

3–3 15/07/20 Settler 5m 91a – – –

3–4 15/07/20 Bioreactor 0.5m 1,722 172 – –

3–5 15/07/20 Bioreactor 2m 72a – – –

3–6 15/07/20 Bioreactor 5m 912 – – –

3–7 15/07/20 Chimney 0.5m 1,290 – – –

3–8 15/07/20 Chimney 2m 32,254 3,225 322 –

3–9 15/07/20 Chimney 5m 3,069b – – –

3–10 15/07/20 Pretreat 0.5m 362 – – –

3–11 15/07/20 Pretreat 2m 2,048 205 – –

3–12 15/07/20 Pretreat 5m 1,085 108 – –

aApproximated. Not enough volume in the bag to complete the required olfactometry rounds.
bApproximated. Content of original bag was transferred to a second bag due to presence of leaks.
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This is because the pattern of emissions in aWWTP is not stationary and there is large variability in the emis-

sions depending on process factors (e.g., quality of influent water and flow rate) but also on environmental

conditions (wind, temperature, humidity, precipitation, etc.). There are also seasonal trends. Thus, the re-

corded signals only represent the emissions during the time of sampling. Similarly, the emissions of two

WWTPs can differ substantially based on the kind of treatment technologies used, the origin of the

incoming water, the efficacy of the deodorization systems, and the influence of local temperatures and hu-

midity, among many other factors. Probably, a calibration model developed in oneWWTP will not produce

accurate predictions when directly applied to another WWTP with slightly different characteristics. Recali-

bration of the e-nose using ‘‘calibration transfer’’ samples from the new site could be necessary to achieve

good performance. The number of calibration samples can be reduced to a minimum using specific cali-

bration transfer methodologies (Fernández et al., 2016; Fonollosa et al., 2016; Rudnitskaya, 2018). However,

it is important to highlight that while those methods have been very successful in laboratory conditions,

only few examples of their performance in the field have been reported (Deshmukh et al., 2014), and as

far as we know they have not been yet applied to WWTPs.

On the other hand, due to the inherent drift and memory effect of low-cost gas sensors a calibration model

built and tested on the same site can degrade its performance over time even if the emissions and
12 iScience 24, 103371, December 17, 2021



Figure 9. Example of MOX sensor signals during the first campaign calibration experiment.
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environmental factors do not substantially change their characteristics (Bax et al., 2021). The reasons for

sensor drift are comprehensively explained by Korotcenkov et al. (Korotcenkov and Cho, 2011) and there

is an ample body of literature discussing drift counteraction techniques (Bax et al., 2021; De Vito et al., 2012;

Di Carlo and Falasconi, 2012; Fonollosa et al., 2016; Marco et al., 1998; Padilla et al., 2010; Rudnitskaya,

2018; Yan and Zhang, 2016; Yi et al., 2021; Ziyatdinov et al., 2010).

Two limitations associated with the use of dynamic olfactometry as the reference method for instrument

calibration is the high uncertainty associated to this technique and the limited number of samples that

can be measured with a reasonable budget. The uncertainty of the reference method imposes a lower

bound on the performance that can be achieved in the calibrated instrument. In the case of dynamic olfac-

tometry as per standard EN 13725:2003, a factor of two errors can be expected, at the very minimum, in the

predictions of any instrument calibrated against this method. The measurement uncertainty of olfactome-

try could significantly improve under the new olfactometric standard EN13725:2021 (to be published),

especially with the introduction of new practices, such as the use of a wider range of reference odorant

gases and paired environmental samples (Harreveld, 2021). It should also be noted that due to the inherent
A B

Figure 10. Rhinos output provides a better estimation of odour concentration than H2S concentration

(A) H2S concentration vs odor concentration (both in log scale). The solid lines represent polynomial fittings to the data. Blue crosses are calibration data and

red crosses are external validation data.

