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Abstract: Isopropylbenzene (cumene) is commonly encountered in groundwater at petroleum release
sites due to its natural occurrence in crude oil and historical use as a fuel additive. The cumene
concentrations detected at these sites often exceed regulatory guidelines or standards for states with
stringent groundwater regulations. Recent laboratory analytical data collected at historical petroleum
underground storage tank (UST) release sites have revealed that cumene persists at concentrations
exceeding the default cleanup criterion, while other common petroleum constituents are below
detection limits or low enough to allow natural attenuation as a remediation strategy. This effectively
makes cumene the driver for active remediation at some sites. An insignificant amount of research
has been conducted for the in-situ remediation of cumene. Sulfate Enhanced Biodegradation (SEB)
is evaluated in a field case study. The results from the field case study show an approximate 92%
decrease in plume area following three rounds of SEB injections. An additional objective of this
research was to determine the cumene concentration in fuels currently being used to determine
future impacts. A review of safety data sheets from several fuel suppliers revealed that cumene
concentrations in gasoline are reported typically as wide ranges due to the proprietary formulations.
Several fuels from different suppliers were analyzed to determine a baseline of cumene concentration
in modern fuels. The results of the analysis indicated that cumene accounts for approximately 0.01%
(diesel) to 0.13% (premium gasoline) of the overall fuel composition. Cumene generally is considered
to be of low human health toxicity, with the principal concern being eye, skin, and respiratory irritation
following inhalation of vapors in an occupational setting, but it has been regulated in Florida at very
low concentrations based on organoleptic considerations.

Keywords: isopropylbenzene (cumene); gasoline; groundwater contamination; remediation; public
health risk

1. Introduction

Cumene (isopropylbenzene) is a volatile organic compound (VOC) consisting of an aromatic
hydrocarbon with an aliphatic substitution [1]. The compound is not known to be a human carcinogen
due to insufficient evidence of carcinogenicity in human studies. However, it is judged as “reasonably
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anticipated” to be a human carcinogen based on findings of studies with experimental animals. There is
evidence that the metabolism of cumene in humans is similar to that of the experimental animals [2].

Cumene is produced in high volumes in the United States with the majority of the chemical used
as an intermediate in the synthesis of phenol and acetone [2]. It is also a natural constituent in crude
oil and is used as a fuel additive for diesel, various grades of gasoline, and heating oil [3]. Due to
its presence in petroleum products, it is commonly identified in petroleum-impacted groundwater
from Underground Storage Tank (UST) discharges. Data from several subsurface investigations
in South Florida indicate that cumene is rather recalcitrant and not easily attenuated by natural
processes, while other sources report that cumene persistence and degradation vary with site-specific
conditions [4–6]. Site assessments have revealed cumene persisting in the subsurface at concentrations
exceeding regulatory guidelines in sites over 30 years following release discovery.

Cumene is commonly identified at petroleum-impacted sites when the released product type is
unknown or is suspected to be used oil. In these situations, analysis according to Florida Administrative
Code (FAC) Chapter 62-780, Table D is required. Table D includes analysis of priority pollutant volatile
and extractable organics [7]. At many sites, cumene was detected during such analyses at concentrations
exceeding the current Florida Administrative Code (FAC) Chapter 62-777 Natural Attenuation Default
Concentration (NADC). Active remediation or pursuit of Risk Based Corrective Action (RBCA) is
required when a contaminant is detected above the NADC [8]. Other common petroleum constituents
often are detected at these sites as well, but may occur at concentrations low enough to allow for natural
attenuation monitoring as a remediation strategy. However, the NADC for cumene is set at 8 µg/L [7,8],
predicated on extension of the organoleptic-based Groundwater Cleanup Target Level (GCTL). This is
a very restrictive target in comparison to many other petroleum hydrocarbons, making it a common
driver for remediation or other mitigation approaches. There has not been a significant amount of
research conducted on the in-situ remediation of cumene. The lack of research may be in part due to
the fact that the standard for cumene set by most state regulatory agencies is either set considerably
higher than that in Florida or, in most cases, the substance is unregulated. For early assessment of
petroleum contamination sites in many jurisdictions, cumene concentration was not measured.

