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SUMMARY

Cancer is an organism-level disease, impacting processes from cellular meta-
bolism and the microenvironment to systemic immune response. Nevertheless,
efforts to distinguish overarching mutational processes from interactions with
the cell of origin for a tumor have seen limited success, presenting a barrier to
individualizedmedicine. Herewe present a pathway-centric approach, extracting
somatic mutational profiles within and between tissues, largely orthogonal to cell
of origin, mutational burden, or stage. Known predisposition variants are equally
distributed among clusters, and largely independent of molecular subtype. Prog-
nosis and risk of death vary jointly by cancer type and cluster. Analysis of
metastatic tumors reveals that differences are largely cluster-specific and
complementary, implicating convergent mechanisms that combine familiar driver
genes with diverse low-frequency lesions in tumor-promoting pathways, ulti-
mately producing distinct molecular phenotypes. The results shed new light on
the interplay between organism-level dysfunction and tissue-specific lesions.

INTRODUCTION

Advances in technology have greatly expanded our view into the mechanisms of cancer at the systems

biology level. Next-generation sequencing technologies have made it possible to study germline and so-

matic mutations, expression profiles, DNA methylation, and copy number variations from the same tissue.

To take advantage of these tools, several large consortia, including the cancer genome atlas (TCGA) and

pan-cancer analysis of whole genomes (PCAWG) sequenced large numbers of tumors and collected data

from multiple assays to analyze together, with the goal of integration and increased understanding of the

mechanisms of cancer.

Considerable progress has beenmade analyzing these data. Statistical analyses identify hundreds of global and

tissue-specific cancer driver genes (Dees et al., 2012; Jiang et al., 2019; Kumar et al., 2015; Lawrence et al., 2014;

Tamborero et al., 2013; Tokheim et al., 2016; Zhao et al., 2019) using approaches aimed at detecting genes

mutated at a greater rate than expected due to chance. Dees et al. (Dees et al., 2012) developed a pipeline

to separate driver mutations from passenger mutations. Tamborero et al. (Tamborero et al., 2013) expanded

on this idea to identify tumor mutation biases towards specific regions of a protein sequence. Lawrence

et al. (Lawrence et al., 2014) focused on identifying cancer driver genes with intermediate mutation frequencies

using tumor-normal pairs. It has been estimated that fewer than five mutations in key oncogenes and/or tumor

suppressors would be sufficient to transform a normal cell to a cancerous state (Iranzo et al., 2018; Vogelstein

and Kinzler, 2015). Mutations in cancer driver genes are commonplace in healthy tissue and correlate with

age and environmental exposures (Martincorena, 2019).

Other studies provide a comprehensive view of mutations, gene expression, and genomic signatures, with the

goal of understanding common themes of all cancers independent of tissue of origin. Understanding cancer as

a disease of the cell has long been a goal of the field as characterized in essays by Hanahan andWeinberg (Ha-

nahan and Weinberg, 2000, 2011). The first of these studies in genomics identified 11 subtypes from 12 cancer

types, using integrative analysis with co-equal weighting of gene expression, methylation, copy number, and

proteomics data (Hoadley et al., 2014). The principal finding was that tissue-of-origin is the predominant driving

factor, though�10% could be reclassified independent of tissue-of-origin. In a second study involving 33 cancer

types and a much greater number of tumors, the authors identified 28 clusters that could be further subdivided

into organ specific groups, including pan-gastrointestinal, pan-gynecological, pan-squamous, pan-gynecolog-

ical/squamous, and pan-kidney (Hoadley et al., 2018).
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More recently, pan-cancer mutations and other data have been looked at as disruptions of normal pathway

activity. Pathway-centric analysis of tumors provides additional benefits over gene-centric analysis: (1) It is

significantly less noisy because it aggregates molecular events across multiple genes in the same pathway

and (2) the identification of a potential causal mechanism is easier to interpret as genetic aberrations are

linked to molecular pathways. In a perspective, Creixell et al. (Creixell et al., 2015) described approaches

of pathway and network analysis applicable to next-generation sequencing data, the most common

approach being fixed-gene enrichment analysis to identify over-represented pathways. Sanchez-Vega

et al. (Sanchez-Vega et al., 2018) carried out an exhaustive analysis of pathway enrichment using whole

genome data. Focusing on ten frequently altered canonical signaling pathways in cancer, they explored

the mutation frequencies of coding regions of genes in these pathways for each cancer type. Network ap-

proaches address the sparseness of mutations, allowing genes to be influenced by mutations in nearest

network neighbors (Horn et al., 2018; Iranzo et al., 2018; Leiserson et al., 2014). Thesemethods are powerful

especially when applied to smaller numbers of tumors. One of the challenges in the field is that there may

be thousands of moderate effect genes that occur at such low frequency that they are impossible to detect

using positive selection theory. Some researchers have attempted to address this challenge by applying

machine learning to cancer data to discover groups of functionally related genes as they interact with larger

pathways and networks (Colaprico et al., 2020; Kim and Kim, 2018; Mourikis et al., 2019). These studies have

proven very effective at highlighting fundamental disease phenotypes at the pathway level across cancers

with different origins at the cellular and tissue level.

In this study, we attempt to understand how tissue-specific gene disruptions create common cancer phe-

notypes by focusing on discrete molecular pathways as the unit of disruption. Our approach strips all cell-

type-specific information from the mutation data and equates gene-level mutations to cell-biological

pathway disruptions. We use this heuristic to evaluate all cancers and show that, surprisingly, tumors

that exhibit tissue-specific gene mutation patterns nonetheless fall into common categories of pathway

disruption having unique prognoses in each cancer type.

RESULTS

Taxonomy of tumors based on disrupted molecular pathways

To study cancer pathways we obtained a set of 7,607 solid tumors from The Cancer Genome Atlas (TCGA)

through the Genomic Data Commons (GDC) (gdc.cancer.gov) portal. TCGA data are most appropriate given

the relative completeness of the patient metadata for survival and staging. We chose to analyze exome

sequencing data because the affected target gene is known unambiguously. Therefore, we selected all

missense, nonsense, frameshift, stop-loss, untranslated regions, and splicing mutations. To minimize bias

from well-studied diseases and processes, we selected 377 Reactome pathways (reactome.org) (see Table

S1) of interest corresponding to basic cellular processes and biochemical pathways, excluding those corre-

sponding to catalytic categories (e.g., ‘‘transcription factors’’) or disease associations (e.g., ‘‘mutated in colon

cancer’’) and filtered our gene list on membership in these pathways (total of 8,940 genes).

