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Abstract

Motivation: Recently, copy number variation (CNV) has gained considerable interest as a

type of genomic variation that plays an important role in complex phenotypes and disease

susceptibility. Since a number of CNV detection methods have recently been developed, it

is necessary to help investigators choose suitable methods for CNV detection depending on

their objectives. For this reason, this study compared ten commonly used CNV detection

applications, including CNVnator, ReadDepth, RDXplorer, LUMPY and Control-FREEC,

benchmarking the applications by sensitivity, specificity and computational demands. Tak-

ing the DGV gold standard variants as a standard dataset, we evaluated the ten applications

with real sequencing data at sequencing depths from 5X to 50X. Among the ten methods

benchmarked, LUMPY performs the best for both high sensitivity and specificity at each

sequencing depth. For the purpose of high specificity, Canvas is also a good choice. If high

sensitivity is preferred, CNVnator and RDXplorer are better choices. Additionally, CNVnator

and GROM-RD perform well for low-depth sequencing data. Our results provide a compre-

hensive performance evaluation for these selected CNV detection methods and facilitate

future development and improvement in CNV prediction methods.

Author summary

As an important type of genomic structural variation, CNVs are associated with complex

phenotypes because they change the number of copies of genes in cells, affecting coding

sequences and playing an important role in the susceptibility or resistance to human dis-

eases. To identify CNVs, several experimental methods have been developed, but their res-

olution is very low, and the detection of short CNVs presents a bottleneck. In recent years,

the advancement of high-throughput sequencing techniques has made it possible to pre-

cisely detect CNVs, especially short ones. Many CNV detection applications were devel-

oped based on the availability of high-throughput sequencing data. Due to different CNV

detection algorithms, the CNVs identified by different applications vary greatly. Therefore,

it is necessary to help investigators choose suitable applications for CNV detection depend-

ing upon their objectives. For this reason, we not only compared ten commonly used CNV
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detection applications but also benchmarked the applications by sensitivity, specificity and

computational demands. Our results show that the sequencing depth can strongly affect

CNV detection. Among the ten applications benchmarked, LUMPY performs best for

both high sensitivity and specificity for each sequencing depth. We also give recommended

applications for specific purposes, for example, CNVnator and RDXplorer for high sensi-

tivity and CNVnator and GROM-RD for low-depth sequencing data.

This is a PLOS Computational Biology Benchmarking paper.

Introduction

Copy number variation (CNV) is a type of genomic structural variation that contains segmen-

tal duplications or deletions of a DNA fragment; the CNV size usually ranges from 1 kb to 3

Mb[1]. CNVs are found widely in individual human genomes, and they seldomly lead to

genetic diseases[2]. CNVs can change the number of copies of a gene present in cells, thus

affecting the coding sequences of genes, and they are associated with complex phenotypes [3].

CNVs also play an important role in the susceptibility or resistance to human diseases, such as

cancer [4], Alzheimer disease [5], autism [6] and psoriasis [7].

Previously, researchers developed several experimental methods to explore CNVs, such as

fluorescence in situ hybridization (FISH) and array comparative genomic hybridization

(aCGH) [8], but the low resolution of these methods (approximately 5~10 Mbp for FISH and

10~25 kbp for aCGH) [9] presents a bottleneck for the detection of short CNVs [10]. In the

last decade, Next Generation Sequencing (NGS) technology has enabled precise detection of

CNVs, making it possible to identify small variants as short as 50 bp[11]. Many CNV detection

algorithms were developed by NGS platforms.

The Read Depth (RD, or Read Count (RC))[12] and Pair-End Mapping (PEM, or Read Pair

(RP))[13] algorithms are the most popular methods for CNV detection, and they use statistical

models and clustering approaches for CNV detection[14], respectively. RD-based methods are

good at detecting exact copy numbers, large insertions and CNVs in complex genomic region

classes, whereas PEM-based methods can efficiently not only identify insertions and deletions

but also locate mobile element insertions, inversions, and tandem duplications[14].

Many CNV detection methods have been developed based on the RD or PEM algorithms

(Table 1). CNVnator is based on a statistical MSB model. It provides not only high sensitivity

(86–96%) and genotyping accuracy (93–95%) but also a low false-discovery rate (3–20%)[15].

