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Abstract: Pure bioactive compounds alone can only be exceptionally administered in medical treat-
ment. Usually, drugs are produced as various forms of active compounds and auxiliary substances,
combinations assuring the desired healing functions. One of the important drug forms is represented
by a combination of active substances and particle-shaped polymer in the nano- or micrometer size
range. The review describes recent progress in this field balanced with basic information. After
a brief introduction, the paper presents a concise overview of polymers used as components of
nano- and microparticle drug carriers. Thereafter, progress in direct synthesis of polymer particles
with functional groups is discussed. A section is devoted to formation of particles by self-assembly
of homo- and copolymer-bearing functional groups. Special attention is focused on modification
of the primary functional groups introduced during particle preparation, including introduction
of ligands promoting anchorage of particles onto the chosen living cell types by interactions with
specific receptors present in cell membranes. Particular attention is focused on progress in methods
suitable for preparation of particles loaded with bioactive substances. The review ends with a brief
discussion of the still not answered questions and unsolved problems.

Keywords: functional polymer; microparticle; nanoparticle; polymerosome; nucleic acid; protein;
targeted drug delivery

1. Introduction

In the most desirable situation, bioactive compounds, which are present in an ad-
ministered drug, should be delivered not only to a given tissue but precisely to selected
cells and often even to particular intracellular compartments. In addition, they should be
present there within a required concentration range for a given time. Such delivery assures
the avoidance of undesired exposure of healthy tissues to bioactive compounds. Delivery
of the bioactive substances to selected cells in chosen organs, which is commonly called
targeted drug delivery, requires carriers with sizes close to or smaller than cell dimensions.
Important constraints on properties of the polymer carrier particles are imposed by the
chosen administration route.

In the case of the quite often used oral drug delivery, the carrier and its contents
are exposed to very strong changes of pH, from strongly acidic pH = 1.5 in stomach, via
slightly basic pH = 8.5 in duodenum to almost neutral pH ranging from 6.30–7.49 [1].
Moreover, beginning from the oral cavity, the drugs are exposed to contact with digestive
enzymes. At such conditions, many biologically active substances cannot survive intact
and should be protected by the carrier. Design of carriers should take into account their
mobility in viscoelastic mucus toward mucosa lining the inner part of the small intestine
and colon. Diffusion of particles in mucus strongly depends on their diameters and
adhesive interactions with molecules constituting the mucus gel [2]. Nanoparticles (i.e.,
particles with equivalent diameters ranging from approximately 1–100 nm [3] which do
not bind to mucus by physicochemical interactions diffuse by standard Brownian motion.
Small microparticles (microparticles are defined as particles with equivalent diameters
in the range from about 0.1–100 nm [3]) with diameter of the order of mucus gel pores
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(about 0.2 µm) which are chemically inert toward mucus experience significant hindrance
from the gel mesh. Their movements are correlated with movements of mucus chains [2].
Movement of larger (>0.5 µm) microparticles which are chemically inert toward mucus
depends not only on the local fluctuations of mucus chains but to a great extent on mucus
movements in the larger scale. Thus, due to the hindered Brownian diffusion, the large
microparticles may not have enough time to cross the mucus layer toward the epithelium
due to the mucus clearance from the intestines.

The particles which successfully passed through the mucus barrier may either release
their bioactive payload next to the epithelium or cross the epithelium barrier. Bioactive
compounds released at the epithelium may cross the epithelium barrier in a similar manner
to the digested food components and eventually reach the bloodstream. Such a delivery
pathway is appropriate in the case of bioactive compounds, for which blood is the target
(e.g., insulin controlling glucose level in the blood). Transfer of drug carriers through the
endothelium is needed when the bioactive substance must be delivered predominantly to
particular loci. Active transport of nano- and microparticles across the epithelium occurs
mostly due to function of microfold cells (M-cells) and strongly depends on particle size
and physicochemical properties of the particle interfacial layer.

Transdermal delivery of particles loaded with bioactive compounds poses serious
problems due to the thickness and structure of skin constituting a less permeable barrier
than mucosa. Thus, transdermal delivery of macromolecules is ineffective without physical
support (e.g., microneedles, electroporation, electrophoresis, sonoporation, sonoporesis,
microjets, or laser), often combined with chemical permeability enhancers [4,5]. This
subject, however, is outside the scope of the present review and will not be discussed.

Pulmonary and nasal deliveries are very convenient and comfortable for patients [6–9].
In part, drug delivery mechanisms by these routes are similar to those of the oral route.
Namely, the particles must cross the mucus and mucosa barriers before they reach the blood.
However, due to the anatomy of the nasal cavity and lungs, particles with appropriately
tailored properties are required. It is worth noting that nasal delivery attracts special
attention because it contains the only site (olfactory region) where the central system
nerves are exposed in the mucosa layer, creating some hope for bypassing the blood–brain
barrier during drug delivery to the brain. The surface of the nasal cavity is approximately
160 cm2 (about 96 m2 taking into account microvilli). Unfortunately, the surface of the
olfactory region is close to 5 cm2 (about 0.3 m2 taking into account microvilli) [8].

One of the common routes for drug administration is by injection. There are various
kinds of injection procedures, which are chosen depending on drug physicochemical prop-
erties, drug functions, and target organs and tissues. The least invasive is subcutaneous
injection, very often used for vaccination. The abundant presence of capillary lymph vessels
(CLV) in skin and subcutaneous tissue facilitates drainage of vaccine containing nanopar-
ticles and their effective transport to lymph nodes (LNs). An uptake of nanoparticles by
antigen-presenting cells (APCs) starts a cascade of events directed toward development of
immune response [10]. Drainage of nanoparticles targeted to LNs, time of their residence
in these structures, as well as their uptake by APCs, final lysosomal escape, and cytosol
delivery may depend on nanoparticle size, shape, rigidity, and chemical composition of
their interfacial layer [10–15]. However, there are ambiguous opinions on the influence
of the abovementioned parameters and properties of nanoparticles on the efficiency of
immunization. Drug administration by intramuscular injection is very simple and opens
interesting opportunities. Muscles are responsible for creation of force and induction of
movement. To fulfill these functions they require an efficient supply of substances used as
sources of energy, such as glucose and oxygen. Both these compounds are transported by
blood and therefore muscles are strongly vascularized. Along with blood, side products
are also removed from the muscles. The latter function makes muscles an excellent can-
didate for the depositing of bioactive substances, which when entering the blood can be
transported over the organism. In the case of intramuscular drug administration there are
two mechanisms of drug distribution. According to the first one, the bioactive substance is
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gradually released from the biodegradable carriers introduced into the muscle and then
transported by blood to various organs and tissues. The carrier particles should be large
enough (about 10 µm or more) to stay in the deposition site. This mechanism enables
sustainable drug delivery during time controlled by microparticle degradation or drug
diffusion from it [16–21]. The second mechanism requires small nanoparticles (with diame-
ters usually lower than 100 nm), which together with their drug payload aggregate upon
injection or when injected are suspended in a substance-forming gel in situ [22,23]. How-
ever, often it remains unclear whether in this case the drug is released from nanoparticles
in the muscle or other organs, or whether drug-loaded nanoparticles are uptaken by blood
and the drug is released later. One of the important routes of drug administration consists
of intravenous injection. In this case the carriers containing the drug are instantaneously
introduced into the blood stream and very quickly distributed in the whole organism. The
ultimate localization of particle carriers depends on their specific interactions with cell
membranes of particular organs and on the relationship between blood vessel diameters
and diameters of drug carriers. The role of the first mentioned factor will be discussed in a
more detailed manner in the later part of this review. The role of the second factor is simple.
Organs with smaller diameters of capillary blood vessels are less accessible for the larger
particle carriers. On the basis of literature data (see Reference [24]) it was noticed that
particles with diameters exceeding 10 µm are too large to pass capillary blood vessels of
the majority of organs and their action is not very far from the injection site. Particles with
diameters in the range from 5–10 µm are preferentially captured in lungs; those with diam-
eters below 5 µm are efficiently eliminated from the blood by the mononuclear phagocyte
system. Particles with diameters ranging from 1–3 µm are captured in the spleen. Particles
with diameters from 0.1–1 µm are captured in the liver and nanoparticles with diameters
from 50–100 nm in bone marrow, respectively.