To avoid bias toward pathways with more genes, we counted disruptions if one or more member genes

were mutated. We do not attempt to calculate enrichment for mutations within a pathway. Binarized

pathways are likely noisy for a couple reasons. First, point mutations can be deleterious (attenuating, hypo-

morphic, or antimorphic) or activating (neomorphic or hypermorphic) in genes, and these can in turn be

oncogenes or tumor suppressors. For this study we assume a significant fraction of these mutations are

generically disruptive to pathway activity because it is impossible to know the tumor promoting effects

of all mutations, including rarely studied genes. Second, low- and non-expressed genes accumulate muta-

tions at a higher rate because of transcription coupled repair (Aitken et al., 2020; Cummings et al., 2020;

Kandoth et al., 2013; Kim and Kim, 2018). To address this issue, we identified low expressed genes in

each type of cancer and eliminated them for that cancer type only. Highly expressed genes could also

have high mutation rates owing to transcription induced mutagenesis (Park et al., 2012). This phenomenon

could result in cell-type-specific biases that might result in predisposition to different classes of cancer;

therefore, we did not exclude these genes from our analysis. After selecting pathways and genes, we

compiled a matrix of pathways, assigning a Boolean value of 1 to each pathway with one or more genes

mutated and 0 for all others (Figure 1A).

We investigated this dataset using multiple correspondence analysis (MCA) (Lê et al., 2008), and visually

summarized the analysis with UMAP (Figure 1B and see interactive media from Data S1 (junkdnalab.
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shinyapps.io/PANCAN_supplemental/)) (McInnes et al., 2020). We used the resulting graph coordinates to

perform density based clustering with HDBSCAN (McInnes et al., 2017), which resulted in identification of

10 well-defined clusters capturing about 80% of the tumor samples. To capture the remaining samples into

one of these 10 clusters we used kNN (see STAR Methods for details on clustering methods).

Independence from tissue-of-origin

Having defined tumors in terms of pathway disruption profile, we sought to understand whether different

cancer types segregate into one or more predominant clusters. To our surprise, most cancer types were not

heavily biased in one cluster, and all well-represented cancer types had tumors in every cluster (see Fig-

ure 2A and full tumor profiles in Figure S1, interactive media Data S1), suggesting that these clusters indi-

cate molecular pathology largely independent of tissue-of-origin. As an example of one cancer that does

have a biased pathway profile, pancreatic adenocarcinoma (PAAD) was predominantly found in cluster 8

(Figures 2A and S1 and Data S1), but even PAAD comprises tumors from the nine remaining classes.

Thus, patients with these tumors have potentially different underlying molecular pathologies.

Independence from molecular and histological subtype

Many cancers have molecular or histological subtypes defined based on gene expression, pathology or other-

omics profiles. These subtypes often have different standards of care owing to different drug sensitivity (or other

clinical trial data). If histological subtypes represent true molecular phenotypes, one predicts they should

segregate with pathway-based clusters, supporting the clusters as proxies for molecular pathology sub-typing.

To our surprise, we found a similar result to the previous analysis of cancer types. To illustrate this, we projected

annotations for each of the breast cancer subtypes, composed of Triple-negative/Basal-like, Her2 positive,

Figure 1. Clustering pathways of tumor samples

(A) Each of 377 selected Reactome pathways (rows) is classified as disrupted if one or more genes is mutated in the tumor sample (columns). Red cells denote

pathway disruption. Tumor types reflect standardized abbreviations from the TCGA project.

(B) Different rotational perspectives of the same MCA-based UMAP projection in three-dimensional space. Each dot corresponds to a tumor sample. The

same colors indicate the tumor’s cluster identity throughout this manuscript.
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normal-like, and luminal A andB subtypes onto theUMAP. These are among themost heavily studiedmolecular

subtypes in cancer, each with different prognoses and standards of care. We did not observe exclusive segre-

gation by cluster for these subtypes (Figure 2B). We also projected histological subtype data for the remaining

cancers (see Figure S2 and see interactive media fromData S1); we find that the subtypes, though often biased

to one or more clusters, are almost never exclusive. We interpret these data to mean that the clusters do not

correspond to previously identified molecular subtypes within the parent cancer types.

Independence from drivers of genome instability

There are several familial cancer-causing mutations studied for differences in basic biology, survival, and

treatment outcomes. The functions of these genes are related to risk factors such as genome stability,

Figure 2. Pathway-based clustering independent of tissue-of-origin

(A) Sankey plot of correspondence between cancer type and cluster identity.

(B) Projection of breast cancer subtypes onto the UMAP. See also Figure S2.

(C) Projection of BRCA1/2 somatic mutation onto the UMAP.

(D) Projection of tumor stage onto the UMAP, regardless of cancer type.

(E) Projection of metastatic status onto the UMAP. Abbrevs: M0 = non-metastatic tumors, M1 = metastatic tumors.

(F) Somatic mutation frequencies for each cluster. Vertical axis shows logmutation count, horizontal axis is cluster identity.

Each dot represents an individual tumor sample, ranked lowest to highest by mutation count. The median mutation count

in each cluster is indicated by the horizontal line.
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proof-reading & DNA damage repair, and telomere length. BRCA1/2 genes are key for DNA double-

stranded break repair (Davies et al., 2001; Moynihan et al., 1999) and germline mutations in these genes

confer elevated risk for breast, prostate, and ovarian cancers. The mechanism of risk is thought to involve

loss of heterozygosity, resulting in loss of the wildtype, functional allele (Gudmundsson et al., 1995), so we

projected somatic mutations for BRCA1 and BRCA2 genes onto the UMAP. We did not observe segrega-

tion of these mutations into specific clusters (Figure 2C and see interactive media from Data S1). We also

projected mismatch repair (MMR) genes MSH2, MSH6, MLH1, MLH3, PMS1 and PMS2, BRIP1, RAD51,

CHEK2 andAPC. None of these genes except forAPC exhibited remarkable specificity with respect to clus-

ter assignment (Figure S3). To look at other risk factors such as maintenance of DNAmethylation levels and

telomere length, we projected somatic mutations of the TET2 and TET3 genes, plus TERT, TEP1, andDKC1,

and observed similar lack of cluster bias (Figure S3).