Several petroleum release sites in Florida with documented cumene exceedances of state guidelines
were identified through a search of the Florida Department of Environmental Regulation (FDEP) Oculus
Database. Remediation data were available for only a few of the identified sites. Remedial techniques
including In Situ Chemical Oxidation (ISCO), Sulfate Enhanced Biodegradation (SEB), Air Sparging/Soil
Vapor Extraction (AS/SVE), groundwater extraction, or Monitored Natural Attenuation (MNA) were
employed with varying degrees of success. Of the remedies reviewed, SEB was found to be among
the most effective. This paper considers whether cumene can be remediated using sulfate-enhanced
bioremediation and, in addition, assesses the foundation of the Florida criterion for remediation
of cumene.

2. Background

2.1. Cumene as a Groundwater Contaminant

2.1.1. Environmental Concentrations of Cumene in Groundwater

High levels of cumene have been found in groundwater near industrial sites and in industrial
effluents. Concentrations of 360 [9] and 1581 µg/L [10] have been reported in groundwater near
underground storage tanks, as high as 700 µg/L near outboard motor operations [11], and up to 54 µg/L
near coal gasification facilities [12]. Cumene has been detected at lower levels (usually less than 5 µg/L)
in groundwater not adjacent to a known industrial or a contaminated site [4,13].
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2.1.2. Cumene Remediation in Groundwater

Several techniques have been investigated for the removal and remediation of cumene. Due to
its tendency to sorb to soils (Koc value of 3.45), chemical oxidation is not recommended for cumene
treatment in groundwater [14]. Cumene can be removed by sorption to activated carbon or resin
(USEPA). Additionally, cumene is well-established to be biodegradable; phytoremediation [15] and
bioremediation [16] have been proven to be effective and relatively cost-efficient remediation approaches.
In addition, cumene biodegradation can occur in both anaerobic and aerobic conditions [17–21]. Cumene
biodegradation occurs by dioxygenase, and a cumene dioxygenase has been isolated and characterized
from a Pseudomonas fluorescens strain using cumene as its sole carbon source [22].

2.2. Cumene in Fuels

Cumene concentrations in petroleum fuels are not generally reported or are simply given as ranges
due to proprietary formulations. Table 1 below shows ranges of cumene concentrations provided
by various gasoline suppliers that report the chemical composition in their Safety Data Sheet (SDS)
or Material Safety Data Sheet (MSDS). The table is sorted by cumene concentration (low to high).
The average cumene concentration in gasoline (various grades) and premium diesel was reported to
be 0.3% by volume and 0.86% by weight, respectively. Crude oils typically contain approximately 0.1%
cumene by weight but can contain as much as 1.0% [3]. The data in Table 1 indicate that cumene can
account for up to a 10% share of the gasoline product formulation.

Table 1. Cumene concentration ranges reported by various fuel suppliers Material Safety Data
Sheet/Safety Data Sheet (MSDS/SDS) [23–30].

Gasoline Brand Name/Grade % Cumene Conc. Reference

Shell–All Grades Unleaded 0–0.5% US Oil MSDS 2012
ExxonMobil–Unleaded with Ethanol 0–1% Canada Imperial MSDS 2009

Gulf–All Grades Unleaded 0–1% Gulf SDS 2018
Sunoco–87 Unleaded 0–1% Sunoco SDS 2015

Citgo–All Grades Unleaded 0–4% Citgo SDS 2018
Marathon–All Grades Unleaded 0–4% Marathon SDS 2018
Petrocom–All Grades Unleaded 0–5% Petrocom MSDS 2008

Valero–All Grades Unleaded 0–5% Valero SDS 2014
Flint hills–All Grades Unleaded 0–10% Flint Hills MSDS 2012

Due to the variability of reported concentrations, baseline cumene concentrations of modern fuels
were measured to assess potential impacts from fuel discharges to groundwater in terms of cumene
remediation. This baseline analysis is outlined in subsequent sections of this article. Selected properties
of cumene are provided in Table 2.

Table 2. Select properties of cumene.

Property Value Reference

Cas number 98-82-8 [31]
Molecular formula C H [31]
Molecular weight 120.191 g/mol [31]

Color Clear/Colorless [32]
Odor Sharp, penetrating, aromatic [32]

Boiling point 152.4 ◦C [31]
Flash point 36 ◦C [31]

Melting point −96.01 ◦C [31]
Vapor pressure (at 25 ◦C) 0.61 kPa [31]
Water solubility (at 25 ◦C) 0.050 g/kg [31]

Octanol/water partition coefficient, log k 3.66 [31]
Density (at 20 ◦C) 0.8615 g/cm3 [31]

Henry’s law constant, k (at 20 ◦C) 1.466 kPa-m3/mol [31]
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2.3. Current Cumene Regulations

The Florida regulatory guideline for cumene is set significantly lower than most other states.
Groundwater standards for cumene in Table 3 were identified in regulatory rules for 14 state agencies.
The compound is assumed to be unregulated in all other states. Standards for countries other than the
United States were not evaluated. Cumene standard concentrations are presented, ranked from low
to high.