2. Polymers for Preparation of Drug Delivery Carriers

When polymer carriers reach the targeted tissue and release the bioactive substance,
the polymers should be eliminated from the organism. In turn, accumulation and prolonged
presence of foreign polymer material may cause various unwanted side effects such as
inflammation, clot and cyst formation, immune response, and others. In principle, there
are three basic pathways for polymer clearance. The clearance of polymer nanoparticles
with diameters ranging from six to several hundred nanometers proceeds effectively
by the hepatobiliary route [25]. The nanoparticles brought to the liver with blood are
endocythosed by hepatocytes, enter the bile duct via bile canaliculi, are delivered to the
digestive tract, and are eventually eliminated with feces. The hepatobiliary clearance
may require duration from a few hours to several weeks. For example, about 35% of
nanocapsules prepared from poly-L-lysine hydrobromide (Mw 15,000~30,000 g/mol) and
poly-L-glutamic acid (Mw 30,000~50,000 g/mol) were eliminated from mice within 24 h [26].
The second pathway is by renal route; the third one starts with polymer degradation.
Polymers removed by the renal method should be water soluble and have an upper limit
of molar mass of about 40,000 g/mol [27,28]. However, it is worth noting that it is not
molar mass that matters in renal clearance but the size of polymer chains or nanoparticles;
macromolecules with the same molar mass but a different chemical architecture may have
different dimensions. Generally, for efficient glomural filtration, hydrodynamic diameters
of polymer coils or nanoparticle size should not exceed 10 nm [29–31]. Degradation of
polymers with molar masses larger than the abovementioned upper limit leads to polymers
with shorter chains, which eventually may be small enough to be removed via kidney. It is
possible also, depending on the degradation mechanism, for degradation to yield small
molecules, which could be metabolized in the organism to CO2 and water. Rates of polymer
degradation depend on their chemical structure, crystallinity, size and shape of degraded
objects, temperature, and pH at which degradation takes place; however, the general
order of resistance to degradation is like the one shown in Scheme 1. The least stable are
carboxyanhydride groups, the most stable (with a few exceptions that are practically non-
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degradable) are C–C linkages. The exceptions are polycyanoacrylates, in which the presence
of electron-withdrawing –C≡N groups and ester groups may facilitate degradation. The
most important classes of synthetic and natural polymers used for preparation of drug
carriers are presented below, beginning with the ones that are most susceptible to hydrolysis.
It should be noted that copolymers and their modified derivatives, not pure homopolymers,
are used for this purpose.
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2.1. Polyanhydrides

The first reports on using polyanhydrides for fabrication of drug delivery systems
were published in the mid-1980s of the previous century [32–34]. These early studies
were mainly related to macroscopic drug-eluting implants. Hydrolytic erosion of these
implants proceeds at the surface, decreasing molar masses of polymers and producing
shorter chains with carboxylic acid groups at the ends (see Scheme 2). Obviously, acidic
and basic conditions facilitate hydrolysis of polyanhydrides of carboxylic acids.
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Later, several kinds of polyanhydride nano- and microparticle drug carriers were
developed [35–45]. Several of these studies were devoted to microspheres and microcap-
sules prepared from poly(sebacic anhydride) [38,39,44]. There studies also investigated
microparticles produced from other polyanhydrides such as poly(bis(p-carboxy-phenoxy)
propane) [35] and poly(fumaric anhydride) [36], copolymers of sebacic acid with car-
boxyphenoxypropane [35], 1,6-bis-p-carboxyphenoxy)hexane [40], and ricinoleic acid [42].
Polymeric micelles were produced by assembly of amphiphilic copolymers containing
hydrophilic poly(ethylene oxide) and poly(1,3-bis(p-carboxyphenoxy)propane) or poly(1,6-
bis(p-carboxyphenoxy) hexane) hydrophobic blocks (see Scheme 3) [41].
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It is worth noting that polyanhydrides produced exclusively by polycondensation of
diacids always bear carboxylic acid end-groups, which might be used for further polymer
modifications. Even in syntheses, in which monoacids are used as molar mass regulators
(see Scheme 3), the hydrolysis of controlled low fraction of anhydride linkages would
produce carboxylic acid end-groups.

2.2. Polycarbonates

Polycarbonates most often used for medical applications are obtained by ring-opening
(ROP) polymerization of ethylene carbonate (EC), trimethylene carbonate (TMC), and their
substituted derivatives. Copolymers of these monomers were also used. The first reports
on polymerization date to the early 1930’s of the previous century, when W.H. Carothers
and W.J. Van Natta published results of their studies on polymerization of EC, TMC,
and cyclic carbonates with larger rings [46,47]. Later, studies in this field enabled much
better understanding of cyclic carbonate polymerization and degradation of synthesized
polymers [48–55]. A comprehensive review on this subject was published by G. Rokicki [56].
Structures of ethylene carbonate, trimethylene carbonate, their substituted derivatives, and
relevant polymers are shown in Scheme 4.
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It is worth noting that depending on polymerization conditions, decarboxylation
accompanies propagation, leading to release of CO2 and formation of some amount of
ether linkages in polymer chains [57,58].

Degradation of polycarbonates consists of hydrolysis of carbonate linkages with
concomitant release of CO2 and subsequent depolymerization involving –CH2OH and
adjacent –OC(O)O– groups (see Schemes 5 and 6) [50,54].
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Schemes 5 and 6 show that degradation of poly(trimethylene carbonate) leads to
production of short chain oligo(trimethylene carbonate)s with –OH end groups, CO2, and
monomer. Any further hydrolysis of trimethylene carbonate yields CO2 and 1,3-propane
diol. Thus, products of degradation of polycarbonates are free from any acidic groups,
which when in contact with tissue may cause irritation or inflammation.

Literature from the last ten years contains many examples of drug carriers prepared
from polycarbonates and polycarbonate-containing copolymers [59–81].
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2.3. Aliphatic Polyesters

Aliphatic polyesters constitute a class of synthetic polymers most often used for prepa-
ration of degradable nano- and microcarriers of bioactive compounds. The polymers are
usually synthesized by ring-opening polymerization (ROP) of cyclic esters. An exception
is poly(β-butyrolactone), which could also be produced by bacteria in biotechnological
processes [82–84] or by copolymerization of propylene oxide and carbon monoxide [85–87].
Synthesis of this polymer in bacteria was developed on an industrial scale first by ICI and
Monsanto. Activity in this field has been continued by other companies. Structures of
polyesters most often used for preparation of drug carriers are shown in Scheme 7.
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Terminology of polylactide structure units is based on IUPAC recommendations [88].

It is worth noting that poly(β-butyrolactones) and polylactides contain chiral carbon
atoms in the main chains. Distribution of stereospecific units along the chains (polymer
microstructure) strongly affects polymer crystallization and eventually their hydrolytic
degradation. Water cannot penetrate crystalline phase; thus, polymer crystals are degraded
at the surface. In contrast, the diffusion of water into amorphous phase results in bulk
degradation. However, in both cases shorter chains equipped at one end with hydroxyl
and at the other one with carboxyl groups are produced.

Properties of aliphatic polyesters are tailored by using, instead of homopolymers,
copolymers of basic monomers. Only in the last two years, many kinds of aliphatic homo
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and copolymers have been used for fabrication of nano and microcarriers of bioactive sub-
stances. The microcarriers were prepared in the form of nanoparticles [89–94], polymeric
micelles [95–104], and nanocapsules [105].

2.4. Polyorthoesters

Polyorthoesters are polymers containing, in the main chain, orthoester groups, which
formally could be considered as esterification products of orthocarboxylic acid. Examples
of polyorthoesters are shown in Scheme 8.
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Polyorthoesters are hydrophobic [106–108]. Water penetrates into polyorthoesters
with difficulty; therefore, their degradation usually occurs at the surface. Products of hy-
drolysis contain mono-, di-, and multifunctional alcohols and carboxylic acid groups. Their
structures depend on the chemical structure of the particular polyorthoester. Examples are
shown in Scheme 9.
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Hydrolysis of polyorthoesters proceeds in two stages [107,108]. In the first one,
polymers with electrically uncharged alcohol and ester end groups and (in the case of
POE I) γ-butyrolactone are formed. These species could be eliminated via renal routes. In
the second stage, the subsequent hydrolysis of the remaining γ-butyrolactone yields low
molecular weight compounds with carboxylic acid groups.