Independence of stage, mutation count and mutation profile

Tumor staging is based on pathological criteria, including tumor diameter, which can vary greatly in impor-

tance between different tissues. Stage is used clinically as a proxy for advancement toward a more deadly

state andmetastasis. Thus, it is possible that more advanced tumors have common pathway disruption pro-

files. The UMAP, which features a series of lobe-like structures on a common backbone of tumor samples,

could reflect progression through a series of stages. The backbone starts with a cluster of tumors (class 1)

that has the fewest point mutations and culminates in a cluster (class 10) which has nearly every pathway

disrupted (Figure 2F). However, we don’t observe a trend in the overall mutation burden across the back-

bone of the UMAP. Nonetheless, to test the hypothesis that the molecular-pathway disruption clusters

represent advancement through stages, we projected staging data onto the UMAP. Similar to tissue of

origin and other categories of tumor, we do not observe any bias among the stages to specific clusters (Fig-

ure 2D), suggesting that stage does not contribute to cluster identity.

Finally, as a measure of tumor advancement, metastasis is the condition in which certain phenotypic criteria

are met: loss of differentiation, cell-cell contacts, epithelial to mesenchymal transition, immune system

evasion, and tissue invasiveness (Hanahan and Weinberg, 2011). To determine whether any clusters corre-

spond to an especially advanced stage of cancer across tissue types, we projected the metastases onto our

UMAP, and surprisingly we observed even distribution of the samples across clusters (Figure 2E). This final

observation suggests that our pathway-disruption clustering is dependent on particular combinations of

gene mutations affecting different pathways that can each give rise to advanced stages of disease and

metastasis, regardless and independent of overall mutational burden.

Tissue specific genes define cluster membership

To identify pathway enrichment across all cancers, we created a list of pathway disruptions with percent

mutated samples and top genes (Table S1). As expected, these analyses reveal the broad importance of

many well known pathways that are disrupted in cancer, including ‘‘PIP3 activates Akt signaling’’ (77% of

samples), ‘‘MAP1K/MAP3K signaling’’ (70% of samples), ‘‘Mitotic G2-G2/M phases’’ (67% of samples),

‘‘Cellular senescence’’ (64% of samples), ‘‘G2/M Checkpoints’’ (62% of samples), etc.

To discover what pathways are most important for clustering, we calculated percent enrichment within a

cluster relative to all other clusters and ranked pathways from highest to lowest enrichment. We visualized

enrichment as a heatmap (Figure 3A). Using this approach, we identified about fourteen pathways per clus-

ter (enrichment scoreR0.3, 95% confidence; see STARMethods) (Table S2). Clusters 7, 8, and 9 had several

pathways in common. To explore the specific pathways marking each cluster, we projected disruptions for

each of the 377 pathways onto the UMAP (Table S2 and see interactive media from Data S1). Clusters 3 and

5 were distinguished by metabolic pathways including RNA and protein biosynthesis (Table S2). Similarly,

cluster 4 was distinguished by mutations affecting regulation of DNA and histone methylation (‘‘DNA

methylation,’’ ‘‘PRC2 methylates histones and DNA,’’ and ‘‘Nucleosome assembly’’). Clusters 7–9 have in

common mutations in extracellular, intracellular, and immune-related signaling pathways (see Figure 3B

and Table S2). Cluster 2 had the highest pathway enrichment levels of the three, havingmutations in hedge-

hog signaling, ‘‘b-catenin degradation,’’ ‘‘cellular response to hypoxia,’’ ‘‘regulation of cell cycle’’ and

‘‘apoptosis’’ among others.

Prior efforts to extract signatures from pan-cancer datasets met with difficulty in distinguishing tumor sam-

ples from tissue-specific -omics data signatures. Given our pathway-disruption based clustering, this raises
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the question, are tumor phenotypes driven by common driver genes, ‘‘silent’’ tissue-specific effectors (i.e.,

too few samples to detect above statistical significance thresholds), or a combination of both? To answer

this question, we compared top pathway genes for each cluster relative to TCGA background to find differ-

entially mutated genes. We ranked odds ratios and selected the top ten enriched and depleted genes (p

value <0.01) for each cluster (Figure 4; odds ratios plot). Clusters 7 and 8, which share multiple enrichment

in signaling pathways, are largely driven by mutations in PI3K and its orthologs and Ras genes, respectively

(compare PIK3CA and KRAS panels of Figure S4 and see interactive media from Data S1). Interestingly,

cluster 9, which also shared multiple enrichment in signaling pathways with clusters 7 and 8, is enriched

for both PIK3CA and KRAS. Clusters 3 and 5, defined by enrichment in metabolic pathways, had mutations

in ribosomal proteins and nuclear pore complexes, respectively. Cluster 4 had mutations in nuclesome

structural or subunit genes. Cluster 2 had mutations in proteasomal subunits involved in protein degrada-

tion. We also observed that genes enriched for one cluster are depleted from others (i.e., TP53 is enriched

in cluster 6, but depleted in cluster 7; PIK3CA is enriched in cluster 7, but depleted in clusters 3 and 8). Next,

we investigated the proportion of samples per cancer type for the significant genes within a cluster (Fig-

ure 4; heatmap). Surprisingly, clusters were not predominated by one or more highly mutated genes across

all cancers. Instead, when observing the mutation rate for these genes within samples that belong to a clus-

ter, the mutation rate is heterogeneous across tumors by tissue origin (e.g., in cluster 4, CESC was enriched

forH2AFX, OV was enriched forHIST1H2BD, and UCECwas enriched forHIST1H2AC). Even among the top

enriched genes within clusters there is no global pattern, indicating that our clusters are not driven by in-

dividual genes, but rather networks as a whole. Taken together, our data identify a framework of cancer

type-specific mutations associated with specific clusters.
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Figure 3. Pan-cancer enrichment of pathway disruptions

(A) Heatmap shows relative enrichment of each pathway (rows) within numbered clusters (columns). Color represents

effect size as percent enrichment.

(B) Proportion of mutated samples in each significant pathway (columns; union set of pathways with effect size R0.30 in

each cluster) within cluster (rows).
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Enrichment of pathways in metastasis is cluster-specific

Because metastatic tumors are distributed across all ten clusters, we first compared them with non-meta-

static tumors following the logic we used to investigate cluster specific enrichment. Using non-metastatic

tumors as background, we found very low levels of enrichment (<10%) in a handful of pathways. We

reasoned that the individual clusters might be too different to detect global metastasis enrichment signals

given the small sample size (n = 215 metastatic tumor samples).

Therefore, we calculated cluster-specific enrichment in metastatic tumors and found a total of 31 enriched

pathways (significant with enrichment score R0.3) across all clusters (Table 1). A number of enrichments

represented pathways that were already shown to be enriched in non-metastatic samples of other clusters.

