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Aggregation-induced emission (AIE) molecules have garnered considerable

interest since its first appearance in 2001. Recent studies on AIE materials in

biological and medical areas have demonstrated that they show their promise

as biomaterials for bioimaging and other biomedical applications. Benefiting

from significant advantages of their high sensitivity, excellent photostability, and

good biocompatibility, AIE-based materials provide dramatically improved

analytical capacities for in vivo detection and demonstration of vital

biological processes. Herein, we introduce the development history of AIE

molecules and recent progress in areas of biotesting and bioimaging.

Additionally, this review also offers an outlook for the potential applications

of versatile AIE materials for tracing and treating pathological tissues, including

overcoming challenges and feasible solutions.
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Highlights

• The history of the development of AIE molecules is narrated and discussed.

• Different kinds of AIE structures are summarized.

• The properties of sensing and imaging are exhibited as separate listings.

• Challenges in designing and applications are considered and outlooked.

Introduction

Over the past several decades, the discovery and design of small organic molecules

capable of fluorescence imaging have become a rapidly expanding area of research (Maity

et al., 2015; Jia and Wu, 2020a; Zhang et al., 2020a; Younis et al., 2020; Zhu et al., 2020),

particularly owing to their possible practical applications in environmental monitoring,

tissue engineering (Dong et al., 2020; Song et al., 2020; Zeng et al., 2020), and medical

examination and treatments (Hu et al., 2020a; Jia and Wu, 2020b; Yu et al., 2020). As a

powerful tool for tracing, demonstrating, and analyzing biomolecules such as esters (Cai
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et al., 2020), carbohydrates (Qu et al., 2020), peptides (Gao et al.,

2020a), enzymes (Dong et al., 2020a; Zhao et al., 2020a), and

nucleotides (Zhang et al., 2020b), fluorescent biosensors provide

deep insight into the complicated in vivo chemical, biological,

and physiological processes (Wang et al., 2019) to explore

authentic pathogenesis and precise diagnosis. Under these

circumstances, the research and development of fluorescent

biosensors with superior performance are significant.

To achieve this, suitable fluorescence molecules and

materials for in vivo tracing and demonstration are key. The

optical properties of most organic dyes usually depend on their

large conjugate structure, which may be extremely weak owing to

their poor water solubility as well as the fluorescence quenching

in the aggregate state, also known as the vicious aggregation-

caused quenching (ACQ) effect. This phenomenon could be

explained as tedious conjugation with aromatic rings

accumulated via strong π–π interactions. This ACQ effect of

conventional organic fluorescence molecules makes the design of

desirable fluorescent structures challenging. In this case, the

development of molecules that can overcome the
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disadvantages of the ACQ effect is extremely urgent. Fortunately,

fluorophores with aggregation-induced emission (AIE) property

provide a clear path to achieve this since Tang (Luo et al., 2001)

first discovered this dramatic phenomenon in 2001. As is shown

in Figure 1, AIE fluorophores exhibit bright fluorescence in the

aggregated state but very weak fluorescence in good solvent,

making them ideal “turn-on” fluorescent probes for bioanalysis

(Chen et al., 2020a; Huang et al., 2020a; Li et al., 2020a; Yang

et al., 2020a; Zhang et al., 2020b; Korzec et al., 2020). With

sufficient special and unique optical properties, including their

simple molecular structure (Pratihar et al., 2020), high SNR

(signal-to-noise ratio) (Xu et al., 2020a), high luminescence

efficiency (Ma et al., 2020a; Fei et al., 2020; Leng et al., 2020),

excellent photostability (Jiang et al., 2020a; Mondal et al., 2020a;

Wei et al., 2020), and biocompatibility (Xu et al., 2020b; Zhu

et al., 2020), AIE fluorescent probes have been widely used as

fluorescent components of molecular probes and nanoprobes for

biomedical applications in clinical examination and therapy as

well as in biological sensing (Gao et al., 2020b; Zhao et al., 2020b;

Xu et al., 2020c; Su et al., 2020) and in vivo theranostics.