(B) RHINOS output vs odor concentration (both in log scale). Blue crosses are calibration data and red crosses are external validation data. The bias and limit

of acceptance (LoA) have been calculated using the Bland-Altman procedure. In both subplots, the indicated RMSEP and correlation are calculated with

external validation samples. Bias is represented by a discontinuous line. Perfect agreement is represented by a solid line. Limits of acceptance are

represented by a dotted line. Correlation with odor concentration improves using the full RHINOS output compared with a single H2S measurement.

iScience 24, 103371, December 17, 2021 13



Figure 11. Variable Importance in Prediction (VIP) scores of the 21 chemical sensors in the array

Sensors with VIP>1 are highlighted in red and considered relevant for prediction.
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instability of the calibration model of an e-nose, periodic recalibrations using dynamic olfactometry as

ground truth will be necessary during the lifetime of the device. A limited number of olfactometric samples

prevents the use of sophisticated calibration models, such as artificial neural networks (ANN), which could

potentially provide improvements over traditional models such as PLS (Zarra et al., 2019). One possibility to

deal with a low number of calibration samples is the use of semi-supervised learning (Zhu and Goldberg,

2009), by which a calibration model is trained with a combination of labeled and unlabeled samples. This

technique has been already applied to e-nose data with preliminary good results (De Vito et al., 2012; Liu

et al., 2014; Zhang et al., 2016).

The developed e-nose also has limitations for drone-based measurements because its response time (�30

s) limits considerably the speed at which the drone can fly. A response time on the order of 1 s would be

desirable if the drone has to cover large areas, as it could fly at a reasonably high speed of 5 m/s and still

produce maps with a spatial resolution of 5 m. Currently, the response time of most e-noses is dominated

by the filling time of the sensing chamber and the slow recovery time of MOX and electrochemical sensors.

The design of a miniaturized chamber in combination with a high flow rate pump is the most straightfor-

ward method to improve the response time. The size of the sensing chamber is often limited by the foot-

print of the sensors used, so using sensors with small footprint (e.g., MEMS) whenever possible is conve-

nient. The housing of the sensors is also another factor affecting the response time of the sensors, so

removing the sensor cap typically improves the response time considerably (Burgues et al., 2019). Beyond
Figure 12. Real-time odor prediction from the RHINOS on board of the DJI Matrice 600 drone compared to

parallel dynamic olfactometry measurements

The 95% confidence interval of dynamic olfactometry measurements is represented as a shadow rectangle.
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that, the response time of low-cost gas sensors can be further improved by signal processing (Di Lello et al.,

2014; Fonollosa et al., 2015; Martinez et al., 2019; Pardo et al., 1998).
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KEY RESOURCE TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

MATLAB https://www.mathworks.com Version R2019b

PLS toolbox https://eigenvector.com Version 8.7
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and/or reagents should be directed to and will be fulfilled

by Prof. Santiago Marco with email: smarco@ibecbarcelona.eu.

Materials availability

This study did not generate new unique reagents.

Data and code availability

Code: There are restrictions to the availability of code due to intellectual property policies by Depuración

de Aguas del Mediterraneo.

Dataset. There are restrictions to the availability of experimental dataset due to intellectual property pol-

icies by Depuración de Aguas del Mediterraneo

Additional information: Any additional information required to reanalyze the data reported in this paper is

available from the lead contact upon request.

METHOD DETAILS

E-nose fluidic response time

A key parameter of the fluidic system for real-time odor measurements is the time required for filling and

cleaning the sensing chamber. To characterize the fluidic time response inside the chamber we used a fast-

response photo-ionization detector (PID) with a bandwidth of 300 Hz (miniPID 200B, Aurora Scientific, Can-

ada) to monitor the exhaust of the gas chamber when odor bags of different concentration were connected

to the inlet of the e-nose.