Table 3. Regulatory groundwater standard for cumene by state.

State Cumene Criterion (µg/L) Reference

New York 5 [33]
Florida 8 [34]

Maryland 45 [35]
Deleware 66 [36]

North Carolina 70 [37]
Minnesota 300 [38]

Maine 450 [39]
Kansas 451 [40]
Illinois 700 [41]
Iowa 700 [42]

New jersey 700 [43]
Michigan 800 [44]

New Hampshire 800 [45]
Pennsylvania 840 [46]

2.4. Sulfate Enhanced Biodegradation (SEB)

Sulfate enhanced bioremediation (SEB) is a proven remediation strategy for petroleum impacted
groundwater. This remedial process works by applying an amendment of sulfate to an impacted
medium that is currently using or can potentially use sulfate as a terminal electron acceptor (TEA).
Native sulfate reducing bacteria (SRB) reduce the sulfate compound while simultaneously oxidizing
the petroleum hydrocarbon. A general schematic showing the pathways of hydrocarbon degradation
by bacteria under anaerobic conditions is presented in Figure 1. The upper pathway includes the route
from the original compound to central intermediate substances, which still contain the aromatic ring
but with the benzene nucleus chemically destabilized. The lower pathway begins with dearomatization
and ring cleavage, which produce products that can be metabolized by bacteria [47].

Site characterization is required to determine the identity and prevalence of the current electron
acceptor. However, anaerobic bioremediation by sulfate reduction is the dominant terminal electron
accepting process [48], and it accounts for approximately 70% of the natural biodegradation capacity [49].
Generally, in-plume (especially downgradient) concentrations of sulfate will be close to or below
laboratory detection limits, while background concentrations will be considerably higher if sulfate is
the electron acceptor.

Sulfate is highly water-soluble and does not readily sorb to soil particles, increasing the quantity
of the TEA available to sulfate reducing bacteria [14]. It is also advantageous that SRBs are considered
prolific and are capable of metabolizing a broad spectrum of petroleum hydrocarbons [48]. More than
220 species of 60 genera of SRB have been identified [50]. However, one potential limitation to this
technology is often the secondary drinking water standard set for sulfate of 250 mg/L, which is based
on taste, rather than potential health impacts [51].
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3. Materials and Methods

3.1. Baseline Cumene in Modern Fuels

Gasoline and diesel samples were collected at gasoline service stations to establish a baseline of
cumene concentrations in modern fuels. To maintain brand anonymity, the samples were labeled as one
through five, with each number representing a different fuel supplier. A sample of regular (87 octane),
mid-grade (89 octane), and premium (93 octane) gasoline was collected from each of the five fuel
suppliers. In addition, a diesel sample was collected from Gas Stations #2, #4, and #5, and an ethanol-free
sample was collected from Gas Station #3. The samples were placed into ANSI/ASTM/CARB-compliant
and EPA-approved polyethylene gasoline canisters with sufficient volume (minimum 0.5 gallon) to
minimize cross-contamination from other various fuel grades. Within 15 min of sample collection,
a 2 mL aliquot from each gas can was transferred into a 9 mm clear glass autosampler vial using pipets.
The sample vials were then immediately placed on ice and analyzed within 24 h of collection.

The samples were analyzed utilizing a Shimadzu GCMS-QP2020 NX EI Gas Chromatograph
Mass Spectrometer (GC-MS) equipped with a direct injection tower and a 30 m long by 0.25 mm inner
diameter capillary column. The analysis was performed in general accordance with EPA Method 8260.
It should be noted that a purge-and-trap autosampler and concentrator is typically used to analyze
VOCs. However, EPA Method 8260 allows for the sample introduction to be performed by direct
injection when volatile concentrations are in excess of 10,000 µg/L [52]. This method is applicable
because cumene concentrations in the undiluted samples were expected to be approximately 0.3%
(3,000,000 µg/L) based on an initial literature review. The GC-MS was calibrated with cumene reference
standards prior to analyzing any of the fuel samples to minimize the potential for mischaracterization
of cumene with similar analytes.