Herein, we aim to analyze recent advances in AIEmolecules and

its applications in biotesting and bioimaging, as well as their impact

on inmedical theranostics.We studied categories of AIEmolecules to

comprehend the relationship between the luminophore structure and

optical properties, the biotesting applications of AIE sensors with

target quantitative analysis, and the bioimaging applications of visual

demonstration. Finally, we share our outlook about the use of AIE

molecules and materials for physiological application.

Categories of AIE materials

The restriction of intramolecular motion (RIM) is the basis of

the AIE effect (Mei et al., 2014), which includes the restriction of

intramolecular rotation (RIR) and the restriction of

intramolecular vibration (RIV). Independent quantum

chemical investigations have been conducted aiming for

thorough understanding of the relationship between

intramolecular motion and AIE properties. Suzuki et al.

(2015) explored quenching pathways of three

multiluminescent molecules and predicted a largely distorted

structure near the minimum energy conical intersection (MECI).

The MECI state is easy to achieve in solution but difficult to

achieve in solid state and impossible to achieve in crystalline state

(Figure 2A). As demonstrated in Figure 2B, the fluorescence

quenching of AIEgens in solutionmust occur through an internal

conversion process (S1→S0), whose efficiency is directly affected

by the restrictions of intramolecular motions (Suzuki et al., 2020).

Since Tang first reported hexaphenylsilole (HPS) as the first

AIEgen, numerous fluorogens with AIE properties such as

FIGURE 1
Aggregation-induced emission effect: fluorescence photographs of silole molecules in THF/water mixtures under UV light (Dong et al., 2020a).
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tetraphenylethene (Pradhan et al., 2015; Zhao et al., 2020a; Huang

et al., 2020b; Jiang et al., 2020b; Zhao L. et al., 2020b; Zhang et al.,

2020c; Zhan et al., 2020), siloes (Zhang et al., 2020a), diphenyl

sulfones (Zheng et al., 2020), and distyrylanthracene derivatives

(Diao et al., 2020; Zhang et al., 2020e) have been studied for analysis

and exhibition (Figure 3). Mechanically, most have a non-coplanar

structure to reduce the energy barrier. Owing to their small size and

low steric hindrance, AIEgens can be modified by cross-linking,

esterification, grafting, and molecular and compositional

modification to improve their capabilities.

The pattern of manifestation is also important for AIEgens to

improve their performance. Synthetic AIE materials such as

metal nanoparticles (Munirathnappa et al., 2020; Wu et al.,

2020), nonconventional polymers (Dong et al., 2020b; Ma H.

et al., 2020b; Yang et al., 2020b; Huang et al., 2020c; Zhang et al.,

2020f; Xue et al., 2020), and nanodots (Dong et al., 2020a; Crucho

et al., 2020) are generally free of aromatic building blocks and

conjugated structures. These synthetic AIEgens generally display

concentration-enhanced emission and aggregation-induced

emission (AIE) characteristics. Given the presence of these

systems, the clustering-triggered emission (CTE) mechanism

could help explain the photophysical processes of these

synthetic AIEgens (Hu et al., 2020b; Lu et al., 2020).

Application of biotesting

Chemosensor

Compared with the other detection methods, AIE-based

fluorescent chemosensors show promise in the detection of

ions (Liu et al., 2020; Wang Q. et al., 2020; Li et al., 2020;

FIGURE 2
(A) Schematic illustration of the conical intersection accessibility in dilute solution (left) and aggregates (right) (Suzuki et al., 2015). (B) Jablonski
diagram of an atypical organic fluorophore (Suzuki et al., 2020).
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Wang et al., 2020; Guan et al., 2020; Zhou et al., 2020) and

organic molecules (Yan et al., 2020; Yang et al., 2020; Zhao et al.,

2020; Xu et al., 2020b; Feng et al., 2020; Rajalakshmi and

Palanisami, 2020). According to the excited-state

intramolecular proton-transfer (ESIPT) mechanism, the

fluorescent properties of the fluorophore skeleton are highly

dependent on the solvent environment due to the variation of

the intramolecular hydrogen bond.

pH sensor

As one of the most important parameters in chemical,

physiological, and biological processes, pH plays an

indispensable role in the qualitative and quantitative analysis

chemistry. In particular, subtle changes in intracellular

pH associated with various cellular processes provide ample

information on the studied organisms.