For example, ‘‘Signaling by PTK6’’ is enriched in non-metastatic samples of cluster 8 (Table S2), but not in 7

and 9. This pathway is enriched in metastatic tumors of clusters 7 and 9 (p<10�3, Table 1). This is also true of
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‘‘Erythropoietin activates RAS,’’ which is enriched in non-metastatic tumors of cluster 8 (Table S2) and also

in metastatic tumors of clusters 7 and 9. Cluster 4 metastases were enriched for ‘‘Fc epsilon receptor

(FCERI) signaling,’’ a key neutrophil pathway, which is also specific to clusters 2, 7 and 8 non-metastatic tu-

mors. Thus, metastases pathways from one cluster are often enriched in non-metastases of other clusters.

Pathway disruption clusters vary in short-term prognosis of survival

If our clusters represent biological states distinct from tissue of origin, they may have different prognoses

within cancer types or across all cancers. These analyses are limited by confounding factors of age, stage at

diagnosis, sex, ethnicity, and tissue-specific disease progression. To explore these ideas, we used Bayesian

Table 1. Cluster-specific enriched pathways (effect size R0.30) in metastasis

Pathway Cluster Effect size �log(p)

Signaling by NOTCH1 2 0.34 2.11

Signaling by NOTCH2 2 0.40 2.82

Plasma lipoprotein clearance 2 0.31 1.94

Hedgehog ’off’ state 3 0.31 2.07

Non-homologous end-joining (NHEJ) 3 0.33 2.53

Effects of PIP2 hydrolysis 4 0.49 2.04

Signaling by SCF-KIT 4 0.54 2.55

Respiratory electron transport, ATP synthesis

by chemiosmotic coupling, and heat

production by uncoupling proteins.

4 0.60 2.41

Fc epsilon receptor (FCERI) signaling 4 0.55 2.12

Platelet calcium homeostasis 4 0.44 1.67

Energy dependent regulation of

mTOR by LKB1-AMPK

5 0.31 1.80

GPCR ligand binding 5 0.35 1.93

Non-homologous end-joining (NHEJ) 5 0.59 3.70

DNA double-strand break response 5 0.34 1.63

RNA polymerase II transcription

pre-initiation and promoter opening

5 0.35 2.36

Response to elevated platelet cytosolic Ca2+ 5 0.34 1.61

RNA polymerase II transcription

initiation and promoter clearance

5 0.35 2.38

Protein ubiquitination 5 0.35 1.87

Glycogen metabolism 5 0.36 2.52

TCF dependent signaling in response to WNT 7 0.34 2.90

Neurexins and neuroligins 7 0.30 2.71

Signaling by PTK6 7 0.37 3.21

Erythropoietin activates RAS 7 0.31 3.28

Pre-NOTCH expression and processing 9 0.30 5.00

Transcriptional activation of

mitochondrial biogenesis

9 0.35 1.80

Beta-catenin independent WNT signaling 9 0.33 5.00

Hedgehog ’off’ state 9 0.35 1.83

G1/S DNA damage checkpoints 9 0.40 5.00

Signaling by PTK6 9 0.30 5.00

Erythropoietin activates RAS 9 0.38 2.37

Butyrate response factor 1 (BRF1) binds

and destabilizes mRNA

10 0.30 4.00
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inference to test models of survival using public longevity data from the CDC. The model estimates the ef-

fect of cancer type and cluster-specific cancer effects independently, resulting in a cancer and cluster-spe-

cific estimate of an effective age function and the aging rate multiplier, k.

To illustrate the model, we simulate survival for six related groups (Figure 5A). We start with a cohort of

women aged 30 randomly selected from the US population, and show expected survival (light blue). We

then use typical values from the posterior samples to set the effective age of that cohort to the effective

age of a BRCA patient (yellow). Finally to illustrate how the model varies by effective age we add an addi-

tional artificial 10 years to the BRCA effective age (dark blue). Compare these results to a uniformly selected

group of women ranging from 30 to 70 years old at random (green). Immediately, survival changes due to

the mixture of ages, without malignancy. By computing the effective ages for this mixture of patients, we

see that malignancy further reduces expected lifespan (pink). Adding an additional 10 years to effective age

would reduce the lifespan even further (dark orange). Hence, simply due to the change in distribution of

age-at-diagnosis, we expect two equally deadly cancers to have different survival curves. The model takes

this into account and cancer aggressiveness is estimated accurately without the confounding effect of age

through the effective age and aging rate parameters.

We found that cancer types, as expected, have a range of prognoses relative to the general population. In

Figures 5B–5D we show how effective age baseline, and effective age rate (which modifies the baseline

based on your actual age) as well as the ktis which accelerates or decelerates further aging, varies consid-

erably from cancer to cancer. For example a 20 year old diagnosed with THCA or PRAD would be treated

similarly to a 40 year old based on the Effective Age parameter. It’s noticeable that for every year beyond 20

in the PRAD diagnosis we add only an extra �0.2 years (Effective Age Rate). The ktis parameter represents

an acceleration (greater than 1) or deceleration (less) of the further aging beyond diagnosis. For example,

for BRCA patients each year past diagnosis adds about 1 year of risk, whereas for LGG patients it adds

around 2, and for SARC patients it adds only 0.25 or so.

In Figures 5E–5H we see three particularly deadly cancers (Glioblastoma:GBM, Pancreatic:PAAD, Ovaria-

n:OV), and one cancer where diagnosis hardly changes risk relative to background (Thyroid: THCA). Can-

cers with posterior probability for relative risk of less than 1 should be interpreted carefully. This Bayesian

model is for a state of information. The information that a person is diagnosed with cancer may lead us to

expect shorter survival than the general population of matched age, or longer survival than the general

population of matched age. Shorter prognosis could result from cancer aggressiveness, injuring the

body and causing death. By contrast, longer prognosis could result from the cancer being relatively

mild, and therefore diagnosis could be an informational signal that the patient is health conscious, with

the comparison group having more people whose cancers and other health issues go undiagnosed. It is

important to note therefore that the diagnosis can increase our expectation of life relative to the compar-

ison group, even if it decreases the expectation of life of the individual relative to the counterfactual where

they did not have cancer.

Our estimates of tissue-specific cluster effects were for the Effective Age parameter. These cluster effects

weremultiplied by the tissue specific coefficient to form the full effective age. Priors for this parameter were

relatively peaked around 1 reflecting the purpose of this coefficient as a multiplicative perturbation (Fig-

ure 6). A cluster-specific rate of 1 represents the typical rate for this tissue type. For several cancers (e.g.,

PRAD, kidney chromophobe (KICH), diffuse large B-cell lymphoma (DLBC), thyroid cancer (THCA)) the pos-

terior estimates are largely indistinguishable from the prior, reflecting that either there were too few mor-

talities in the data to make an estimate (as expected for PRAD and THCA) or too few samples, period. We

did not observe cluster-specific trends that held true across cancer types, which could result from different

cancers having different standards of care for example. For some cancers, however, there is evidence that

certain forms are more or less aggressive. PAAD class 8 seems to rise your effective age somewhat relative

to other forms, as does LGG group 7, whereas BRCA group 5, COAD group 8, and LGG group 5 all seem

somewhat lower risk than the other classes within those tissues.