3.2. Field Case Study

Sulfate Enhanced Bioremediation (SEB) was chosen as the remediation technology at a petroleum
impacted site in Broward County, Florida (USA) after site characterization was performed. The site
assessment and cleanup for the case study is state-funded under Florida’s Petroleum Restoration
Program (PRP) and is being performed by an FDEP-contracted environmental consultant. In addition
to the delineation of the petroleum contamination, site characterization also included analysis of
various bioremediation and geochemical parameters such as common electron acceptors and metabolic
byproducts in the plume and background monitoring wells. Specifically, the analysis included iron (total
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and dissolved), manganese (total and dissolved), alkalinity, biological oxygen demand (BOD), total
organic carbon (TOC), nitrate, nitrite, total nitrogen, total Kjeldahl nitrogen (TKN), orthophosphorus,
sulfate, sulfite, sulfide, heterotrophic plate count, hydrogen sulfide, carbon dioxide, and methane.
Sulfite was analyzed in the field using a Hach SU-5 titration test kit. The remaining analysis was
performed by a commercial laboratory using appropriate laboratory or EPA Methods. Sulfate was
determined to be the active TEA based on the results. Following site characterization, the list of
bioremediation parameters analyzed for subsequent remedial action monitoring events narrowed to
include only alkalinity, sulfate, sulfite, and sulfide. VOCs, including benzene, toluene, ethylbenzene,
xylenes, methyl tert-butyl ether (MTBE), and cumene were measured during each sampling event.
The groundwater samples for VOC analysis were prepared using EPA Method 5030B and analyzed
according to EPA Method 8260B. A commercial laboratory made the measurements on a GC-MS using
a purge and trap unit before the instrument.

The baseline in-plume cumene concentrations ranged from 2.0 to 20 µg/L (average 9.74 µg/L) with
NADC exceedances in four monitoring wells. The estimated plume area using baseline concentrations
was 399.6 m2 with a vertical extent ranging from the top of the surficial aquifer at 1.5 m below land
surface (bls), down to 10.7 m bls. Prior to the baseline analysis, cumene was the only contaminant
identified at concentrations exceeding NADC standards. However, the baseline assessment also
revealed benzene exceeding its respective NADC of 100 µg/L in one of the monitoring wells (170 µg/L).
This field study was used as an example in Best Available Practice to remediate cumene contamination
of groundwater.

Sulfate was introduced into the impacted groundwater as an aqueous blend of magnesium sulfate
(Epsom salt) with water in an initial pilot study. The initial goal was to raise the in-plume sulfate
concentrations from non-detect to approximately 200 mg/L. To accomplish this, approximately 568 L of
an estimated 589 mg/L sulfate solution was injected at 12 separate points from 1.5 to 10.7 m bls (6816 L
total injection volume). The solution was injected via a direct push drill rig using hollow steel rods
and a pressure-activated injection probe. The injection was performed under low pressure (generally
less than 2.1 bar) to ensure uniform distribution and minimal channeling. The depth to water and
several geochemical parameters were monitored at various adjacent wells during the injection event to
measure influence of the injection and any groundwater mounding effects.

A total of three (3) injection events with sulfate were performed at the described remediation
site. A site plan showing the current layout of the facility with monitoring well and injection point
locations as well as other pertinent features is illustrated in Figure 2. The injection points for the
pilot test and the second event (1st full-scale injection) were spaced approximately 1.8–3 m (6–10 ft)
apart within the estimated cumene NADC plume area. The injection point spacing for the third
event (2nd full-scale injection) was increased to address monitoring wells with historical exceedances
(to reduce the potential for future rebound). The 1st full-scale and 2nd full-scale injection events were
performed following the same general procedure as the pilot test event with an additional injection
point (13 total) and modifications to the injectant volume (757 L for each injection point) and sulfate
concentration (approximately 3000 mg/L for the 1st full-scale injection, and 6000 mg/L for the 2nd
full-scale injection). The injection events were performed approximately 16 months apart to allow
time to evaluate remediation efficacy. The monitoring schedule varied from monthly during the pilot
testing activities to quarterly or semi-annual thereafter. A gap in monitoring occurred between the
pilot testing and 1st full-scale injection due to the time necessary to prepare and obtain approval for
the remedial action plan and new purchase order.
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3.3. Health Risk Assessment of Cumene

An assessment of the health issues related to cumene exposure was conducted via a literature
survey (see Section 4.3). Specific health studies were summarized to draw conclusions concerning
exposure risk in the context of Florida regulations.