For the past few years, pH tracer based on fluorescence

responses has been designed and developed. The commonly

used fluorescent structures cover the emission region from

visible to near-infrared (NIR), such as tetraphenylethene

(TPE) (Chen et al., 2019), coumarin (Meimetis et al., 2014),

naphthalimide (Ramasamy and Thambusamy, 2017), rhodamine

(Mao et al., 2019), boron dipyrromethene (BODIPY) (Li et al.,

2016), and cyanine (Cy) (Hou et al., 2017). To take advantage of

the varied classifications of the fluorophores, it is easy to find out

the common functional mechanism of these probes: structure

FIGURE 3
The most prominent AIE backbone structures commonly developed in recent research.
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transformation attributed to protonation and deprotonation in

fluorescein, which makes them strong pH probe candidates.

To date, given the diversity of designing fluorescence

molecules, the majority of the existing AIE pH probes were

developed through the molecular engineering of electron donors,

acceptors, spacers, and D–A conjugated groups (Liu S. et al.,

2020). A silacyclopentadiene derivative was the first discovered

AIEgens. This was combined with the rhodamine B structure to

create an energy donor and acceptor (Wang X. et al., 2020a),

which eliminate fluorescence quenching from the non-emissive

character of the silole group in an aqueous solution.

Complexation with hydrion results in the dredging elutriate

test (DRET) procedure and leads to dramatic fluorescence

enhancement. As shown in Figure 4, this mixed-mode probe

responds to pH from 2.75 to 5, with a red shift of 220 nm.

Among numerous studies, intracellular pH sensing is a

characteristic work in which more attention has been paid to

biomedical application. In Figure 5, Liu (Wang et al., 2018)

designed a ratiometric probe with a TPE donor and a NIR

hemicyanine acceptor for sensitive detection of pH changes in

live cells. This strategy can be used to develop a variety of novel

proportional fluorescent probes to accurately detect different

analytes in the chemical reaction by introducing appropriate

sensing ligands into the hemicyandiamide group to form the

spironolactone switch.

Ion sensor

Being the main form of existence of metals in

environmental and living systems, ions can be further

divided into cations and anions and possess important

implications for all physiological processes. To figure out

the quantification and thermal decomposition of ions,

chemosensors with AIEgens for ion detection have been

studied extensively (Yan L. et al., 2020; Zhai et al., 2020).

The commonly used method is the probe that binds with

metal ions through noncovalent interactions (mainly

metal–ligand coordination), and this recognition process

is in a reversible manner. In contrast, another strategy

involves an irreversible chemical reaction as induced by a

target metal ion that acts as either a reactant or a catalyst,

leading to forming a new product after the reaction. Thus,

the unique reaction-based indicators are also described as

chemodosimeters.

Nitrogen heterocycles with lone pairs of electrons often

exhibit aggregation-induced emissive properties. Based on this,

Surajit (Mondal S. et al., 2020) designed and prepared triazole-

based molecules with outstanding AIE effects (Figure 6). Formed

by reacting ether-linked-triazole and pyridine with copper ions

intramolecularly, the probe could recognize Cu2+ with a low limit

of detection (LOD) in the nM range, demonstrating its high

FIGURE 4
(A) Fluorescence properties of silole derivatives in mixedmethanol and citrate buffer with adjustment of pH; (B) fluorescence responses of SRH
to pH value and metal ions under an excitation of 357 nm. (C) Fluorescence intensity of SRH in mixed methanol and citrate buffer in the presence of
marked metal ions.
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sensitivity, and can be explained by the mechanism of the

photoinduced electron transfer (PET) process. Cytotoxicity

tests confirmed the potential of the system as a novel cell

imaging technique.