In 2004, J. Heller indicated the possibility of using polyorthoesters for fabrication of
drug carriers by microencapsulation methods [109]. Later Ch. Wang et al. elaborated the
polyorthoester-based microspheres for DNA vaccine delivery [110].

2.5. Polyalkylcyanoacrylates

Polyalkylcyanoacrylates (PCA) are unique as materials for production of drug carriers.
In spite of the fact that main chains of PCAs contain exclusively carbon–carbon bonds,
these polymers may undergo degradation by unzipping depolymerization and parallel
repolymerization with formation of some new chains (see Scheme 10) [111]. It should
be noted that because chain scission and reshuffling by unzipping and repolymerization
yield polymers with the same main-chain and end-group structures, determination of
contribution of these processes to chain length redistribution is not easy. Nevertheless,
because chlorine end-capped poly(butylcyanoacrylate) is resistant to chain reshuffling by
unzipping and repolymerization, at least for this polymer, formation of chains with reactive
anionic chain-ends by chain scission does not seem very important [111]. It should also be
noted that the side ester groups in PCAs are prone to enzymatic hydrolysis catalyzed by
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esterases [112–114]. This results in the formation of water-soluble polyanionic polymers.
Provided that their molar masses are close to 40,000 g/mol or lower, the polymers could be
eliminated from the human organism via the kidney.
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Schemes 10 and 11 illustrate degradation of PCAs [111–114]. According to existing
opinion, the degradation by hydrolysis of ester side groups in vivo plays the predominant
role [115].
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Scheme 11. Enzymatic hydrolysis of ester groups in poly(alkylcyanoacrylates).

Poly(alkylcyanoacrylate) nanoparticles and nanoparticles containing copolymers with
poly(alkylcyanoacrylate) blocks were used as carriers of bioactive substances. Here we
cite only some original papers published during the last ten years [116–120] and some
comprehensive reviews covering this subject [121–126].

2.6. Biopolymers

Biopolymers comprise peptides and proteins, oligo- and polysaccharides, as well as
oligo- and nucleic acids and polynucleotides [127]. From these biopolymers only peptides
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and proteins and oligo- and polysaccharides are used for fabrication of drug nano- and
microcarriers. Nucleic acids from well-defined living organisms not only are too expensive
to be used on a large scale for drug encapsulation but, what is even more important, when
introduced into human tissue may cause some unwanted side effects. Proteins should also
be used with care for preparation of drug carriers (they may cause undesired immune
reactions). However, several of them, such as human serum albumin, silk protein fibroin,
gelatin, legumin, gliadin, 30Kc19, ferritin, and lipoprotein listed in the recent review were
used for preparation of nanocarriers of bioactive compounds [128]. Depending on chemical
structure, proteins contain various functional groups: amine (in arginine, lysine, and histi-
dine residues), carboxyl (in aspartate and glutamate residues), carboxyamide (in asparagine
and glutamine residues), hydroxyl (in serine and threonine residues), and thiol (in cysteine
residues). It should also be noted that proteins often contain various functional structure
elements created by the specific arrangement of protein chain fragments. A typical example
is human serum albumin used to complex drugs and other bioactive compounds [129–131].
Special attention attracted derivatives of relatively short polypeptides, particularly block
copolymers containing blocks of poly(ethylene oxide) and poly(aspartic acid); carboxyl
groups of poly(aspartic acid) could easily be modified and/or used for drug conjugation.
Depending on block length, they self-assemble into polymeric micelles. In spite of the
fact that the first paper on the aforementioned copolymers as drug carriers was published
by Kataoka et al. more than thirty years ago [132,133], studies in this field have been
developing especially fast in the last few years [134–137].

Polysaccharides and their derivatives constitute another important group of functional
biopolymer-related polymers used for fabrication of nano- and microcarriers of bioactive
compounds. In addition to hydroxyl groups, which are present in all polysaccharides,
some of them also contain carboxylic (e.g., alginate) or amine (chitosan) groups. Exam-
ples of chemical structures of polysaccharides often used in drug delivery systems [138]
are shown in Scheme 12. These examples include: alginic acid composed of blocks of
(1→4)-linked β-D-mannuronate (M) and α-L-guluronate (G) residues, chitosan containing
randomly distributed β-(1→4)-linked D-glucosamine and N-acetyl-D-glucosamine residues
(polysaccharide produced by partial deacetylation of chitin), cellulose containing β(1→4)
linked D-glucose residues and amylose—an important component of starch—composed of
α-D-glucose residues, bonded through α(1→4) glycosidic bonds.
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The list of polysaccharides used for preparation of drug carriers is continuously
growing. Today it also includes hyaluronic acid [139], xanthan gum [140], and additionally:
pectin, carrageenan, carboxymethyl cellulose, and dextran [138,141]. Some of them contain
sulfate anionic groups, such as chondroitin sulfate, carrageenan, porphyran, fucoidan, and
ulvan [141–143]. However, one should note that the hydrophilic/hydrophobic balance of
polysaccharides is controlled by modifications introducing hydrophobic groups [144].

Proteins and polysaccharides are quite resistant to hydrolysis at pH close to neutral.
Nevertheless, one should note that some of them (chitosan and its acrylated derivatives)
indicate certain instability of physical parameters during storage even of lyophilized dry
samples [145,146]. At low pH or by enzymatic catalysis (for dextran at pH 1.4 and 1.8 or
using dextranase), hydrolysis provides lower molar mass water-soluble samples suitable
for preparation of drug delivery formulations [147].

Degradation of proteins occurs mainly by enzymatic pathways, regardless of whether
in vitro [148] or in vivo [149,150]. Orally administered protein carriers are degraded by
digestive enzymes [149] whereas those introduced directly into the bloodstream enter cells
by endocytosis and undergo lysosomal degradation [142].

3. Preparation of Functionalized Nano- and Microparticles

There are two major strategies for the manufacturing of functionalized nano and
microparticles. The first one, based on dispersion and emulsion polymerization methods,
enables preparation of particles directly from monomers. The second one is based on
physical processes of self-assembly of homo and/or copolymer molecules or on special
particle-forming techniques (e.g., spray drying and microfluidics). The first strategy is
used very rarely for preparation of functional nano and microparticle drug carriers. We
discuss it very briefly for the sake of completeness only. The vast majority of nano and
microparticle drug carriers are prepared according to the second very versatile strategy
enabling the use of polymers with tailored chemical and physical properties.

3.1. Functional Nano- and Microparticles Prepared by Polymerization

The first papers on the direct synthesis of functionalized nano and microparticles
were published in 1994. P. Teyssié et al. reported on synthesis of polyester nanopar-
ticles by coordination copolymerization of ε-caprolactone and glycolide initiated with
ω-Al-alkoxide-poly(ε-caprolactone) macroinitiator [151]. Synthesis was carried out in THF
solvent, in which the THF soluble poly(ε-caprolactone) blocks ensured needed colloidal
stability of nanoparticle suspension. Slomkowski et al. described synthesis of poly(rac-
lactide) and poly(ε-caprolactone) nano and microparticles by ring-opening dispersion
polymerization of parent monomers. The polymerization was initiated with Et2AlOEt2
and carried out in 1,4-dioxane/heptane mixed solvents [152]. Colloidal stability of the par-
ticles was assured by addition of poly(dodecyl acrylate)-g-poly(ε-caprolactone) stabilizer.
Number average diameter (Dn) and diameter dispersity factor (ÐD = Dw/Dn, where Dw
denotes weight average diameter) of poly(ε-caprolactone) particles were 0.63 µm and 1.038,
respectively. For poly(rac-lactide) the abovementioned parameters were Dn = 2.50 µm and
ÐD = 1.15. The synthesized particles were functionalized by coating them with proteins
(human serum albumin and γ-globulin). Later studies revealed that better tailoring of
poly(dodecyl acrylate)-g-poly(ε-caprolactone) structure (using the stabilizer with a ratio of
Mn of poly(ε-caprolactone) grafts and Mn of the whole copolymer equal to 0.25) enabled
synthesis of poly(rac-lactide) microspheres with ÐD = 1.03 [153].