To compare our pathway-based clustering to other published methods, we evaluated the performance in

predicting time to death (tdeath) with other published classification models. We downloaded cluster mem-

bership from two studies conducted within the TCGA consortium (Hoadley et al, 2014, 2018). We generated

tdeath predictions from uniform random p, by inverting the cumulative distribution function of our death
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probability function. Using the actual tdeath from TCGA as the reference, we show that our pathway-based

clustering (referred to as kNN) had slightly better performance compared to COCA (Hoadley et al., 2014),

iCluster (Hoadley et al., 2018) and tissue-of-origin (tis). (Figure S5A). In addition, we computed the entropy

of the error distribution in predictions (Figure S5B). All models had similar performance with kNN perform-

ing slightly better as indicated by a slightly smaller error entropy.
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Figure 5. Comparison of different cancers, simulated and actual results

Comparison of survival in six simulated cohorts.

(A) A group consisting of randomly selected 30 year old women, unaffected (light blue) vs. cancer using the typical values

from the posterior samples for a BRCA patient (yellow) and an artificial 10 years added to the effective age for a BRCA

patient (dark blue), another group consisting of uniformly selected 30–70 year-old women at random, unaffected (green)

and cancer without (pink) and with (dark orange) the artificial 10 years.

(B) Posterior probability density of the effective age baseline (A0) by cancer type. Red dashed line represents age for

unaffected individuals.

(C) Posterior probability density of effective age rate (Ar ) by cancer type. Red dashed line represents the effective age rate

for unaffected individuals.

(D) Posterior probability density of the ktis multiplier. Values greater than 1 correspond to decreased age-independent life

expectancy. Red dashed line represents ktis for unaffected individuals.

(E–H) Comparison of our model to the actual survival for the patients in our dataset. We compare a random group with

correct age distribution for the given cancer (turquoise) to the model predicted survival for the given average effective

age (blue) and the actual survival for the patients in our dataset (orange). Differences with actual data are likely due to a

mixture of cluster identities which we exclude from these simulations for simplicity.
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DISCUSSION

Classification of tumors independent of tissue-of-origin

One of the biggest hurdles in cancer research is the sparsity of data;�20,000 protein-coding genes is com-

parable with the number of tumor samples, even with multiple mutations per sample.We sought to simplify

the problem by employing a ‘‘knowledge-base driven analysis’’ (Khatri et al., 2012), investigating cancer as

a disease of basic cellular and biochemical pathways. We accomplished this by translating gene-level mu-

tations into pathway level disruptions. Our approach differs from previously described methods (Creixell

PRAD (N = 430) READ (N = 106) SARC (N = 199) SKCM (N = 88) STAD (N = 369) THCA (N = 316) UCEC (N = 372)
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Figure 6. Cluster specific Acl values for each cancer type

The overall effective age value is the product of A0xAcl +ArxðA1--20Þ. The cluster-specific A represents relative aggressiveness of each cluster within cancer

type. Alpha transparency (a) is set to reflect varying confidence in the posterior distribution when the number of observations is N < 10, a = 0.1; N < 25, a =

0.5; N R 25 a = 1.0.
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et al., 2015) in that we chose to focus on the pathway (defined in the methods) as the unit of disruption

instead of the gene, where individual mutations may be sufficient to alter pathway activity.

To our knowledge, this approach has not previously been attempted despite its relative simplicity. We

limited our analysis to mutations with likely deleterious effects in genes that are actively expressed in

each cancer type, thus avoiding bias from transcription coupled repair. Our method of filtration differs

from the ‘‘rank-and-cut’’ method of (The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium,

2020) but represents a reasonable attempt to account for the same biases.We also restricted our analysis to

biochemical pathways, excluding curated gene sets related to diseases, syndromes, or classes of proteins

with shared catalytic activity or conserved domains which are potentially problematic (Khatri et al., 2012).

We chose this approach to limit redundancy and exclude biologically unrelated collections of genes.

The hypothesis that cancer results from dysfunction in basic cellular processes common to eukaryotic cells

was introduced and later expanded on in a pair of essays by Hanahan and Weinberg (Hanahan and Wein-

berg, 2000, 2011). An alternative hypothesis is that every tumor belongs to one of a large number of syn-

dromes which are unique to each tissue-of-origin, that share some mechanisms and treatment strategies.

Recent publication of TCGA consortium papers present a view largely, and surprisingly, consistent with this

latter hypothesis (Hoadley et al, 2014, 2018). Perhaps owing to the intractable complexity of genomics, pro-

teomics, and patient metadata in all its forms, the inescapable conclusion thus far is that tissue-of-origin

remains the most important driver of tumor characteristics at every scale and by every measure. Our obser-

vations contrast with this view, and instead support an interpretation of publicly available data in which all

tumors manifest one of a limited number of phenotypes resulting from disruptions of basic pathways.

We attempted to account for our clusters in terms of more trivial explanations. For example, it could be that

the clusters are consistent with disease progression. We were unable to identify any such trend in the num-

ber of mutations, the relative staging or metastasis; and each cluster instead was associated with unique

combinations of pathways. Some cancer types are unevenly distributed among the clusters, though we

could not identify any cancers that were exclusive to a single cluster. Only cancer types with the fewest sam-

ples were found to be absent from one or more clusters at all. Additionally, we annotated the clusters with

patient attribute values (e.g., age of diagnosis, gender, and race) and were unable to identify any trends.

Somewhat surprisingly to us, this finding extends to histological subtypes of breast, head and neck cancers, leu-

kemias, etc. This result implies that histological subtypes could reflect differences in cell-of-origin, rather than

fundamental differences in cancer phenotype. The fourmajor subtypes of breast cancer correspond to histolog-

ical andmolecular expression profiles that define them and how they respond to experimental stimuli (Prat and

Perou, 2010). It has been hypothesized that differences inmolecular regulators of development in precursor cell

types present in breast epitheliumdrive histological phenotypes (Skibinski and Kuperwasser, 2015; Zhang et al.,

2017). Consistent with this view we found that breast tumor samples of the Luminal A subtype were heavily

biased towardmembership in clusters 1 and 7, andbasal tumor sampleswere biased toward cluster 6. However,

both subtypes also contained samples in every other cluster (without exception), and Luminal B and Her2 pos-

itive samples are distributed across clusters. Our interpretation of these data is that inherited cell-of-origin sig-

natures could predispose certain precursor cells within the breast epithelium to forming tumors of one cluster or

another but are not determinative. This view is compatible with the previously stated hypothesis but opens the

way for a more granular view of individual tumors.