Without typical luminophores in its structure, the

emission behavior of the ethylene succinamide salt PA24S

regarding numerous physicochemical variable parameters as

its acid–base properties, temperature, concentration, and

anti-interference ability has been discussed by Qinghui

Wang et al. (2020). As shown in Figure 7, it was found

that the fluorescence emission functioned through

aggregation and molecular clusters, which was verified by

its spectroscopic properties, micromorphology, and

structural characterization by NMR. The probe showed

significant sensitivity to Cu2+ in an aqueous solution with

effective fluorescence quenching, indicating that PA24S

exhibited superior for Cu2+ detection ability and visual

monitoring.

Associated with the regulation of biochemical signal

transduction in the nervous system, potassium plays critical

roles in biological processes including muscle contraction,

cardiac motion, nerve conduction, and urinary functions.

Fluorescent probes with crown ethers and other structures

have been developed and attracted significant attention. Lu

(Lu et al., 2017) designed a novel G-quadruplex structure-based

K+ probe (Figure 8). Benefit from the TPE AIEgen, the probe

exhibits high sensitivity with extended photostability, which

facilitates the prolonged fluorescence observations of K+ in

living cells.

Nanoparticles with AIEgens hold tremendous potential as a

tracer material, for they can penetrate biotic tissues with no

damage. AIE-based fluorescence resonance energy transfer

(FRET) nanoparticles (Nie et al., 2020a) were developed to

recognize ClO− in living cells (Figure 9). Different from

common FRET-based nanosensors, the NPs were prepared via

facile co-assembly strategy in water combining amphiphilic

tetraphenylethene with thienyl-diketopyrrolopyrrole. The

fluorescent imaging of the probe with ClO− demonstrates how

NPs can effectively pass through the cell membrane and safely

recognize ClO− in living cells.

FIGURE 5
Chemical structure responses of ratiometric near-infrared fluorescent probes to pH changes; fluorescence spectra of 5 µM probe A in 10 mM
citrate buffers with different pH values, containing 30% ethanol under an excitation of 420 nm; fluorescence images of HeLa cells incubated with
15 µM fluorescent probe A (Wang et al., 2018).
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Molecular sensor

In consideration of the different properties of objects

including charge, hydrophobicity, bioactivity, chemical

activity, etc., numerous sensors have been designed and

developed for monitoring small molecules by rationally

modulating recognition units and luminescent units (Yao

et al., 2011). A distyrylanthracene-based molecule was

developed with four carboxyl groups to improve the

combining capacity toward amino acids (Jiang R. et al.,

2020a). As shown in Figure 10, with structure similar to

tetraphenylethene (TPE), this convenient and sensitive

fluorescent probe with AIE character can distinguish

protamine, heparin, and heparinase. The detecting

mechanism was found to be aggregation caused by

electrostatic attraction and enhanced the fluorescence of the

system.

Furthermore, the detection of other molecules, such as

pesticide, toxin, and explosives (TNT, TNP, etc.), also has

great implications for personal and social safety. TPE-grafted

hyperbranched copolymers (Nabeel et al., 2020) were used to

form a homogeneous solution in THF for the sensitive

detection of picric acid (PA) (Figure 11). The aggregates

showed great fluorescence enhancement in the THF/water

mixture solution upon addition of TPE units to the polymers.

This granted them high sensitivity to PA, with detection limits

as low as 20 PPB. To a certain extent, it can create safer

environments and reduce risk factors.

FIGURE 6
(A) Dual-cavities and probable binding mode of the sensors; (B) emission spectra of probe P3 with the incremental amount of Cu2+ in ACN; (C)
fluorescent bio-images of C6 (rat glial cell) incubatedwith P3 and cell incubatedwith P3 alongwith Cu2+ with different time intervals (Mondal S. et al.,
2020).