ReadDepth is based on a statistical CBS model, and it can interpret overdispersed data for bet-

ter breakpoint estimation[16]. Control-FREEC is one of the most widely used RD-based CNV

detection software programs, and it uses matched case-control samples or GC content to cor-

rect copy number[17]. CNVrd2 computes segmentation scores by integrating the linear

regression algorithm[18] into a Bayesian normal mixed model; thus, it has the highest paralog

ratio[19]. cn.MOPS decomposes variations in the depth of coverage across multiple samples

into integer copy numbers and noise by means of its mixture components and Poisson distri-

butions[20]. RDXplorer is based on the Event-Wise Testing (EWT) algorithm, which is a

method based on significance testing, and the median size of detected CNVs is much longer

than that using PEM methods[9]. Canvas is a favored tool for both somatic and germline CNV

detection in large-scale sequencing studies, and it implements all steps of the variant calling
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workflow[21]. GROM-RD is a control-free CNV algorithm combining excessive coverage

masking, GC bias mean and variance normalization[22]. iCopyDAV is a modular-framework

based on DoC approaches[23]. RSICNV detects CNVs using the robust segment identification

algorithm with negative binomial transformations[24]. LUMPY integrates the CNV detection

methods of RD and PEM and allows for more sensitive CNV discovery[25].

Previous studies have surveyed CNV detection software with regards to specificity, sensitiv-

ity and computational demands, and they have evaluated their advantages and shortcomings.

For example, Fatima et al. evaluate CNV detection software based on analysis of whole-exome

sequencing (WES) data[26], and Junbo et al. evaluate six RD-based CNV detection software

programs based on analysis of whole genome sequencing (WGS) data[27]. However, previous

studies neither consider the impact of varied sequencing depth on the software performance

nor use a standardized CNV dataset for evaluation based on analysis of real sequencing data.

Our study not only adds several newer, untested software programs such as RSICNV, iCopy-

DAV and GROM-RD but also uses Database of Genomic Variants (DGV) as the gold standard

Table 1. CNV detection methods on WGS data.

Software Methods Algorithm detail Input

data

Publish Latest

update

Accessibility URL Programing

Language

#Citations

#Canvas RD Expectation-

maximization (EM)

clustering

BAM 2011 2018/3 Y https://github.com/Illumina/

canvas

C# 29

#cn.MOPS RD Mixture Poisson model BAM 2012 2018/10 Y http://www.bioinf.jku.at/

software/cnmops/cnmops.html

R 226

CNVeM RD Expectation-

maximization (EM)

algorithm

CSV 2013 NA Y https://omictools.com/cnvem-

tool

C 14

CNVer RP Maximum-likelihood,

Graphic flow

BAM 2010 2011/5 N NA C 158

#CNVnator RD Mean shift algorithm BAM 2011 2016/11 Y https://github.com/abyzovlab/

CNVnator

C++ 640

CNVrd2 RD Expectation-

maximization (EM)

algorithm

BAM/

SAM

2014 2015/11 Y https://bioconductor.org/

packages/release/bioc/html/

CNVrd2.html

R 13

#Control-

FREEC

RD LASSO regression BAM/

SAM

2011 2018/8 Y http://boevalab.com/FREEC/ C++ 190

#GROM-RD RD Quantile normalization BAM 2015 2017/5 Y http://grigoriev.rutgers.edu/

software/

C 7

#iCopyDAV RD DoC approaches BAM 2018 2018/3 Y https://github.com/vogetihrsh/

icopydav

R,C++ 1

JointSLM RD Population-based

approach

SAM/

BAM

2011 NA N NA R 49

#LUMPY RD,

PEM

A probabilistic

framework

BAM/

CRAM

2014 2016/3 Y https://github.com/arq5x/

lumpy-sv

C++ 157

mrCaNaVAR RD mrFAST SAM 2009 2013/9 Y http://mrcanavar.sourceforge.

net/

C 685

#RDXplorer RD Event-wise testing

algorithm

BAM 2009 2013/4 Y https://sourceforge.net/projects/

rdxplorer/

Python 496

#ReadDepth RD Circular binary

segmentation algorithm

Bed Files 2011 2014/8 Y https://github.com/chrisamiller/

readDepth

R 150

#RSICNV RD Negative binomial

transformations

BAM 2017 2017/7 Y https://github.com/yhwu/rsicnv C++ 2

Note:
# indicates the software used in this study.

https://doi.org/10.1371/journal.pcbi.1007069.t001
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so that our test results are more extensive and reliable[28]. Here, we surveyed ten frequently

used methods of CNV detection in WGS data (Table 1), including CNVnator, ReadDepth,

RDXplorer, LUMPY and Control-FREEC, and evaluated not only the detected CNV number,

length distribution and result coincidence between different CNV methods but also the accu-

racy, sensitivity and computational demand under the conditions of different sequencing

depths. Our study also compares the advantages and shortcomings of such CNV detection

methods, providing useful information for researchers to select a suitable method.