4. Results

4.1. Baseline Cumene in Modern Fuels

The cumene concentrations in fuels analyzed ranged from 125,802 (4-Diesel) to 1,323,250 µg/L
(1-Premium). The margin of error is estimated to be +/− 3.5% with a confidence level of 95% based
on the results of five separate runs on the same sample. Data from the GC/MS analysis of the fuels
are shown in Table 4. The individual chromatograms are presented in the Supplemental Materials as
Figures S1–S21. A second cumene standard was used to analyze samples collected from Gas Stations
#4 and #5 (analyzed at a later date than Gas Stations #1, #2, and #3).
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Table 4. Cumene concentration in various modern fuels.

Substance Peak # R. Time I. Time F. Time Area Cumene
(µg/L)

Cumene
(%)

Cumene Standard #1 1 7.585 7.515 7.660 2,105,031 2,000,000 0.20
1-Regular Grade 63 7.594 7.530 7.660 852,240 809,717 0.08

1-Mid Grade 58 7.593 7.475 7.655 1,295,322 1,230,692 0.12
1-Premium Grade 59 7.591 7.470 7.655 1,392,741 1,323,250 0.13
2-Regular Grade 64 7.589 7.530 7.655 486,391 462,122 0.05

2–Mid Grade 62 7.593 7.535 7.655 494,345 469,680 0.05
2-Premium Grade 55 7.591 7.530 7.655 690,231 655,792 0.07

2-Diesel 43 7.591 7.550 7.670 211,478 200,926 0.02
3-Regular Grade 64 7.587 7.465 7.650 1,127,090 1,070,854 0.11

3-Mid Grade 62 7.587 7.470 7.650 1,149,367 1,092,019 0.11
3-Premium Grade 52 7.587 7.520 7.645 1,028,558 977,238 0.10

3-Ethanol Free 44 7.585 7.520 7.645 905,763 860,570 0.09
Cumene Standard #2 1 7.570 7.490 7.650 5,943,042 2,000,000 0.20
4-Regular Unleaded 56 7.575 7.455 7.640 1,203,979 405,173 0.04

4-Mid Grade 59 7.576 7.460 7.640 1,223,605 411,777 0.04
4-Premium 58 7.574 7.455 7.635 1,305,727 439,414 0.04

4-Diesel 49 7.576 7.535 7.660 373,823 125,802 0.01
5-Regular Unleaded 62 7.573 7.455 7.640 1,405,543 473,005 0.05

5-Mid Grade 62 7.571 7.455 7.635 1,313,845 442,146 0.04
5-Premium 58 7.571 7.450 7.630 1,353,273 455,414 0.05

5-Diesel 49 7.569 7.530 7.650 549,469 184,912 0.02

The results from the samples collected from Gas Station #1 show an increasing cumene
concentration with increasing octane rating. For Gas Station #2, the cumene concentrations in the
regular and midgrade are fairly similar, while the concentration in the premium fuel was significantly
higher (approximately 41% higher). The diesel samples (2-Diesel, 4-Diesel, and 5-Diesel) exhibited the
lowest concentrations of cumene. The chromatogram for the diesel samples (Supplemental Information)
are unique in comparison to the gasoline chromatograms. The analysis of the fuels from Gas Station #3,
#4, and #5 showed little variability of cumene concentrations between the different grades. However,
the cumene concentrations in the samples collected from Gas Station #3 were much higher than the
concentrations from the samples collected from Gas Stations #4 and #5.

4.2. Case Study

The first round of injections was conducted during the pilot test activities as described. The initial
results showed a spike in contaminant concentrations, which is attributed to the mobilization of
adsorbed contamination from the saturated soil source zone into the groundwater, followed by a steady
decrease. Only minimal increases in sulfate concentrations in the plume were observed. The monitoring
event performed after the 1st full-scale injection showed minimal to moderate increases in sulfate
concentrations with slight cumene decreases. Major increases in in-plume sulfate concentrations
(up to 370 mg/L) were observed after the 2nd full-scale injection. Cumene concentrations decreased
in most monitoring wells immediately following the third injection with some wells showing slight
increases. Large decreases in both sulfate and cumene concentrations were observed approximately
180 days following the third injection event. These concentrations reduced further in the subsequent
monitoring event (sulfate concentrations at or below background concentrations). The regulatory
GCTL criterion for cumene was then only exceeded in one monitoring well and the estimated plume
size is approximately one-thirteenth of its original size (now roughly 31.2 m2). Figures 3–5 illustrate
cumene and sulfate concentrations over time for the key monitoring wells at the site during the injection
cycles. These wells were selected for graphical representation because of the high initial and persistent
cumene concentrations observed during remediation.
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4.3. A Review of Health Impacts of Cumene