It would be surprising if we did not observe bias for some cancers and subtypes amongst our classes,

because some treatment regimens have greater efficacy for patients of a given cancer or histological sub-

type (Prat and Perou, 2010). Nonetheless, the basis for some tumors being treatment-refractory in spite of

receiving the standard of clinical care for diagnostic markers remains elusive. Doubtless some of this is due

to chance events, as tumors can metastasize and remain dormant years before they are detected at distal

sites, or resistant clones may have already arisen at undetectable levels (Hanahan andWeinberg, 2011), but

our analysis suggests the possibility of identifying more informative molecular, histological or cellular sub-

types that could form a basis for future stratification of patients into different precision treatment regimens.

Tissue specific manifestation of pathway-centric disruptions

Our results illustrate how unique combinations of mutations in pan-cancer driver genes with tissue-specific

pathway disruptions result in common categories when viewed at the level of the pathway knowledge-base.
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Top cancer driver genes (e.g., PIK3CA and TP53) are found in most of the clusters, in spite of the fact that they

contribute tomany cluster-specific pathways. This can only be explainedby less commonlymutated genes com-

plementing the unique combination of driver genes in each tumor, and we speculate that many of these less

commonly mutated genes are sensitive to increased mutation frequency in different tissues. For example,

the most frequently mutated genes (TP53, PIK3CA, and MUC16) in cluster 2 were also frequently mutated in

several other clusters. Yet, pathway enrichment in cluster 2 was defined by less commonly mutated genes in

the proteasomal degradation pathway (e.g., PSMA3, PSMA1, or PSME4). The ubiquitin proteasome system

maintains cellular protein homeostasis by regulating protein turnover. Pathway mutations found in cluster 2

(e.g., ‘‘B-catenin degradation,’’ ‘‘cellular response to hypoxia,’’ ‘‘regulation of cell cycle,’’ and etc) covered

several aspects of the cancer hallmarks described by Hanahan and Weinberg. These hallmarks included ‘‘sus-

taining proliferative signaling,’’ ‘‘evading tumor suppressors,’’ and ‘‘resisting cell death’’ (Bhattacharjee et al.,

2014). Cluster 3 was defined by less commonly mutated genes related to ribosomal subunit. Pathway enrich-

ment for cluster 3 included dysregulation in ‘‘rRNA processing in the nucleus and cytosol’’ and consequently,

pathways involved in eukaryotic translation and nonsense mediated decay. Mutations in the ribosomal subunit

have been associated with selective translation of mRNA to upregulate proliferation (Kampen et al., 2019).

Pathway enrichment in cluster 3 consists of hallmarks relating to ‘‘sustaining proliferative signaling,’’ ‘‘evading

tumor suppressors,’’ ‘‘resisting cell death,’’ ‘‘deregulating cellular energetics,’’ and ‘‘genome instability and mu-

tations.’’ Cluster 4 was defined by less commonly mutated genes related to nucleosome structure that resulted

in pathway enrichment in DNA methylation and DNA double-strand break repair pathway. Cluster 4 was also

enriched for ‘‘telomere maintenance,’’ a mechanism contributing to cancer progression by counteracting telo-

mere shortening. Mutations in the nucleosome as found in cluster 4 have been proposed to hit all attributes of

hallmarks of cancer. Cluster 7 and 8 shared multiple enrichment in signaling pathways related to the hallmarks,

showing that some clusters share common driver mechanisms: ‘‘sustaining proliferative signaling,’’ ‘‘evading tu-

mor suppressors,’’ ‘‘resisting cell death,’’ and ‘‘inducing angiogenesis.’’ These clusters were strongly defined by

mutations in PI3K orRAS, respectively, suggesting a shared etiology in the EGFRpathway for which these genes

represent alternative intracellular signaling mechanisms. Taken together, our clusters highlight the similarities

and differences at a gene and pathway level between and within different cancer types – uncovering the mo-

lecular mechanism in cancer. In the future, we hope to explore the defining features of the clusters by connect-

ing the pathway mutations to cancer hallmarks.

Estimates of survival reveal pathway-dependent differences

By modeling CDC longevity data as a baseline risk function we showed that each clusterexhibits cancer-

type specific effects on survival expectancy. However, considering that within each cancer type there are

different clinical standards of care, and even within classes of drugs the preferred treatment can vary be-

tween cancers, it makes sense that we observe tissue-specific cluster effects. Contrast ovarian vs. breast

cancer, which are both hormonally driven cancers, for example. Ovarian cancer has but onemain treatment

axis, platinum, whereas breast cancer patients have a variety of treatment regimens based on molecular

subtype and other factors. Unfortunately, given the diversity of drug classes and treatments, we lack suffi-

cient power to explore these variables in the TCGA data. It is our hope that future studies will help to distin-

guish between treatment-specific effects on survival given different pathway disruption clusters.

Implications for the evolution of cancer

Our findings imply separate processes in the etiology of cancer that can be broadly thought of as general

cancer promoting, cluster-specific mutations and metastasis. General cancer promoting processes

include genome stability and immortality, as ‘‘enabling characteristics’’ of the cancer phenotype (Hana-

han and Weinberg, 2011). Such pathways are disrupted in most clusters and are frequently the result of

aberrations involving common driver genes such as BRCA1/2, MMR genes, mitotic checkpoints, cohesion

complexes, etc. Cluster-specific evolution must involve the acquisition of disruptions to pathways that

may individually be harmful (e.g., highly proliferative cells are more likely to senesce) but together pro-

duce more specialized cancer phenotype and increased fitness. Importantly, our observations do not

imply the order in which these mutations should accumulate. This could be addressed in a future study

by evolutionary analysis of clonality, drawing inference from variant allele frequencies as in Gerstung

et al. (2020). However, since many of the genes in the non-cluster-specific pathways involve the known

driver genes, it is reasonable to surmise that these mutations promote or enable acquisition of clus-

ter-specific defects via random mutation and natural selection, thus producing the clusters we observed.

In support of this, the pan-cancer analysis of whole genomes consortium (PCAWG) found that oncogenic

driver mutations are highly enriched in early arising clones, whereas later arising clones have much
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greater diversity in driver mutations (Gerstung et al. 2020). Moreover, driver genes that are known to be

responsible for discrete mutation signatures such as APOBEC, BRCA1 and BRCA2 produce mutational

hotspots reflecting varying selective pressures in different tissues (The ICGC/TCGA Pan-Cancer Analysis

of Whole Genomes Consortium, 2020).