Synthesized polyester particles were built of macromolecules with only terminal re-
active hydroxyl end-groups. Therefore, for high molar mass polymers, the concentration
of hydroxyl groups in the particles’ interfacial layer is quite low, too low for many ap-
plications. This inconvenience was eliminated by controlled hydrolysis of the particles’
interfacial layer, yielding new shorter chains with hydroxyl groups at one end and car-
boxyl groups at the other end [154]. The hydrolysis was carried out for a controlled time
in ethanol containing a controlled amount of KOH and nonionic (Triton X-405) or ionic
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(sodium dodecyl sulfate—SDS, ammonium sulfobetaine-2—ASB) surfactants. Average
diameters of particles decreased during hydrolysis by not more than 5%. The particles
were colloidally stable in water. Presence of carboxyl groups in the interfacial layer enabled
functionalization of the particles with 6-aminoquinoline making their surfaces fluorescent.

3.2. Nano- and Microparticles by Self-Assembly of Functional (Co)Polymers

Nano- and microparticles were obtained in various precipitation processes from
premade amphiphilic block copolymers or homopolymers. The biomedical applications
impose several restrictions on particles, including colloidal stability in aqueous media.
Thus, the hydrophobic blocks (or polymer segments) forming a core of particles should be
surrounded by hydrophilic corona.

Nano- and microparticles could be obtained by various techniques yielding particles
with various sizes, size distribution, and morphology.

Usually, the process consists of dissolving amphiphilic block copolymer in organic
solvent or a mixture of solvents (in order to facilitate its solubility) and transfer of the
copolymer solution to an aqueous medium. The final particles’ architecture depends on
the method of addition, temperature, time of mixing, and interactions of polymer solvent
and non-solvent (e.g., their miscibility).

The particles were usually obtained by one of the following techniques [155–159]:

- Nanoprecipitation covering “classical” nanoprecipitation and “reverse” nanoprecipitation;
- Flash nanoprecipitation;
- Solvent evaporation/dialysis;
- Salting out;
- Miscellaneous methods including spray-drying.

Classical nanoprecipitation consists of a slow (dropwise) addition of solution con-
taining polymer dissolved in an organic medium to continuously stirred non-solvent,
which is miscible with solvent. The process results in fast mixing of solvent and non-
solvent. This results in polymer or copolymer self-assembly, yielding particles. Classical
nanoprecipitation usually produced micelles. In the “reverse” process the non-solvent
is added dropwise to the stirred copolymer solution. Nanoprecipitation sometimes pro-
duces nano- or microparticles with complex bicontinuous morphology of hydrophilic and
hydrophobic nanophases.

In flash nanoprecipitation, the polymer solution and non-solvent are introduced
(injected) from separate containers, with a controlled velocity, to a mixing chamber, within
ca. 1 millisecond. In flash nanoprecipitation, contrary to classical nanoprecipitation, the
uniform nucleation and growth of particles takes place. In consequence, the process yields
particles with vesicular or bicontinuous architecture [157]. The final particle morphology
depends on copolymer concentration and solubility of individual blocks of copolymer in
polymer solvent and non-solvent.

Nano- and microparticles were also obtained by dialysis of copolymer solution against
non-solvent miscible with solvent. During this process, solvent is slowly replaced by
non-solvent. Typically, the ratio of solvent and non-solvent volume is significantly lower
than 1 [158].

The alternative to the aforementioned precipitation methods is salting-out. In this pro-
cedure, the polymer and drug solution in organic solvent miscible with water is emulsified
in water containing a high concentration of salting-out agents such as sodium or magne-
sium chloride, sucrose, and often surfactant. The emulsion is added to a large volume of
water and formed particles are purified by cross-filtration. The method is useful for prepa-
ration of large amounts of drug-loaded nanospheres, but the product requires removal
of salts, which is tedious and time consuming. Another disadvantage of the salting-out
method consists of incompatibility of salts with biologically active compounds [155].

Preparation of particles by the spray-drying method consists of atomizing polymer
solution or dispersion in hot-air flow. The method, being very fast and efficient, is suitable
for manufacturing particles on an industrial scale. Unfortunately, control of diameters
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and diameter dispersity for particles prepared by spray-drying are not fully controlled.
Moreover, temperature of the nozzle of the spray-dryer is usually maintained close to
100 ◦C, which poses a problem for thermally unstable drugs.

The majority of the aforementioned methods require organic solvents for preparation
of the polymer solution. Traces of these solvents may be harmful when they remain in
drug-loaded particles. A few years ago, a new method was developed for fabrication
of poly(lactide-co-glycolide) drug carriers without using typical polymer solvents [159].
The method consists of three steps. In the first one, poly(lactide-co-glycolide) and the
drug were dispersed by homogenization in triacetin (1,2,3-triacetoxypropane) containing
poly(ethylene oxide) oligomers or Tween used as surfactants. This step yielded so called
“embryonic microspheres”. The primary dispersion was added dropwise to continuously
homogenized aqueous surfactant solution. The process produced microglobules dispersed
in a continuous phase. When the dispersion was injected into the buffer, the microglobules
hardened to solid particles. The drug release profile from these particles was predictable
and well controlled.

There are reports on preparation of nanoparticles in processes based on supercritical
carbon dioxide techniques, which facilitate removal of traces of organic solvents from the
product [160,161]. These processes are promising; however, they still require improvements
to assure better control of particle diameters and diameter distribution.

Morphology of nano- or microparticles obtained by self-assembly of macromolecules
depended on techniques chosen for their fabrication and was strongly affected by am-
phiphilic copolymer architecture. Topology and length of hydrophilic and hydrophobic
blocks were very important. The amphiphilic copolymers self-assembled into liposome-like
polymersomes, polymeric micelles, and microglobules composed of the polymer micelles
organized into more complex structures, e.g., cubosomes or hexosomes, schematically
shown in Figure 1.
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Figure 1. Arrangements of amphiphilic block copolymers in liposome (or polymersome), cubo-
some, and hexosome type particles. Particle morphology depends on symmetry/asymmetry of
hydrophilic/hydrophobic parts [156].

It is worth noting that particles with bicontinuous mesophases were formed by self-
assembly of linear di-, triblocks, combs, or multi-arm macromolecules. Morphology of
particles was induced by reduction of free energy by stretching the hydrophobic blocks in
polymersome bilayers or in cores of polymer micelles, interfacial tension between the core
and solvent, and repulsion of chains in hydrophilic corona.

The packing parameter P, describing the shape of individual macromolecules of
amphiphiles, is defined as follows in Equation (1):

P = V/aolc (1)

where V denotes volume of hydrophilic part, ao surface area covered by hydrophilic part
at hydrophilic–hydrophobic interface, and lc critical length of the hydrophobic segment
(minimal length required for amphiphilic copolymers to self-assemble) [162,163].
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It was noticed that with increased values of packing parameter the order of structures
formed by self-assembly of amphiphilic macromolecules was as follows: spheres, cylinders,
or triply periodic minimal surfaces, vesicles or lamellar structures, and corresponding
inverted structures.

Amphiphilic blocks’ ratio parameter (f ), defined as the ratio of molar masses of
hydrophilic and hydrophobic components of amphiphiles, was also used for prediction of
mesophase morphology in formed structures [163].

Authors of many papers reported on relations between the fraction of hydrophobic
blocks in linear amphiphilic diblock and triblock copolymers and formation of internal
bicontinuous mesophases in particles. For instance, bicontinuous internal architecture of
cubosome or hexosome type was obtained for polystyrene-b-poly(ethylene oxide) (PS-b-
PEO) for f in the range 0.057–0.091 [164]. Self-assembling of dendritic copolymers with
three PEG branches (bPEG-PS) with f in the range 0.054–0.197 yielded various bicontinuous
cubic microstructures. In particular, bicontinuous cubic structures were obtained for bPEG–
PS with PEG branches (bPEG) of Mn = 550 g/mol and for f parameter ranging from
0.071–0.078. However, the authors noticed that for f close to 0.05, the bPEG–PS copolymer
with Mn = 750 g/mol of PEG branches, the cubic structures with varied symmetries
were created. Other linear di- or triblock copolymers containing PS as the hydrophobic
component in their composition have been described.