Cumene presents a generally low toxicity hazard profile [53]. Reports concerning adverse
effects on humans following exposure to cumene primarily are associated with long-term exposure
to cumene vapors under occupational conditions. Less than half of a worker population exposed
for 7–10 years to unspecified levels of cumene vapors experienced alterations in hepatic enzymatic
activity, increased bilirubin concentrations, changed lipid metabolism, altered liver and hepatobiliary
functions, and dyskinesia (involuntary muscle movements [54]). Cumene at high concentrations
in air can be a skin and eye irritant, and exposure to vapors at high concentrations may cause
dizziness, slight incoordination, and unconsciousness, depending on the exposure frequency and
duration [53,54]. Protective concentrations for occupational circumstances have been set by the
National Institute for Occupational Safety and Health (NIOSH) and the Occupational Safety and
Health Administration (OSHA) at 245 mg/m3 (50 parts per million, ppm [55]). Consistent with other
alkylbenzenes (e.g., ethylbenzene, toluene, xylene), and countless other substances, cumene may be
irritating to skin, eyes, the respiratory system, and the central nervous system upon sufficient exposure.

In Florida, while there is no formal Drinking Water Standard for cumene, the assessment and
management of cumene in groundwater are regulated under Chapter 62-780, Florida Administrative
Code (F.A.C.) [8] and Chapter 62-777, F.A.C. [7] via an “organoleptic” Cleanup Target Level (CTL)
of 0.8 µg/L. Organoleptic CTLs, as with other “secondary” water quality standards, are based on
avoidance of taste, odor, or staining issues. That value is far below any value that would be based on
its potential to cause adverse toxicological effects. For example, a protective health-based criterion
of 700 µg/L for human consumption is presented by FDEP in Table F of Chapter 62-780, and that
same concentration is published as a safe level by the Florida Department of Health [56]. USEPA also
developed an analogous health-based criterion for cumene in residential tap water in the Regional
Screening Level (RSL) process. That USEPA [57] value is 450 µg/L for protection of human health
under domestic residential uses, including drinking water. Furthermore, the USEPA Office of Water
provides a Drinking Water Equivalent Level (DWEL) of 4000 µg/L, for lifetime drinking water exposure
to cumene [58].

Health-based groundwater screening levels such as those discussed here typically are based
on toxicological guidance values—e.g., oral Reference Doses (RfDs) and inhalation Reference
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Concentrations (RfCs) that often are derived from animal studies. That is indeed the case for
cumene. The oral RfD of 0.1 mg/kg·day is based on observed increased kidney weight in female
rats, and the inhalation RfC of 4 × 10−1 mg/m3 (0.4 mg/m3; 400 µg/m3) is based on increased kidney
weights in female rats and increased adrenal weights in male and female rats [59]. Conservative
uncertainty factors were applied to the animal studies for extrapolation to human health decisions
(i.e., RfD, RfC). Human exposure studies are not available from which to develop reliable toxicological
guidance values.

The International Agency for Research on Cancer (IARC) classified cumene in Group 2B, possibly
carcinogenic to humans [60], and the U.S. National Toxicology Program [2] concluded that cumene
was “reasonably anticipated to be a human carcinogen”. However, potential carcinogenic effects do
not form the basis for any of the protective human health-based water, soil, or air criteria cited herein.
Furthermore, NTP drew no conclusion regarding exposure levels at which cumene may or may not
exert the described carcinogenic effects, established no potency estimates, and concluded that it is not
mutagenic or genotoxic in most standard in vitro and in vivo assays [2]. The fact that cumene is not
genotoxic/mutagenic strongly suggests that the substance acts in a threshold manner, and that the
numerical health-based criteria developed by various agencies (e.g., RfD, RfC, health-based standards)
are indeed protective of human health.

With respect to potential off-gassing from groundwater to overlying soil and then into ambient air
or into indoor air space of buildings over groundwater, according to USEPA’s Vapor Intrusion Screening
Level (VISL) Calculator, cumene has a target groundwater concentration of 850 µg/L for protection
against possible vapor intrusion exposure concentrations. That value is derived by back-calculating
from safe indoor air screening levels established as protective health-based concentrations below which
no further action or investigation is warranted [61].