Frontiers in Chemistry frontiersin.org08

Ma et al. 10.3389/fchem.2022.985578

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.985578


Biosensors

Detection of the biomolecules in the body fluid appears to

be essential for disease diagnosis, monitoring, and

management (Sargazi et al., 2022). Owing to their simple

structure, low background noise, excellent photostability,

and admirable biocompatibility, AIE molecules are

beginning to establish themselves as significant tools in

the areas of life science for biosensor (Zhang L. et al.,

2020b; He et al., 2020) and comprehending bioprocesses

(Wang et al., 2015; Gu et al., 2017; Gao F. et al., 2020). To

elucidate the biological functions of fluorescent probes or

drugs (Wang Z. et al., 2020), a comprehensive understanding

of their intracellular division is of vital importance (Dong Y.

et al., 2020; Tang et al., 2020). The most common pattern for

detecting biological macromolecules is functionalizing with

small hydrophilic groups such as amine groups, sulfonic acid

groups, or hydrophilic peptide chains to greatly improve the

water solubility of AIE molecules and then utilizing the

electrostatic interaction, hydrophobic interaction, and

receptor-assisted interactions between the water-soluble

AIE molecules and biological macromolecules to turn on/

off the fluorescence and achieve the detection (Xu et al.,

2012).

As discussed above, AIE fluorophores (triphenylethene

and tetraphenylethene) can be conjugated with biomolecules

by condensation or click-reaction, in order to enhance their

biocompatibility and bioactivity. Niu et al. (2020) chose

quaternized tetraphenylethene salt as the AIE fluorescent

module probe, which binds to single-stranded DNA by the

electrostatic interaction. As shown in Figure 12, in the

presence of DNA MTase, the methylation reaction-

initiated DNA polymerization occurs with terminal

deoxynucleotidyl transferase (TdT), which activated the

fluorescence intensity through AIE. The assay was also

effective for the detection of DNA MTase activity in

human serum, demonstrating the inhibitory effect of 5-

fluorouracil on Dam MTase.

Since proteins are the key components of the organelle, the

quantitative study thereof is important for understanding the

FIGURE 7
(A) Fluorescence emission spectra (λEx = 370 nm) of PA24S solution in the presence of different metal ions; (B) those of PA24S solution as a
function of Cu2+ concentration; (C) images of CFM of HeLa cells cultured for 30 min in the presence of PA24S and Cu2+ under 405 nm, 488 nm,
561 nm, bright field, and their overlay (Wang Q. et al., 2020).
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basic principle of cellular systems and the related diseases

(Olzscha et al., 2011; Burslem and Crews, 2017). It is essential

to realize the progress of protein aggregation in biological

samples before investigating effective therapies. Liu et al.

(2022) developed a series of AIE probes based on 4-

hydroxybenzylidene-imidazolinone (HBI) (Figure 13). The

varying viscosity sensitivities of AIEgens were explored

systematically to visualize protein aggregation in live cells, and

other biological processes related to local viscosity changes were

also investigated.

Application of bioimaging

To garner powerful tools for cancer diagnosis and

medicinal therapy, fluorescent tracers and dyes have

been generally fabricated by encapsulating AIEgens into

lipid or BSA shells through a nanoprecipitation route,

which allows further surface functionalization with

specific recognition units (Wang X. et al., 2020b). The

inherent ACQ effect of conventional organic

luminophores has been a thorny problem to solve, while

the AIE molecule offers more possibility for tracing and

mapping special tissues. Because of their low cytotoxicity

and high quantum yield, AIE tracers can achieve

bioimaging in living systems (Nie et al., 2020b; Zhao W.

et al., 2020; Wang X. et al., 2020c). In this case, the

development of AIE tracers that enable the in vivo

monitoring and long-term tracing biological processes

with high resolution and sensitivity is of critical

importance in both fundamental biological science and

practical clinical applications.