One of the drawbacks of bulk tumor whole genome sequencing data is the problem of tumor heterogene-

ity. Consortium samples are likely to contain contamination from support tissue, stroma, inflammatory cells,

immune cells of the innate and adaptive immune systems, and all potentially harboring cancer supporting

mutations (Tripathi et al., 2012). We think it will be instructive to explore these ideas in the context of single

cell experiments.

On metastasis as a convergence of phenotypes

We report that enrichment in metastatic tumors across all clusters yielded generally lower effect sizes and

larger p values than the cluster specific analysis, suggesting that signal is diluted when clusters are pooled,

and supporting the view that metastasis has cluster-specific requirements. Since the number of metastatic

samples is relatively low, this part of our analysis is likely underpowered and subject to expanded analysis

with larger cohorts. The fact that most metastatic enrichment is cluster-specific and has a tendency to over-

lap with cluster-specific pathways from non-metastatic tumors of neighboring clusters suggests that newly

acquired mutations result in similar clusters converging on one or more deadly phenotypes with critical

features of end-stage cancer. Thus, even at relatively low power, our analysis of metastasis uncovered dif-

ferences between tumors against the noisy backdrop of tissue specific profiles. As a major caveat to our

pan-cancer analysis, we acknowledge that many therapies do target highly-specific driver genes, markers,

and signaling pathways (e.g., TP53, EGFR, or HER2), but understanding the broader context of the genetic

background and pathway vulnerability of tumors containing such markers may aid in creating smarter com-

bination therapies. We submit that when we discover the requirements of each cluster with respect to

pathway disruptions and metastasis we may be able to target them therapeutically and prevent further

adaptation.

Limitations of the study

We must remark on the limitations of our work exemplified in clusters 1 and 10, for which we did not find

many distinctive associations with pathways. Cluster 1 had a relatively low proportion of mutated pathways,

although it is broadly enriched in many of the same tumor-promoting pathways common to other clusters.

In addition, our data show clearly that this cluster is as likely to contain stage IV metastatic tumors as it is to

contain those of stage I. This cluster likely represents a group of tumors with aberrations in methylation,

copy number, or other structural variants. Consistent with this, kidney chromophobe and thyroid cancers

have high proportions of structural variations vs. other variant types (The ICGC/TCGA Pan-Cancer Analysis

of Whole Genomes Consortium, 2020) and are heavily skewed to cluster 1 membership. Likewise, cluster 10

represents a group of hyper-mutated tumors that harbor so many mutations that virtually no pathway is

unaffected. It seems likely that a significant fraction of the ‘‘mutant’’ samples for each pathway are

burdened with excess passenger mutations. This could be addressed with more sophisticated filtering

of likely passenger mutations (e.g., Jaganathan et al., 2019; Sundaram et al., 2018). In the future, we

hope to incorporate these other data into a comprehensive pathway-centric analysis as we have done

here for point mutations and indels.

The outcome of our model comparison with other published classification models in predicting tdeath

showed kNN performing slightly better. However, for the purpose of predicting lifetime within this dataset,

all models are practically equivalent. One possible explanation for this is the cluster identity does not pro-

vide much new information from tissue-of-origin. However another possibility is that because treatment is

not specialized to cluster, the treatments are not taking advantage of potential differences between clus-

ters which might dramatically change survival. Most of the cluster-specific rate (Acl) peaked around 1 for all

models – leaving the remaining variables (A0, Ar , and ktis), which are tissue-specific, to compute tdeath.

Although our study focused on somatic mutations, the incorporation of other types of omics data may

help differentiate the classes within cancer type. In addition, more work in solidifying the pathway model

into cancer hallmarks could provide biologically meaningful distinction of the clusters. Finally, if treatments

can be specialized to biological information encoded in clusters, perhaps this could drive dramatic im-

provements in survival among some clusters in the future.
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METHOD DETAILS

Selection of pathways

To understand the molecular mechanism of cancer at a pathway level, we used Reactome (https://

reactome.org/), a knowledge-based pathway database. The mapping files of ENSEMBL genes to path-

ways, pathway hierarchy relationships, and complexes to top pathways were downloaded from https://

reactome.org/download-data. Using these data, we imposed pathway criteria to define basic cellular pro-

cesses and biochemical pathways: (1) human-derived pathways ( ‘‘HSA’’ ) (2) limited to grandchild node for

each parent pathway (e.g. ‘Beta-catenin independentWNT signaling’ in ‘Signal Transduction’) (3) exclusion

of pathways in the parent pathway: ‘‘Disease,’’ ‘‘Muscle contraction,’’ and ‘‘Reproduction’’ or pathway

names that include any of the following keywords: ‘‘disease,’’ ‘‘defect,’’ ‘‘cancer,’’ ‘‘oncogenic,’’ ‘‘disorder,’’

‘‘mutant,’’ ‘‘loss,’’ ‘‘infection,’’ ‘‘bacteria,’’ or ‘‘listeria.’’ While some of the excluded pathways have been

shown to play an important role in cancer, they are highly specialized (e.g. ‘‘PI3K/AKT Signaling in Cancer’’).

Additionally, for most of the excluded pathways, a neutral version pathway of the pathway exists (e.g. ‘‘PIP3

activates Akt signaling’’). Finally, we mapped the 18,577 Ensembl IDs from the TCGA dataset to the highly

selected Reactome pathways. This operation produced a lookup table that consisted of 377 pathways map-

ped to 8,940 genes.

Filtering genes

We filtered likely erroneous mutations due to transcription coupled repair. Our approach was to determine

the status of each gene (i.e. expressed or not expressed) in each tissue type in order to exclude lowly ex-

pressed genes. To do this, we obtained the TCGA RNA sequencing data adjusted for batch effect dataset

(https://pancanatlas.xenahubs.net). Using the data, we removed the genes and tumor samples that were

not included in our analysis, grouped the tumor samples by tissue type and computed themean expression

value for each gene. A minimum threshold of 10 transcripts per million was set for expressed genes based

on an inflection point observed when plotting themean expression values of genes ranked by expression in

each tissue type. Genes that did not meet this threshold were considered not expressed. This operation

produced a lookup table for gene expression status in each tumor sample for 18,127 genes.

Clustering

In order to classify tumors using this dataset, we used multiple correspondence analysis (MCA) (Lê et al.,

2008). First, we determined the number of dimensions containing useful information by selecting the eigen-

value with the most explanatory power, using the average of 100 permutations of the data as baseline

(Figure S6A). We then chose the maximum eigenvalue for which the p-value remained % 0.05 (see cutoff

in Figure S6B). Then we performed a UMAP analysis (McInnes et al., 2020), both in order to summarize

the MCA graphically, and as a preprocessing step to boost the performance of density based clustering.