5. Discussion

5.1. Baseline Cumene in Modern Fuels

Analytical results from the samples collected showed cumene concentrations varying from 125,802
(4-Diesel) to 1,323,250 µg/L (1-Premium). The trend of increasing cumene concentration with increasing
octane rating for Gas Station #1 fuels indicates that cumene is likely used as an octane boosting additive
for the mid and premium grade gasoline blends at this station. The difference in concentrations between
the mid-grade and premium gasoline for Gas Station #2 indicates that the compound is an octane
booster for the premium gasoline only. The small variability of cumene concentrations in the fuels
from Gas Station #3 suggests that the compound is either added to each grade at similar concentrations
or it is naturally occurring in the source crude oil at those concentrations. The results from Gas
Stations #4 and #5 also show very little variability in cumene concentrations between the different
octane grades. However, the average cumene concentrations in Gas Stations #4 and #5 (418,788 and
456,855 µg/L, respectively) are much lower than that of Gas Station #3 (1,046,704 µg/L). Additionally,
cumene concentrations in 2–Regular and 2–Mid Grade are similar to cumene concentrations of all
gasoline samples collected from Gas Stations #4 and #5. This may indicate that cumene concentrations
in the range of 400,000–500,000 µg/L are present from natural sources. Concentrations reported in this
study are considerably lower than values found in the literature (0.3% for gasoline and 0.86% for diesel).
However, those values represent research conducted in the 1980s. Gasoline formulations change over
time due to technological advancements and changing environmental regulations, which may explain
the variability observed. Despite the lower concentrations in modern fuels, they are not insignificant
given their persistence in the subsurface, coupled with restrictive regulatory criteria.

5.2. Effectiveness of Enhanced Bioremediation with Sulfate

The SEB successfully reduced cumene concentrations in this case study. The plume size was
decreased by approximately 92%, and the site is on track to qualify for a clean closure (complete
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site rehabilitation). Clear increases in in-plume sulfate concentration were observed following the
second and third injection events with the sulfate solution. In some cases, sulfate concentrations
exceeded the sulfate secondary drinking water standard (250 mg/L). However, within two quarters
following each injection event, sulfate concentrations had returned to background or undetectable
quantities. This quick decline indicates that sulfate was likely the acting TEA. Based on the rate of TEA
utilization, the time between injection events could have been decreased to approximately 6 months to
condense the remediation time. All monitoring wells within the original plume extent tested below
CTLs approximately 3.5 years after the pilot test injection. Currently, cumene is only detected in one
shallow monitoring well, which is upgradient from the source area. That monitoring well was recently
abandoned and replaced due to persistent observations of debris (roots) and intermittent turbidity
issues noted during sampling. The replacement monitoring well has been sampled only once since
installation, resulting in a slight cumene concentration. This level was likely caused by a disruption of
the soils during the well installation activities. It is postulated that residual cumene mass adsorbed to
saturated zone soils was temporarily released into the groundwater, similar to what was observed
following the pilot test injection event. The estimated groundwater flow direction and a comparison of
current and former plume extents (based on the GCTL for cumene) is illustrated on Figure 6. It should
be noted that the current plume lacks complete definition (plume line is dashed where inferred to
the west). The offsite irrigation well to the northwest was sampled for cumene with no detections.
However, the irrigation well was screened at a deeper interval. A shallow monitoring well is proposed
here to provide adequate delineation if subsequent replacement well sampling results in persistent
cumene exceedance.
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Due to its success at this site, pilot-scale SEB is being implemented at a few other sites in
South Florida to evaluate its effectiveness for remediation of other VOCs and Polycyclic Aromatic
Hydrocarbons (PAHs). Initial results indicate that SEB is successfully remediating other VOCs such as
benzene, toluene, ethylbenzene, xylenes, and some cumene isomers, but it may not be appropriate for
general PAH-driven remedial activities.

It is likely that the added sulfate stimulates the growth of sulfate-reducing bacteria, which are
the primary cause of the cumene breakdown. More research needs to be conducted on the bacterial
genomics of specific groundwater species that cause the cumene breakdown.