Today, attention is more often focused on particles with non-spherical shape. However,
the role of particles’ shape in particle–cell interactions is still far from being sufficiently
well understood.

Synthetic routes for preparation of non-spherical nano- and microparticles depend on
many parameters, including interfacial properties of the emulsion droplets, size of particles,
separation of individual polymer segments within the copolymer droplet, and evaporation
rate of the solvent in which the copolymer was dissolved [165]. The detailed discussion
of non-spherical particle formation was presented in Reference [165]. It is worth noting
that knowledge of preparation and degradation of biodegradable non-spherical particles is
almost non-existent.

For targeted drug delivery, often nano- and microparticles are needed, which could
be preferentially bonded to particular cell types. Such particles should have appropriate
reactive groups able to react with selected cell receptors. However, very often shells of
nano- or microparticles do not contain chemical groups needed for further immobilization
of biologically active species. These surface reactive groups could be introduced during
particles’ synthesis by the addition of reactive surfactants, usually in amounts below 10%
of the monomer concentration or, less often, by using monomers containing chemical
species needed for further particle functionalization. The biological molecules used in
particles’ synthesis often contain amine, hydroxyl, carboxyl, thiol, guanidine, or imidazol
groups [166]. These functional groups on the particles’ surface enable the binding of
biologically active compounds specifically interacting with cell receptors.

The particles’ core is very often crosslinked via reversible bonding, which disrupts
under influence of pH change (usually pH in tumor tissues is acidic) or redox agents.

Table 1 contains representative examples of amphiphilic copolymers obtained via syn-
thetic routes (pos. 1–24) and natural polymers or their chemical modifications (pos. 25–31)
with or without functional groups; compounds used for preparation of nanoparticles.
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Table 1. Examples of synthetic and natural polymers/copolymers used for preparation of particles with/without functional
groups for drug delivery systems.

No. Chemical Composition Functional Chemical Group(s) Reference

Copolymers obtained exclusively via synthetic routes

1 Poly(oligoethylene glycol) methyl ether
methacrylate-co-poly(propyl methacrylate) –OH, –COOH [167]

2
Poly(diisopropylaminoethyl methacrylate)-

poly(ethylene glycol)-poly(methacrylphosphoryl
choline)

–OH, –PO4
2−, –N(CH3)3 [168]

3 Poly(D,L-lactides) and copolymers with PEO or
poly(2-methyl-2-oxazoline) –OH, –COOH (after hydrolysis) [169–171]

4
Poly(ethylene glycol) methyl
ether-Dlabile-poly(β-amino

ester)-Dlabile-poly(ethylene glycol) methyl ether
without reactive functions [172]

5

Poly(anhydride-co-imides): poly(trimellitic
anhydride-glycine/sebacic acid); poly(sebacic

anhydride); poly(sebacic anhydride) and
poly(1,6-bis-p-carboxyphenoxy)hexane

without reactive functions [39,40,173]

6 Polyglycerol-co-polycaprolactone –OH [174]

7

Poly(tetraethylene glycolyl poly(trimethylene
carbonate) grafted poly(2-nitrobenzyl methacrylate)

linked by disulfide bond)-co-(5-methyl-5-
propargyloxycarbonyl-1,3-dioxan-2-one);

poly(ethylene glycol)-b-poly(5-methyl-5-propargyl-
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14 Poly(3,4-dihydroxybutyric acid
carbonate) –COOH [176]

15
Poly(ethylene

glycol)-b-poly(5-allyloxycarbonyl-trimethylene
carbonate)
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16 Poly(ethylene glycol)-b-poly(4-(hydroxymethyl)
phenylboronic acid pinacol ester carbonate)
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Table 1. Cont.

No. Chemical Composition Functional Chemical Group(s) Reference

26

Functionalized chitosan-substitution of amine group
of chitosan’ monomer unit in oligosaccharide chain in

position R1:
leucine conjugated chitosan;

(5β-cholanic acid) glycol chitosan;
octanoyl functionalized chitosan;

thioglycolic acid conjugated chitosan;
urocanic acid functionalized amine group of chitosan;

position R1—salbutamol group;
position R2—guanidine group
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R2 = CH2CH2OH
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Table 1. Cont.

No. Chemical Composition Functional Chemical Group(s) Reference

30

Synthetic polymers copolymerized with
oligosaccharides:

Simple sugars conjugated with PEO-PPO;
Pullulan-b-poly(N-vinylpyrrolidone);

Alginate-g-poly(oligoethylene glycol methacrylate);
PDMAEMA-βCDs;

Poly(ethylene glycol)-bpoly(glycidyl methacrylate)
with βCD tags;

Folic acid-poly(6-O-methacryloyl-D-
galactopyranose)-b-poly(2-diisopropylamino)ethyl
methacrylate-co-pyridyl disulfide methylacrylate;

(a) –OH
(b) –OH

(c) –OH, –COO-
(d) –OH, –N(CH3)3

+Cl−

(e) –ethylene oxide, –OH
(f) –OH, –NH2, –COOH

[206–211]

31 Dihydrolipoic acid-poly(ethylene glycol) shell QDs
ended 4-formyl benzoyl group –CHO [212]

Chains of many types of amphiphilic copolymers contained functional group(s) at
one or both ends. These end-groups were usually formed by deactivation of propagat-
ing species after completion of the polymerization. However, for many applications,
copolymers containing a much larger number of functional groups were needed. Such
copolymers were obtained using monomers with protected functional groups. After copoly-
mer synthesis and deprotection of functional groups, the final products were obtained. For
example, many copolymers with functionalized polycarbonate blocks were synthesized
in this way (see Table 1, pos. 7–24). When functional groups were not reactive toward
propagating species, their protection before copolymerization was not needed (see Table 1,
pos. 7–10, 15, 17). Conjugation of synthetic polymers with natural poly and oligomers,
such as poly- and oligosaccharides, proteins, peptides, poly- and oligonucleic acids, intro-
duced such reactive groups as –COOH, –NH2, –OH, –NH2, –PO4

2−, –N(CH3)3 (Table 1,
Refs. [181–193,195,197,199,212]).

The aforementioned functional groups, when present in nanoparticles’ interfacial layer,
could modify nanoparticle–cell interactions and may be used for binding biomolecules,
specifically recognizing particular cells.

In some instances, whole copolymer blocks could be treated as “functional groups”.
For example, triblock copolymers composed of poly(L- and poly(D-lactide) side blocks func-
tionalized with 2-ureido-4-[1H]-pyrimidinone at both ends and central poly(trimethylene
carbonate) or poly(ε-caprolactone) block (see Scheme 13) were able to self-assemble with
formation of stereocomplexes of poly(D-lactide) and poly(L-lactide) into particles with
diameters ranging from 0.1–10 µm. In these copolymers, poly(D-lactide) and poly(L-lactide)
blocks could be treated as macro “functional groups” [169].

Functional groups could also be placed in precisely defined places on the copoly-
mer main chain. Scheme 14 shows a triblock copolymer containing poly(ethylene
glycol) side blocks linked to the central hydrophobic poly(β-amino ester) bearing
cholesterol labels via the pH sensitive benzoylimine moieties [172]. The cholesterol
groups were chosen to increase hydrophobicity of the central block and biocompatibil-
ity of the copolymer.