E-nose calibration

For e-nose calibration we used the methodology defined by Capelli et al. (Capelli et al., 2008). Odor sam-

ples collected at the emission sources are first analyzed by dynamic olfactometry, and the remaining con-

tent in the bags is diluted at several factors to produce additional samples that serve to evaluate the e-nose

response in the lower concentration range. The odor concentration of these samples is equal to the dilution

factor multiplied by the concentration of the original bag (Micone and Guy, 2007). In our case, we used a

pre-dilution device (EPD, Olfasense) with two dilution factors (1/10 and 1/100) and standard deviation in the

dilution factor smaller than 5% (Olfasense GmbH, 2021). A third dilution factor 1/1000 was possible by

diluting a 1/100 sample with a factor 1/10. A quick analysis of the sensor responses to the diluted samples

of the first campaign revealed that it was meaningless to dilute samples beyond 50 ouE$m
�3, as this is

approximately the limit of detection (LOD) we observed in the e-nose signals. In a typical calibration exper-

iment, the e-nose is brought to the dynamic olfactometry laboratory and warmed up for approximately 1 h.

The human panel first analyzes the original odor bags, and the remaining content in the bags after the anal-

ysis is used to produce diluted samples. After these dilutions most of the original bags still had some con-

tent left that could be used for e-nose exposure. The original bags and their diluted versions is what we call

the calibration samples. These samples were presented to the e-nose in duplicate, first in random order

and then in decreasing and increasing order to check for a potential memory effect. Each exposure lasted
18 iScience 24, 103371, December 17, 2021
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for approximately 5 min, except for high concentration samples (i.e. >104ouE$m
�3) where the exposure

time was increased to 10 min to ensure that all sensor responses will reach the steady-state. The 21 sensor

values at the end of the exposure of each sample were the features used for model building. Blank samples

were interleaved between consecutive odor samples to let the sensors recover their baseline. The drift of

the sensor baseline between measurement campaigns was compensated by an additive correction based

on the response to a blank sample measured at the beginning of each campaign. A typical data collection

experiment took approximately 5 h, and the same process was repeated in each measurement campaign.

Partial least-squares regression (PLSR) (Wold et al., 1984) was the calibration model selected for predicting

the odor concentration based on the sensor signals, due to its proven robustness against multicollinearity

present in e-nose signals and its widespread use for multivariate data analysis in chemometrics. We used

MATLAB R2019b and the PLS toolbox 8.7 (Eigenvector Technologies, Manson, USA) for PLS modeling. The

logarithm was applied to the predictors (sensor data) and the predictand (odor concentration) to reduce

non-linearities and dynamic range of the input data.

The first two campaigns were used for model optimization and the third one for external model validation.

Model optimization was based on k-fold cross-validation (CV) (Efron andGong, 1983) with k=5. In each fold,

the available samples are split into two disjoint subsets: training and test. The training subset is used to

build models with different number of latent variables (LVs), and the test subset is used to evaluate the per-

formance of the models. We ensured that diluted samples coming from the same original bag were always

in the same data split as the original sample, as these are not independent samples. Thus, we avoided using

an original sample in the training set and its diluted version in the test set, as this will result in overoptimistic

performance and overfitting. The performance of the models during optimization was evaluated through

the root mean squared error in cross-validation (RMSECV). The RMSECV is the average RMSE across the

five CV folds, where the RMSE is computed as indicated in Equation 1:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i = 1

ðyi � by iÞ2
s

(Equation 1)

where n denotes the number of samples, and yi and by i are the true and predicted concentration for sample

i, respectively. Because in our case the predictions and the ground truth are in logarithmic scale, the RMSE

in Equation 1 represents a ratio of the original quantities (remember that log10(A)-log10(B) = log10(A/B)).

Therefore, we can express 10RMSE as a relative error ratio. The ‘‘knee’’ in the plot of the RMSECV as a func-

tion of the number of LVs was used to determine the optimum number of LV of the PLSR model. After that,

the model was refit using the optimum number of LVs and all calibration samples. ctand (odor concentra-

tion) to reduce non-linearities and dynamic range of the input data.

In order to study which sensors are more relevant for the PLSR model predictions, we used the variable

importance in projection (VIP) scores (Chong and Jun, 2005). VIP is a variable selection method that falls

within the category of filter methods (Mehmood et al., 2012). Filter methods assess the importance of

the predictors after model building and are generally implemented by defining a ranking criterion and

applying a threshold. The advantage of filter methods over wrapper or embedded methods is that they

do not require additional validation nor increase the adjustable model parameters (Cocchi et al., 2018).