The resulting map was notable for its lobed structure, with several reproducible projections regardless

of random seed setting. A representative version of this 3D UMAP is shown in Figure S6C, rotated to

enhance the visibility of the major features. Following this spatial mapping we attempted to define group-

ings of similar tumors within the spatial map using HDBSCAN, which performs hierarchical clustering and

provides metrics of cluster stability and probabilities of cluster membership for each node (McInnes et al.,

2017). However, HDBSCAN is sensitive to several parameters; key for our analysis are the minimum number

of tumor samples in a cluster that capture themaximum number of tumor samples, measured by probability

of membership ofR 5% in at least one cluster. Thus, we created a score metric as the fraction of classified

tumors with max probability < 5% in one cluster and chose a cluster size of 92 to minimize the score function

(Figure S6D). HDBSCANwith these settings resulted in ten distinct high-density clusters which we then pro-

jected onto the UMAP (Figure S6E). This classified 6,038 out of 7,607 tumors but still resulted in a significant

fraction of unclassified tumor samples. Since we ultimately wish to be able to classify any tumor using this

scheme, we performed k Nearest Neighbors (kNN) analysis, which computes a similarity metric to every tu-

mor in the set and then lets the k most similar tumors ‘‘vote’’ as to the identity of the query tumor sample

based on their cluster labels. We set k to be the square root of the number of tumor samples (87). Using this

method, we assigned cluster membership to the remaining tumors (Figure S6F and see interactive media

from Data S1 (junkdnalab.shinyapps.io/PANCAN_supplemental/)).

Survival

We used Bayesian inference to explore the relative impact of cancer diagnosis on survival at the time of

diagnosis. Our model assumes that at birth each person has a small initial probability per unit time to
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die, and that this probability grows exponentially in time at some baseline rate that matches the observed

CDC data. We assume that at diagnosis this information will allow us to treat patients as if they were a

different age, and with further time passing at a different rate, a self-similarity based model. The effective

age at diagnosis is based on a baseline age for that tissue/class combination, plus a perturbation for each

year over 20 years old at diagnosis. To fit the model, we constrain the baseline risks using the available CDC

life tables (Figure S7). We also constrain the cancer specific parameters using the longevity data within the

cancer tumor dataset. Our model estimates the effect of cancer type and class-specific cancer effects inde-

pendently, resulting in a cancer and class specific estimate of the effective age.

Most TCGA cases are diagnosed late in life, so we fit a model that emphasizes accuracy in the right tail of

the distribution. We modeled baseline longevity using a risk rate function. The risk rate of death at a time t

days after the A birthday is given as:

RðtÞ = R20exp

�
aðA� 20Þ + DðtÞka

�
t

365

��

Time is split into two components. A represents the ‘‘effective age’’ of the patient at diagnosis, whereas t

starts at 0 upon diagnosis and represents the days since diagnosis, a field recorded in the dataset.DðtÞ is an
indicator for whether diagnosis has occurred or not (before diagnosis DðtÞ = 0, after DðtÞ = 1). The model

assumes that the risk of death is R20 at age 20 years and increases exponentially with a constant rate a up to

the age at diagnosis. Risk of death assumes a new rate ka thereafter.

Given this risk per unit time, the probability of death at time T +dT is the probability to survive to time T

which is ð1�PðTÞÞ and then die in the remaining interval which is RðTÞdT

dP = ð1�PðTÞÞRðTÞdT
leading to the differential equation for the cumulative probability of death PðTÞ

dP

dT
= ð1� PðTÞÞÞRðTÞ

The solution of this ODE is:

PðTÞ = 1� exp

0
@�

ZT

0

RðtÞdt
1
A

And the density of deaths per unit time is the derivative with respect to T:

pðTÞ = RðTÞexp
0
@�

ZT

0

RðtÞdt
1
A

However, to model the risk of cancer effectively we found that it was necessary not to use the actual age A0

but instead the ‘‘effective age’’ for that tissue/class type. Our effective age is calculated as:

A = A0Acl +ArðA0 � 20Þ
where A0 is the tissue specific effective age parameter (expressed in years), Acl is a dimensionless multiplier

for the given class, and Ar is the dimensionless age rate which determines how actual age A0 affects effec-
tive age A using a linear perturbation. For a non-cancer patient, A0 = 20, Acl = 1, and Ar = 1 are the relevant

benchmarks.

The RðTÞ function has two important parameters, the a value which represents the background risk rates,

and the k value, which is a function of cancer tissue type.

k = ktis

The product A0Acl is obviously symmetric between the two factors. To disambiguate the meaning of the

two, the prior for A0 has high probability range from about 40 to 100 years, whereas the prior distribution
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of Acl has peak probability at 1 and a relatively narrow width, due to the fact that it is a tissue specific mul-

tiplicative modifying factor. To understand the roles of these priors refer to (Figure S8).

Using this model, we split the data by Male/Female sex. Sex is known to be a risk factor for death, with

males dying at slightly higher rates for all ages of interest in our dataset.

As an aside, we did not explicitly account for stage at diagnosis in our model for the following reasons. In

the tumor sample data, stage at diagnosis is confounded with cancer type because some cancers are

screened aggressively (e.g. colorectal and prostate cancers) while others are diagnosed typically after

they become problematic for the patient’s lifestyle (e.g. ovarian and pancreatic cancers). Secondly, such

a model specification would suffer from added noise because the staging data are not well standardized

across cancer types, have different criteria, and because it is unclear what the relationship between stage

and advancement of disease is (for example some sub-stage 4 tumors are metastatic). To compound this

latter issue, our tumor set is vastly under-powered given the uneven representation of stage across cancer

types.

QUANTIFICATION AND STATISTICAL ANALYSIS

Class and stage-specific enrichment calculations

We calculated the enrichment of pathways in one set of tumors as the relative fraction of tumors (with

estimated uncertainty) with a mutated gene in the pathway to all tumors, inclusive of the category of inter-

est. To do this operation, we use the beta distribution to permute a posterior distribution on the fraction of

tumors with a pathway mutated for each category based on the observed set, and compared this to the

posterior obtained from the full set of tumors (all tumors) as the distribution of differences between all

permuted samples. We considered a pathway enriched if the 95% range of credible differences thus ob-

tained excludes 0 and the mean credible difference was greater than or equal to 30% enrichment, which

excludes a large number of small differences that are not likely to be biologically relevant.
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