Self-assembly of copolymer chains yielded nanoparticles with poly(ethylene glycol)
shells, preventing their rapid elimination from the organism. Upon uptake by cells and
entry into lysosomes, the benzoylimine bonds are rapidly hydrolyzed and protecting
poly(ethylene glycol) shells are removed from the particles. As a result, the nanoparticles
free from the poly(ethylene glycol) coating can easily enter the cell nuclei.
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The copolymers listed in Table 1 were used for preparation of functional nanoparticles by
nanoprecipitation [39,76,80,81,171,174,207,210], reverse nanoprecipitation [78,79,167,169,179,209,
211], solvent evaporation/dialysis [60,61,63,64,66,70–75,168,170–172,178,184,185,194], salting-
out [189], freeze-drying [180,186], electrospraying [192,206], heat-denaturation [190,196,198],
and ionic gelation [197]. The nanoparticles were loaded with doxorubicin [60,64,66,71,72,74,
78–81,172,175,210,211], rhodamine B, p-nitroaniline, and piroxicam [172], gemcitabine [174],
Nile red [72,73], paclitaxel [63,70,175,184,208], tacrolimus [70], temoporfin [76], borte-
zomib [75], platinum [176], amphotericin B [178], sulfadiazine [61], prednisone acetate and
tegafur [180], carbazole [185], 10-hydroxycamptothecin [189], insulin [191], vaccines,
genes [191], L-leucine [192], levofloxacin [196], calcitonin [197], genes [198,199,201],
apolipophorin-III [200], imatinib [206].
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Nanoparticles formed by the self-assembling of some polymers (often polysaccharides)
are unstable and disintegrate under the influence of slight changes in their environment.
Stabilization of such particles was achieved by crosslinking their cores, shells, or both.
For crosslinking of nanoparticles, a method of alkene and thiol group coupling known as
thiol-ene Michael addition was elaborated. The method was originally used for binding
biological molecules, such as oligopeptides, proteins, and nucleic acids carrying sulfhydryl
groups to nanoparticles with alkene moieties [211].

A similar procedure was applied for stabilization of the shell of nanoparticles formed
by the layer-by-layer coating with alternated polyanionic and polycationic polymers. For
example, silica nanoparticles were coated with alternate multilayers of poly(methacrylic
acid) (PMA) and poly(vinyl pyrrolidone) (PVP) [213]. Each layer of PMA contained –SH
or alkene groups. After assembly of the nine polymer layers, the particles were irradiated
with UV light at 256 nm for 2 h, yielding crosslinks between PMA layers via thiol-ene
coupling. In the subsequent step, the particles were PEGylated, using the reaction of
PEG oligomer with maleimide end-groups and unreacted thiol-containing PMA (PMASH).
Thiolated PMA was prepared in the reaction of cystamine dihydrochloride and PMA.
The reaction was activated with N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide (EDC).
The free thiol groups of PMA were obtained by reduction of disulfide bridges with 1 M
dithiothreitol (DTT) at pH = 8 [213]. The ene functionalized PMA was obtained in the
reaction of 2-aminoethyl methacrylate hydrochloride (AEMH) and N-hydroxysuccinimide
(NHS) [213].

The reversibly crosslinked hydrophilic particles were obtained by self-assembly of
pullulan-b-poly(vinyl pyrrolidone) (Pull-b-PVP) copolymer [207]. Spherical particles with
bimodal diameter distribution (1 and 150 nm) were formed from Pull124-b-PVP263. The
particles were subsequently stabilized by oxidation of hydroxyl groups of pullulan to
aldehyde groups (with sodium (meta)periodate) followed by crosslinking of aldehyde
groups of neighboring chains by cystamine dihydrochloride (see Scheme 15). The particles
could be disintegrated by redox cleavage of sulfur bridge using tricarboxyethyl phosphine
(TCEP) at pH = 8 at 40 ◦C.
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Using a similar approach, multifunctional core-shell particles with crosslinked cores
were prepared from amphiphilic folic acid-poly(6-O-methacryloyl-D-galactopyranose)-b-
poly(2-(diisopropylamino) ethyl methacrylate-co-pyridyl disulfide methylacrylate) (FA-
PMAgGP-b-P(DPA-co-PDEMA)) denoted as FA-PM-g-DP block GAL-based copolymers.
The poly(2-(diisopropylamino) ethylmethacrylate (PDPA) units were pH-sensitive (pKa of
homopolymer was 6.3), whereas the poly(pyridyl disulfide methylacrylate) (PDEMA) units
with reversible crosslinks were pH/redox-responsive [209]. Formation of nanoparticles as
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the result of self-assembling and self-crosslinking of the FA-PMgDP copolymer is shown in
Scheme 16.
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Scheme 16. Schematic illustration of formation of nanoparticles loaded with doxorubicin by self-assembly of FA-PMgDP
copolymer. Explanations are in text.

Nanoparticles produced by self-assembly of alginate grafted with poly(ethylene glycol
methacrylate) alginate-(POEGMA) copolymers, facilitated by hydrogen bond formation
between carboxyl groups of alginate and ether groups of poly(ethylene glycol), were
reversibly crosslinked using CaCl2. The divalent Ca+2 cations, when interacting with
two carboxyl anions of alginate, functioned as weakly crosslinking species. Nanopar-
ticles loaded with doxorubicin and paclitaxel were obtained using the aforementioned
method [208].

3.3. Hybrid Inorganic and Organic Nano- and Microparticles by Multistep Functionalization of
Parent Particles

There are many types of inorganic (e.g., gold, magnetite, silica) and polymer nano-
and microparticles that in their original form do not contain functional groups. The groups,
which are needed for particles’ particular application as drug carriers with enhanced
circulation in the blood stream, provide particle delivery to targeted cells. There are two
major strategies for functionalization of the aforementioned particles. The first consists
of grafting, on the particle’s surface, low molar mass compounds containing required
functional groups. The second one consists of irreversible coating of the pristine particles
with synthetic or natural macromolecular compounds containing the needed functional
moieties. Often the modifications are multistep processes. In this subsection, examples of
such modifications are described.

Silica or silica-coated particles with Si-OH groups on their surface were grafted with
trialkoxysilanes with amine groups [214,215] and polymers containing trihydroxysilane
moieties and clickable alkyne functions [216]. The particles with amine functions were
further modified with 2-bromoisobutyryl bromide, yielding particles with ATRP initiator
and/or with lanthanide-doped 4-cyano-4-((dodecylsulfanylthiocarbonyl) sulfanyl) pen-
tanoic acid-produced particles with chain-transfer agent used in RAFT polymerizations.

The relevant modification processes used for production of particles bearing ATRP
initiators, RAFT transfer agents, and alkyne groups are shown in Schemes 17–19.
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Scheme 19. Reactions involved in a process used for production of gold coated with silica nanoparti-
cles with polymer shells containing alkyne groups.

The particles bearing ATRP initiator groups were used for initiation of polymerizations
of glycidyl methacrylate (GMA), PNIPAM and later were grafted with clickable 3-(prop-
2-ynyloxycarbonylamino)-phenylboronic acid (PCAPBA). The process yielded boronic
acid functionalized polymer brushes on the surface of silica particles [214]. PCAPBA was
synthesized according to the procedure described in the literature [215]. The particles bear-
ing the RAFT transfer agents were used in polymerization of poly(glycidyl methacrylate),
poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA), and poly(hydroxyethyl
methacrylate) [215]. The polymers formed hydrophilic coronas on the particles. The finally
modified particles were used for delivery of nitric oxide [215].

The gold nanoparticles coated with a thin silica layer and modified by attachment
of the copolymer made of N,N-dimethylacrylamide (DMA), 3-(methacryloyl-oxy) propyl
trimethoxysilyl (MAPS), and prop-2-ynyl prop-2-enoate (PMA) were used for covalent
binding of azido-modified γ-globulins, enabling antibody-mediated targeted nanoparticle
delivery [214]. Reaction of alkyne functions in the interfacial layer of nanoparticles and
azide moieties on modified γ-globulins was responsible for antibody immobilization.

Trialkoxysilanes were also used for preparation of magnetic Fe3O4 nanoparticles
bearing epoxy groups (see Scheme 20) [217]. However, it should be noted that the authors
did not explain whether the layer containing epoxide groups was adsorbed or covalently
bonded to the nanoparticles.
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Scheme 20. Functionalization of magnetic Fe3O4 nanoparticles introducing epoxide groups.

The nanoparticles with epoxy groups served as support for binding dendritic p-
sulphonatocalix[(4)]arene, which could be loaded with two chemotherapeutics (doxoru-
bicin and methotrexate) used for treatment of breast cancer [210]. The p-sulphonatocalix[(4)]
arene with amine groups in the dendrimer part was covalently bound via epoxide groups
of nanoparticles.