They are also preferred when there are a limited number of samples or the goal is model interpretation

rather than obtaining the maximum possible performance. The idea behind the VIP measure is to accumu-

late the importance of each predictor, j, being reflected by the loading weights, w, for each component of

the model. The VIP measure for the jth predictor, vj, is defined as

vj =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
XA
a= 1

h
SSa

�
waj

�
wa

�2i,XA
a= 1

SSa

vuut (Equation 2)

where p is the number of predictors, SSa is the sum of squares explained by the ath component of the

model, and (waj/wa)
2 represents the importance of the jth predictor in the ath component. By definition,

the sum of squared VIP scores is equal to the number of predictors. Therefore, it is common to use as a

threshold a VIP score greater than 1 (i.e., larger than the average of squared VIP values), which means

that a selected variable will have an above-average influence on the model (Chong and Jun, 2005; Cocchi

et al., 2018). This criterion is very reasonable to discard irrelevant variables, while it may have drawbacks if
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used for assessing the significance of features (Cocchi et al., 2018); A predictor with a VIP score greater than

1 (one) can be considered important in a PLSR model.
E-nose calibration and validation

The third measurement campaign was used to externally validate the final calibration model with future

(unseen) samples. External validation with future samples is the only possible way to obtain a reliable char-

acterization of the e-nose performance due to the well-known issues of sensor drift, cross-sensitivity to

weather conditions, and temporal variability of odor emissions. This has been highlighted in two important

critique studies of the e-nose field (Boeker, 2014; Franke et al., 2009). Even with external validation samples,

it is not trivial how to compare the e-nose predictions to a reference technique (dynamic olfactometry) that

has large uncertainty. The most immediate approach is to compute the RMSEP (Equation 1) of the predic-

tions of external validation samples using dynamic olfactometry as ground truth. However, we must differ-

entiate between the real odor concentration and the odor concentration measured by olfactometry, which

has a large error that is typically quantified as a factor two of the true value (Boeker, 2014). When calibrating

an IOMS with dynamic olfactometry, this is a lower bound for the model uncertainty. This is very different

from traditional calibration, where known quantities are measured by a new method and the result

compared with reference measurements made by a highly accurate method. Therefore, the common

approach of comparing e-nose predictions to dynamic olfactometry based on the coefficient of determi-

nation (R-squared) or the correlation coefficient (r) is not recommended.

Instead, a very popular alternative to compare two measurement methods and evaluate if the new method

can replace the old one is the Bland-Altman plot (Bland andAltman, 1999). Bland-Altmanmethodology was

specifically designed to compare a new measurement technique with an established technique that is not

free of error. A plot of the differences between the output of the two methods versus the average value of

the measurements by both methods allows identification of any systematic difference between the mea-

surements (i.e., fixed bias) or possible outliers. The mean difference is the estimated bias, and the standard

deviation of the differences measures the random fluctuations around this mean. Bland-Altman provides

expressions for the so-called limits of agreement (LoA) at the 95% confidence level. The main question

for the final user is if the LoA are below a pre-established limit of acceptance. In our case, we used the

RMSEP and the LoA to quantify the performance of the PLSR model.
E-nose validation on the drone

In the third campaign, we also performed validation measurements with the drone in flying conditions.

Field validation is the only possible way to prove the usefulness of an instrument that will be operated in

the field. For that, we equipped the drone with the RHINOS e-nose) and made it hover at various heights

above the selected emission sources for around 1 min, with the RHINOS e-nose providing an odor concen-

tration estimate every 5 s. Parallel olfactometric samples were taken during this one-minute period for com-

parison. Since the e-nose generates 12 predictions in one minute but only a single olfactometric measure-

ment is obtained during the same period, the comparison between bothmethods is not straightforward. As

a workaround, we assessed the e-nose performance based on the percentage of time that the e-nose pre-

dictions fell within the uncertainty bands of the olfactometric measurements.
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