5.3. Public Health Issues and Mandated Cumene Remediation in Florida

Because of the limited human health concern regarding cumene, and because the default
groundwater cleanup guideline is not a health-based value, potentially responsible parties and FDEP
remedial project managers should carefully evaluate risk-based options when cumene in groundwater
is the driving substance of a remediation project. Perhaps the Florida Department of Environmental
Protection should re-evaluate the very low concentration used to trigger remedial activities, especially
when the concentrations of other contaminates do not exceed remediation guidance. Since cumene
is degraded by naturally occurring, anaerobic bacteria, remediation on sites with low concentration,
even above the regulatory limit, should be evaluated using risk-based criteria. At locations where
human exposure is unlikely, natural attenuation should be given consideration as a remedial strategy.

6. Conclusions

Cumene (Isopropylbenzene) is a naturally occurring substance in unrefined petroleum and is
used as an additive in medium and high-grade gasoline to enhance octane. It is regulated in water in
14 of 50 states with action standards ranging from 5 to 840 µg/L. Because of the paucity of data with
regard to impacts on human health, the clean-up guidelines used by the states that have them are not
based on public health considerations. Cumene is considered to have low toxicity to humans but is
regulated at very low concentrations in Florida (8 µg/L).

An effective means of remediating cumene in groundwater is Sulfate Enhanced Biodegradation
(SEB). Addition of sulfate to groundwater promotes growth of various anaerobic bacteria that cause
breakdown of cumene into harmless constituents. Typical remediation methods for other gasoline
components are not effective for use on cumene.

Based on a generally low potential impact to human health, a different, risk-based approach to
mandating remediation should be considered, especially at sites where potential contact with humans
is minimal. Most groundwater in Florida is anoxic and contains the specific types of anaerobic bacteria
used in the SEB remediation strategy. Therefore, natural attenuation is a remediation strategy that
should be considered in low risk sites in lieu of performing active remediation.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/17/22/8380/s1,
Figure S1: Chromatogram for Cumene Standard #1. Cumene appears as Peak #1 at 7.585 minutes, Figure S2:
Chromatogram for 1-Regular Grade Gasoline. Cumene appears as Peak #63 at 7.594 minutes, Figure S3:
Chromatogram for 1-Mid Grade Gasoline. Cumene appears as Peak #58 at 7.593 minutes, Figure S4: Chromatogram
for 1-Premium Grade Gasoline. Cumene appears as Peak #59 at 7.591 minutes, Figure S5: Chromatogram for
2-Regular Grade Gasoline. Cumene appears as Peak #64 at 7.589 minutes, Figure S6: Chromatogram for 2-Mid
Grade Gasoline. Cumene appears as Peak #62 at 7.593 minutes, Figure S7: Chromatogram for 2-Premium Grade
Gasoline. Cumene appears as Peak #55 at 7.591 minutes, Figure S8: Chromatogram for 2-Diesel. Cumene appears
as Peak #43 at 7.591 minutes, Figure S9: Chromatogram for 3-Regular Grade Gasoline. Cumene appears as
Peak #64 at 7.587 minutes, Figure S10: Chromatogram for 3-Mid Grade Gasoline. Cumene appears as Peak
#62 at 7.587 minutes, Figure S11: Chromatogram for 3-Premium Grade Gasoline. Cumene appears as Peak
#52 at 7.587 minutes, Figure S12: Chromatogram for 2-Ethanol Free Gasoline. Cumene appears as Peak #44 at
7.585 minutes, Figure S13: Chromatogram Cumene Standard #2. Cumene appears as Peak #1 at 7.570 minutes,
Figure S14: Chromatogram for 4-Regular Grade Gasoline. Cumene appears as Peak #56 at 7.575 minutes,
Figure S15: Chromatogram for 4-Mid Grade Gasoline. Cumene appears as Peak #59 at 7.576 minutes, Figure S16:
Chromatogram for 4-Premium Grade Gasoline. Cumene appears as Peak #58 at 7.574 minutes, Figure S17:
Chromatogram for 4-Diesel. Cumene appears as Peak #49 at 7.576 minutes, Figure S18: Chromatogram for
5-Regular Grade Gasoline. Cumene appears as Peak #62 at 7.573 minutes, Figure S19: Chromatogram for 5-Mid
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Grade Gasoline. Cumene appears as Peak #62 at 7.571 minutes, Figure S20: Chromatogram for 5-Premium Grade
Gasoline. Cumene appears as Peak #58 at 7.571 minutes, Figure S21: Chromatogram for 5-Diesel. Cumene appears
as Peak #49 at 7.569 minutes.
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