Particles were also functionalized by adsorption of biomacromolecules bearing var-
ious functional groups. In some instances the adsorption was facilitated by electrostatic
interactions. The negatively charged poly(D,L-lactic-co-glycolic acid) (PLGA) particles were
readily modified by adsorption of chitosan with conjugated folic acid (see Scheme 21).
The negative charge of PLGA particles was due to D-α-tocopheryl poly(ethylene glycol)
succinate used during preparation of the particles by nanoprecipitation. The nanoparticles
were prepared for delivery of platinum-based antitumoral carboplatin [218].
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Scheme 21. Functionalization of negatively charged PLGA nanoparticles by adsorption of chitosan
bearing folic acid moieties.

Coating nanoparticles with proteins opens possibilities for their further function-
alization. For example, controlled adsorption of lisozyme onto the surface of the bare
polystyrene and silica particles produced nanocarriers with carboxyl, hydroxyl, amine,
and thiol groups (see Scheme 22). The two-dimensional lisozyme film coating the parti-
cles was stable at pH from 4–10 [219]. Further studies involving modification of amine
groups of lisozyme film at the particles’ surface with 2-bromoisobutyryl bromide (an ATRP
initiator, see Scheme 23) followed by polymerization of methacryloxyethyltrimethyl am-
monium chloride provided a method of synthesis of core-shell particles with antibacterial
properties [217].
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Adsorption of streptavidin on the surface of microbubbles and their modification with
a linker with biotin moiety at one end and tetrazine at the other end (via streptavidin–biotin
complex formation) yielded microbubbles with tetrazine functions (see Scheme 24) [220].
The aforementioned method is general and could also be used for modification of polymer
particles. Particles with tetrazine functional groups were used for covalent binding of
antibodies bearing trans-cyclooctene [220]. The binding occurred via the click reaction of
tetrazine and trans-cyclooctene groups.
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Dopamine-containing compounds are very convenient as surface modification agents.
Dopamine undergoes polymerization at slightly basic conditions and therefore creates
adhesive films very strongly attached to polymer, metal, and ceramic surfaces.

Thus, polymers bearing various functional groups labeling heir chains and dopamine
end-groups could be used for easy preparation of functionalized nanoparticles. For exam-
ple, fluorescent magnetic nanoparticles were obtained by coating them with copolymer
labeled with Rhodamin B and equipped with dopamine end groups [221]. The copoly-
mer was synthesized by controlled radical atom transfer block copolymerization of 2-
hydroxyethyl acrylate glycomonomer (monomer with mannose labels) and rhodamine B
piperazine acrylamide, using unprotected dopamine-functionalized initiator. Synthesis of
copolymer and coating of particles are shown in Schemes 25 and 26. The aforementioned
fluorescent nanoparticles were used for visualization of their loci in cells.

Coating gold nanorods with polydopamine was used as an essential step in fabrication
of nanoparticles functionalized with folic acid and Rhodamine 123 [222]. The process
consisted of the following steps. First, cetyltrimethylammonium bromide (CTAB), present
at the surface of the pristine nanorods as colloid stabilizer, was replaced with poly(ethylene
glycol) with thiol end-groups (PEG-SH) to protect gold nanoparticles from aggregation
during later steps of synthesis. Then, dopamine was polymerized in alkaline conditions
(at pH = 8.5), forming shells surrounding the nanorods’ cores. The thickness of the shells
was controlled by concentration of dopamine added to the reaction mixture. Subsequently,
folic acid and Rhodamine 123 were immobilized on polydopamine-coated particles via
amine groups of each of these compounds. It is worth knowing that the nucleophilic
functional groups of ligands such as thiol or amine undergo Michael addition or Schiff base
formation in these conditions (see Scheme 27) [223,224]. Presence of folic acid moieties
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in particle coronas enhanced their uptake by cancer cells. Labeling with Rhodamine 123
enabled visualization of nanoparticles in cancer cells. Presence of gold was essential for
near infrared (NIR) mediated photothermal therapy.
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Earlier in this subsection, we described processes of functionalization of already
prepared particles. However, there is also a possibility of producing functionalized particles
in a process of simultaneous particle preparation and functionalization. For example,
poly(lactic-co-glycolic acid) (PLGA) nanospheres and microspheres with high content of
hydroxyl or carboxyl groups in their interfacial layer were prepared by the oil-in-water
emulsion solvent-evaporation method using methylene chloride as the oil phase and
poly(vinyl alcohol) (PVA) or poly(ethylene- alt-maleic acid) (PEMA) as polymeric surface
active stabilizers of PLGA/CH2Cl2 emulsion in water [225]. Preparation of functionalized
PLGA particles is shown in Schemes 28 and 29.

Polymers 2021, 13, x FOR PEER REVIEW 28 of 45 
 

 

 
Scheme 27. Reactions responsible for tethering of compounds with (a) thiol or (b) amine groups to polydopamine film. 

Earlier in this subsection, we described processes of functionalization of already 
prepared particles. However, there is also a possibility of producing functionalized par-
ticles in a process of simultaneous particle preparation and functionalization. For exam-
ple, poly(lactic-co-glycolic acid) (PLGA) nanospheres and microspheres with high con-
tent of hydroxyl or carboxyl groups in their interfacial layer were prepared by the 
oil-in-water emulsion solvent-evaporation method using methylene chloride as the oil 
phase and poly(vinyl alcohol) (PVA) or poly(ethylene- alt-maleic acid) (PEMA) as poly-
meric surface active stabilizers of PLGA/CH2Cl2 emulsion in water [225]. Preparation of 
functionalized PLGA particles is shown in Schemes 28 and 29. 

 
Scheme 28. Schematic illustration of PLGA particles with carboxyl groups. 

 
Scheme 29. Schematic illustration of PLGA particles with hydroxyl groups. 

In many cases, the available synthetic procedures yield particles with functional 
groups other than those needed for particles with planned applications. The problems 
were usually solved by using linkers bearing at one end groups reacting with those at the 
particles’ surfaces and at the other end the required ones. Scheme 30 provides several 
examples of the “replacement” of functional groups. Details of reactions are described in 
cited references. 

Scheme 28. Schematic illustration of PLGA particles with carboxyl groups.

Polymers 2021, 13, x FOR PEER REVIEW 28 of 45 
 

 

 
Scheme 27. Reactions responsible for tethering of compounds with (a) thiol or (b) amine groups to polydopamine film. 

Earlier in this subsection, we described processes of functionalization of already 
prepared particles. However, there is also a possibility of producing functionalized par-
ticles in a process of simultaneous particle preparation and functionalization. For exam-
ple, poly(lactic-co-glycolic acid) (PLGA) nanospheres and microspheres with high con-
tent of hydroxyl or carboxyl groups in their interfacial layer were prepared by the 
oil-in-water emulsion solvent-evaporation method using methylene chloride as the oil 
phase and poly(vinyl alcohol) (PVA) or poly(ethylene- alt-maleic acid) (PEMA) as poly-
meric surface active stabilizers of PLGA/CH2Cl2 emulsion in water [225]. Preparation of 
functionalized PLGA particles is shown in Schemes 28 and 29. 

 
Scheme 28. Schematic illustration of PLGA particles with carboxyl groups. 

 
Scheme 29. Schematic illustration of PLGA particles with hydroxyl groups. 

In many cases, the available synthetic procedures yield particles with functional 
groups other than those needed for particles with planned applications. The problems 
were usually solved by using linkers bearing at one end groups reacting with those at the 
particles’ surfaces and at the other end the required ones. Scheme 30 provides several 
examples of the “replacement” of functional groups. Details of reactions are described in 
cited references. 

Scheme 29. Schematic illustration of PLGA particles with hydroxyl groups.

In many cases, the available synthetic procedures yield particles with functional
groups other than those needed for particles with planned applications. The problems
were usually solved by using linkers bearing at one end groups reacting with those at the
particles’ surfaces and at the other end the required ones. Scheme 30 provides several
examples of the “replacement” of functional groups. Details of reactions are described in
cited references.