FIGURE 8
(A) Schematic illustration for TPE-oligonucleotide K+ probe; (B) fluorescence spectra for different concentrations of K+ based on the AIE effect
of TPE-oligonucleotide probe. (C) Plot of fluorescence enhancement (F/F0) at 475 nm as a function of K+ concentration (Lu et al., 2017).
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FIGURE 9
(A)Construction of amicellar FRET nanoprobe composed of a TPE/NDPP pair and the effect of ClO-; (B) changes in the DLS size of TPE1-NDPP
NPs upon the addition of increasing amounts of ClO− in water; (C) photons of a solution with TPE1-NDPP NPs and different amounts of ClO− (0, 4, 8,
16, 20, 25, and 30 μM) under a UV lamp; (D) changes in the fluorescence spectra of the TPE1-NDPP NPs upon the addition of increasing amounts of
ClO− (1–30 μM) in water. Inset: the addition of a low concentration of ClO− (0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 μM); and (E)
fluorescence intensity ratio (F490/554) changes of TPE1-NDPP NPs upon exposure to ClO− (Nie et al., 2020a).
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Cell imaging

Among the molecular, organelle, and cellular level,

organelles may represent suitable targets for the detection,

imaging, and treatment of diseases. AIEgens modified with

various targeting groups could serve as superior imaging

agents for monitoring of the dynamics of various biological

process-related organelles and enzymes (Gu et al., 2017).

Receptor targeting is one of the general strategies for cell

imaging due to the overexpression of specific receptors, which

is strongly linked to the progression of disease (Ko et al.,

2019). Abnormal intracellular lipid droplets (LDs) are

important biomarkers of multifarious diseases and are

associated with cancer, obesity, fatty liver, Alzheimer’s

disease, and other diseases. Thus, the visual monitoring of

LDs is of great significance. Yuxuan Wang et al. (2020)

combined hydrophobic AIEgen tissue polypeptide antigen

(TPA) with lecithins via the condensation of Schiff base for

targeted aggregation on LDs in HeLa cells with high SNR.

Induced by UV light (493 nm), the real-time tracing of LDs

was achieved to explain cellular processes (Figure 14).

In addition, 9,10-dithienylanthracene (DTA) derivatives

with a rigid plane structure often exhibit desirable AIE

behaviors and fluorescence efficiency in the near-infrared

region. Wang developed a novel fluorescence tracer with a

similar structure (Wang R. et al., 2020). Multiple hydrogen

FIGURE 10
(A) Self-assembly of the copolymer (HSP-TPE) containing fluorescent TPE probe and sensing behavior of HSP-TPE aggregates toward picric
acid (PA); (B) fluorescence spectra of DSA-4COOH, DSA-4COOH/PRO/HEP complex, DSA-4COOH/PRO/HEP/heparinase complex, and DSA-
4COOH/PRO complex; and (C) photograph of digital photos of DSA-4COOH with protamine, heparin, and heparinase under irradiation at 365 nm.
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bond interactions between neighboring molecules limit their

intramolecular rotation, allowing for significant fluorescence

enhancement (Figure 15). The results confirmed that

substituent groups had a significant effect on their

molecular packing, morphology observation, and optical

properties. Moreover, the DTA molecules reported could be

used fluorochrome in the nucleolus and localized uniformly in

HeLa cells.

Amphipathic poly (PEGDA-co-TPE) copolymers were

synthesized via a catalyst-free one-pot Passerini reaction (Jiang R.

et al., 2020b) under fairly mild experimental conditions. In

comparison with small fluorescence molecules, the

macromolecular colorants have high luminous efficiency, large

Stokes shift, and remarkable water dispersibility (with the

hydrophilic group), demonstrating the great potential for

mapping and tracing target cells in vivo (Figure 16).