3.4. Nano- and Microparticles with Immobilized Ligands Specific for Nanoparticle-Selected
Cell Interactions

Targeted delivery of drugs is often based on nanocarriers with surfaces equipped with
ligands specifically binding to receptors on targeted cells. Many cancer cells have folic acid
receptors, thus relevant carriers are equipped with folic acid residues. Some cancer cells or
cells infected with bacteria or viruses display specific receptors on their cell membranes,
which could be recognized by immune systems. Appropriate specific antibodies (or their
Fab fragments) are used for targeting those cells.

Targeted delivery of nanoparticles is also essential in visualization of particular cells
and tissues.

Examples of processes used for preparation and application of the aforementioned
carriers are shown in Schemes 31–34 and in Table 2.
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Scheme 31. Mono- and dual ligand gold nanoparticles targeted to cancer cells. The nanoparticles
were equipped with folic acid (FA) and/or glucose (glu) ligands specifically binding corresponding
receptors on the cancer cells. Upper part of the scheme presents chemical structures of FA and glu
(second ligand) tethered on the gold nanoparticles with sulfide linkages. Scheme is based on data
from Reference [236].
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Scheme 32. Coupling of tetrazine-tagged microbubbles (Tetrazine MBs) and intravascular VEGFR2
(endothelial growth factor) receptors on tumor cells pretargeted with specific antibodies to VEGFR2,
modified trans-cyclooctene (TCO). Process was developed for ultrasound molecular imaging of
tumor. Membrane of microbubbles composed of streptavidin (6000 macromolecules/µm2). Scheme
prepared on the basis of data in Reference [220].
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trazine (from 64Cu-Tz) the conjugation of these two components takes place in vivo. The advantage 
of using the two-step procedure is the limit of location of radiolabeled adduct of reaction exclusive 
to tumor cells. The excess of unbound 64Cu-Tz is removed with blood circulation. Figure prepared 
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Scheme 33. Tumor-targeting supramolecular nanoparticles (NPs) for PET (positron emission) imaging composed of
trans-cyclooctene derivative of poly(ethylene imine) and β-cyclodextrin TCO/CD-PEI. The targeting of solid tumor eith
radiolabeled 64Cu occurs in two steps: (I) intravenous injection of SNs, followed by (II) injection of tetrazine derivative
carrying 64Cu (64Cu-Tz). In consequence of the bioorthogonal reaction between trans-cyclooctene (from TCO/CD-PEI) and
tetrazine (from 64Cu-Tz) the conjugation of these two components takes place in vivo. The advantage of using the two-step
procedure is the limit of location of radiolabeled adduct of reaction exclusive to tumor cells. The excess of unbound 64Cu-Tz
is removed with blood circulation. Figure prepared on the basis of data in Reference [237].

Table 2. Examples of particles carrying attached ligand(s) binding to receptors of targeted cells.

Type (Material) of Particle Attached Ligand Target Cells, Tissue, Tumor,
Factor in the Body, Disease, etc. Reference

PEGylated silica mesoporous
nanoparticles with Dibenzocyclooctyne

(DBCO)

[(18F)]fluoro pentaethylene
glycolic azide Solid tumor [238]

Supramolecular nanoparticles composed
of poly(ethylene imine) Trans-cyclooctene (TCO) Solid tumor [237]

Liposomes Muromonab-CD3
(monoclonal antibody) Autoimmune disorder [239]

Fab fragment of antibody [240,241]

Poly(glycidol methacrylate) particles
loaded with Docetaxel Transferrin Membrane bound transferrin

receptors on prostate cancer [242]
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Table 2. Cont.

Type (Material) of Particle Attached Ligand Target Cells, Tissue, Tumor,
Factor in the Body, Disease, etc. Reference

Liposomes
Internalizing RGD

(arginine-glycine-aspartate)
motif

α√β3 integrin receptor on
angiogenic endothelial cells [241]

Gold nanoparticles with carboxyl ended
linker

Anti-17β-estradiol IgG
antibodies 17β-estradiol [243]

Gold nanoparticles with dual
functionalities Glucose and folic acid

Folate receptor/epidermal
growth factor receptor on cancer

cells
[236]

Functionalized microbubbles Tetrazine

Endothelial growth factor
intravascular VEGFR2 receptors

and introduced bound antibodies
(TCO-anti-VEGFR2)

[220]

Magnetic supraparticles core and
poly-(methylacrylic

acid-co-N,N-bis(acryloyl) cystamine)
shell nanoparticles with streptavidin

Biotin labeled multiple
targeting ligands

Folate and integrin receptors of
HeLa cells [244]Polymers 2021, 13, x FOR PEER REVIEW 33 of 45 
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Scheme 34. Reactions leading to functionalization of mesoporous silica nanoparticles (MSN-NH2) with PEG linker, followed
by aza-dibenzocyclooctyne (DBCO) coupling. The reaction between DBCO-PEG-MSNs and 18F-labelled azide occurs under
physiological-like conditions. The MSNs labeled with 18F were prepared for PET imaging. Scheme prepared on the basis of
Reference [238].
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A lot of interest was generated by complex colloidal constructs designed to func-
tion as nanocontainers and nanoreactors, often releasing drugs as a result of external
stimuli. Intensively investigated systems were based on copolymers containing blocks
of poly(ethylene oxide) and poly(aspartic acid). Initially these copolymers were used as
building blocks for making polymeric micelles with drugs conjugated to poly(aspartic
acid) chains [134–137]. Positive results of phase 1 clinical study were already published for
micelles with conjugated epirubicin [245].

Recently developed nanocarriers reached a new level of smart interactions with
tumor cells [246–249]. They were constructed as nanoreactors from the aforementioned
copolymers with anticancer drug (camptothecin) conjugated via H2O2 sensitive linkers
and bonded piperidine labels. During formation, the nanoreactors were loaded with
glucose oxidase producing H2O2 in the presence of oxygen and glucose. In contact with
normal tissue, the tight membrane of nanoreactors keeps them inert. However, in the
neighborhood of tumor tissue, low pH triggers a cascade of events leading to the death of
tumor cells. First, protonation of piperidine labels makes the membranes of nanoreactors
permeable, enabling diffusion of glucose and oxygen into them. Then, glucose oxidase
uses these substrates for production of hydrogen peroxide. Hydrogen peroxide cleaves the
camptothecin and destroys the nanoreactors’ membranes. As a result of oxidative stress
caused by hydrogen peroxide and cytotoxicity of camptothecin, the cancer cells are killed.

The example described above proves that it is possible to construct drug carriers
that recognize target cells and in response release their bioactive cargo. A recent paper
by Li and Kataoka strongly suggests the need for intensive and systematic studies of
nanoparticle–cell interactions [249].

4. Conclusions

The content of the review justifies the conclusion that it was not and it will not
be possible to develop a single type of nanocarrier for general usage in medicine. On
the contrary, all nanocarriers should be adjusted to their particular applications. The
main properties are size, chemical structure of materials constituting nanoparticles, and
hydrophilicity. Today, there are methods for fabrication of organic (mainly polymer) and
inorganic (most often silica and gold) particles with sizes from a few nanometers to a
few micrometers. The smallest ones (up to ca. 4 nm) after fulfilling their function can be
eliminated from the organism via renal pathways. The larger ones are either aggregates,
which could disintegrate to particles of a few nanometers, or are made from polymers
degradable to low molar mass compounds dissolved in water media and eliminated via
kidney. Today there are known processes enabling fabrication of particles with hydroxyl,
carboxyl, amine, thiol, and alkyne functions from pristine non-functionalized particles. It
is also possible to substitute one type of functional group tethered on nanoparticles with
other ones. There were elaborated routes for the most advanced methods of nanoparticle
functionalization, with bioactive-specific ligands binding particles to receptors present on
the membranes of specific targeted cells. The least expensive and most effective strategies
for fabrication of nano- and microparticles with required functional groups seem to be
prefabrication of particles loaded with bioactive compounds, particles with required size,
and further functionalization with desired groups. The present state of knowledge of
targeted nanoparticle delivery suggests that progress in this field would require further
systematic studies on design and preparation of requests for synthetic ligands binding
effectively to specific receptors on the membranes of targeted cells. Future studies should
concentrate on preparation of nanoparticles long circulating with blood, able to recognize
target cells, and responding to nanoparticle – target cell interaction by triggering their
uptake and/or induced drug release.
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