Tissue imaging

Unlike cell imaging, tissue imaging by AIEgen offers two main

benefits. The high luminescence efficiency and structural stability of

AIE materials warranted improved in vitro tissue imaging;

furthermore, with the assistance of fluorescence sensors, medical

staff could define boundaries of pathological tissue and delineate tiny

tumor nodules more precisely, remarkably improving the success

rate of surgeries. As tumor resection surgery remains the preferred

and most commonly used strategy, accurate intraoperative tumor

resection is guided by optical imaging to address these severe

problems taking advantage of its excellent sensitivity, real-time

modality, super temporal resolution, and fine biosafety (Chen C.

et al., 2020). This strategy was supported by the mapping

performance of AIE probes, as a precise and effective means of

tracing and treating pathological tissues.

FIGURE 11
(A) Illustration of self-assembly of the copolymer (HSP-TPE) containing fluorescent TPE probe and sensing behavior of HSP-TPE aggregates
toward picric acid (PA); (B) fluorescent spectra of (A) HSP-TPE in THF/water (3:7 v/v) mixture with varied amount of picric acid (PA) at an excitation
wavelength of λ = 333 nm; (C) extent of fluorescence quenching efficiency of HSP-TPE by adding 10 equiv of picric acid (PA) and other molecules
(Nabeel et al., 2020).
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FIGURE 12
(A) Illustration of Dam MTase activity assay based on aggregation-induced emission and template-free DNA polymerization. (B) Fluorescence
spectra of TPE-Z in response to DamMTase in different concentrations (0, 0.1, 0.5, 1, 2.5, 5, 10, 20, 40, 80, 100, 200, 400 U/mL). (C) Corresponding
fluorescence ratio at 462 nm. The inset represents the linear relationship between the signal and Dam MTase concentrations from 0.5 U/mL to
100 U/mL. (D) Selectivity study. (E) Inhibition assay for DamMTase with different concentrations of 5-fluorouracil. The error bars were based on
three repetitive experiments performed (Niu et al., 2020).
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Symmetric structure sometimes allows for the precise

localization of tumor tissues. Qi et al. (2020) designed a

novel dragonfly-shaped NIR molecule with the AIE structure

of TPE (Figure 17). Through self-assembly, the nanoparticles

possess exciting long-term tumor mapping capacity; the

accumulation of different organs was also investigated,

indicating that this molecule ensures the efficiency of in vivo

tumor imaging.

AIE materials are more than excellent tool of detection and

exhibition. In recent years, aggregation-induced emission

photosensitizers (AIE-PSs) with strong photosensitization

perform well in the efficient tumor photodynamic therapy.

For the design of functional materials, load factor is regarded

as an important parameter of graft, modification, and

composition. Cheng et al. (2020) designed novel pH-

responsive nanoparticles self-assembled by amphiphilic AIE

molecule with a 100% loading efficiency. As shown in Figure

18, the fluorescence quantum yield of AIE-NPs reached 56.7%,

better than the probes commonly used in clinic. As a result, the

AIE-NPs exhibited an effect on extracorporeal photodynamic

therapy in vitro under white light (50 mW cm−2). The experiment

using tumor-bearing mice verified the high tumor accumulation,

penetration, and therapeutic efficiency of AIE-NPs.

AIE molecules can monitor key factors during biological

processes with high precision and satisfying reliability in real

time in addition to acting as the delivery platform of drugs,

FIGURE 13
(A) Illustration of the Agg-Tagmethod; POI: protein-of-interest, Probe: Agg-Fluor probes; (B) schematic demonstration of the probe detection
of aggregated proteins in HEK293T cells; and (C) fluorescence of the probe is turned on by rotation restriction at I and II region in highly viscosity
microenvironment (Liu et al., 2022).
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similar to the image-guided therapeutic response. The

therapeutic AIE-active materials are still in the earlier

developmental stages but have the potential to create a

new direction toward the study of bio-optical material, and

much more work should be accomplished in this promising

pursuit.

FIGURE 14
AIE characteristic study of the probe FB. (A) Fluorescence spectrum of the probe FB in THF-H2O solution. (B) Fluorescence intensity of the
probe FB at 605 nm in various water fractions. (C) Normalized fluorescence spectrum of the probe FB in THF-H2O solution. (D) Photographs of the
probe FB in THF-H2O solution under UV lamp (365 nm). (E) Cell staining images in the transfected PC-12 cells (Wang Y. et al., 2020).
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FIGURE 15
(A)Molecular structures of DTA derivatives and their photographic images under 365 nm UV light; (B) the absorption and fluorescence spectra
of BMPTA in THF/H2O with different fractions; (C) their changes in absolute fluorescence quantum yield versus water fraction in THF; and (D)
fluorescent confocal microscopy images of HeLa cells stained with 20 μM of BTA compounds for 30 min dark field images, bright field images,
overlaid of dark and bright field images (Wang R. et al., 2020).
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FIGURE 16
(A) Schematic showing the preparation of poly (PEGDA-co-TPE) FPNs for cell imaging; (B) the fluorescent spectra of poly (PEGDA-co-TPE) in
DMF/water mixtures with different water fractions; (C) the relationship of fluorescent spectra of poly (PEGDA-co-TPE) versus water fraction in the
mixed solution; and (D) CLSM images of L929 cells incubated with 40 μg ml−1 of poly (PEGDAco-TPE) FPNs (Jiang R. et al., 2020b).
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FIGURE 17
(A) Schematic illustration of the preparation of AIE-NPs through a nanoprecipitation method. (B) Photographs of PTZ-BT-TPA (i, iii) in THF and
(ii, iv) as NPs under room and UV light (365 nm), respectively. (C) Representative DLS profile and TEM image of the AIE-NPs. Scale bar = 300 nm. (D)
Photoluminescence excitationmapping of the AIE-NPs. (E)Comparison of the absorption coefficient, PLQY and brightness of ICG, MB and PTZ-BT-
TPA in water. (F) In vivo fluorescence imaging of tumor-bearingmice and (G) the corresponding fluorescence intensity of tumor site at different
time intervals after intravenous injection of the AIE-NPs. Data are presented as the means ± SD (n = 3). (H) Ex vivo fluorescence image and (I)
fluorescence intensity of main organs (heart, liver, spleen, lung, and kidneys) and tumor after intravenous administration of AIE-NPs for 24 h.
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FIGURE 18
(A) Illumination of carrier-free AIE-NPs for tumor photodynamic therapy. (B) In vivo fluorescence images of HeLa tumor-bearing mice after
intravenous injection with the AIE-NPs (1 mg/ml, 50 μL per mouse). (C) Ex vivo fluorescence images of organs and tumor at 9 h after intravenous
injection of the AIE-NPs. (D) Volume growth curves of tumors at different time points posttreatment in different groups (n = 3, *p < 0.05, **p < 0.01.
(E) Body weight measurement of the mice in each group (Cheng et al., 2020).
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Conclusion and perspectives

In summary, we have detailed the recent research strategies

of AIE molecules, which can potentially be used in biological

testing and imaging applications. The recent synthesis of

numerous AIE molecules has offered a great opportunity to

study the photophysical properties of such compounds

revealing the subtle mechanisms that led to this phenomenon.

Although tremendous development in the study of AIE

molecules has been achieved, there are still plenty of opportunities

and challenges remaining in this field. Achieving the following

research goals will deepen our comprehension and help to

facilitate the creation of innovative light-based biotechnologies: 1)

broadening the scope of mechanisms for building novel AIE-based

structures; 2) designing novel molecules with high light penetrability

and high quantum yield; 3) combining of sensing and imaging

strategies for the detection of target biomolecules and in vivo

fluorescence imaging; and 4) designing and manufacturing of AIE

biosensors with multi-model sensors and imaging capabilities (MRI,

THz, photoacoustic imaging, etc.).

The development of novel AIE-based molecules/materials is

highly desirable for many applications, e.g., biomolecular sensing,

biological imaging, chemical sensing, as stimuli-responsive

materials, and optoelectronic systems. The simplicity and

promising advantages of AIE systems will encourage scientists to

study new AIE materials, not only increasing the variety of

molecules developed but also working toward biological and

physiological applications for the accurate diagnosis and

treatment of diseases.
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