Materials and methods

Study data

The sequencing data (94x) of the individual NA12878 were downloaded from the website of

the 1000 Genomes Project[29] as evaluation data to compare the performance of CNV detec-

tion methods using real sequencing data. The DGV Gold Standard Variants for NA12878

were download from the Database of Genomic Variants (DGV)[28], and a previously pub-

lished SV benchmark of NA12878[30] was also fetched from the FTP site (ftp://ftp.

1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/NA12878/)[31].

Identification of CNVs in NA12878

After removing sequencing adapters and trimming consecutive low-quality bases from both

the 5’ and 3’ end of the reads using an in-house Perl script, clean reads were subsampled by the

sequencing depth of 5x, 20x, 10x, 30x, 40x and 50x using seqtk (https://github.com/lh3/seqtk)

[32]. Then, the six datasets were mapped to the human reference genome (hg19) using BWA

(V0.7.12) (http://bio-bwa.sourceforge.net/) [33] with default parameters. The Picard program

(https://broadinstitute.github.io/picard/) [34] was used to sort mapping results to the BAM

format. For CNV identification of NA12878, ten methods were used with default or recom-

mended parameters, including CNVnator, ReadDepth, RDXplorer, LUMPY and Control-

FREEC. The CNVs with lengths of more than 1 kb were kept as detected CNVs. The main

parameters for each software program used are listed in S1 Table.

Performance evaluation criteria

In the two datasets of the DGV Gold Standard Variants and the SV benchmark, the CNVs lon-

ger than 1 kb were merged by location overlap of more than 50% and were taken as the stan-

dard CNV dataset for performance evaluation (S1 Table). The identified CNVs of each

method were regarded as true positive results if there was more than 50% overlap on chromo-

some locations compared with the standard CNV dataset; otherwise, they were regarded as

true negative CNVs. Then, the true positive rates (TPRs) and the false discovery rates (FDRs)

were calculated and compared. The formulas to calculate TPR and FDR are shown in Table 2.

For computing time estimation, each application was run five times, and the average running

times were recorded for the related standard deviation computation. To compare the memory

usage of the applications, each application was run five times, and the average memory sizes

Table 2. Formula to calculate TPR and FDR.

Measure Formula Illustration

TPR TPR ¼ TP
P TP: the number of true positivis

P:the number of positives in DGV

FDR FDR ¼ FP
TPþFP TP: the number of true positives

FP: the number of false positives

https://doi.org/10.1371/journal.pcbi.1007069.t002
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were recorded for the related standard deviation[35–38] computation. The process used for

performance evaluation is shown in S1 Fig.

Results

Comparison of identified CNVs

With sequencing data with depths from 5X to 50X, ten methods were used to identify CNVs in

NA12878 (shown in Table 1), and the tested CNVs were listed in the supplementary files(S1–

S11 Files). As shown in Fig 1a, due to different CNV detection algorithms, the numbers of

detected CNVs varied greatly. CNVnator and RDXplorer identified the most CNVs, whereas

Canvas and cn.MOPS identified the fewest. In most cases, the number of CNVs identified

Fig 1. Statistics of the detected CNVs. (a) Detected CNV number. (b) Distribution of CNV size. (c) The Venn diagram of CNV

detection methods.

https://doi.org/10.1371/journal.pcbi.1007069.g001
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were positively correlated with the sequencing depth. However, RDXplorer detected the most

SVs at 30X depth, probably because the method was tested and optimized at a 30X sequencing

depth[9].

On the other hand, each software program tended to detect CNVs of different sizes, ranging

from less than 1 kb to several hundred kbp. As shown in Fig 1b, most methods identified

many small CNVs shorter than 10 kb, whereas LUMPY and ReadDepth predicted more CNVs

longer than 200 kb.

The detected CNVs for each method at a 30X sequencing depth were also compared in Fig

1c. Generally, CNVs identified by more than one method are more specific than those called

by only one method[39]. As shown in Fig 1c, 98.27% of CNVs identified by Canvas were also

identified by four other methods; the program with the next highest level of consistency with

other methods was ReadDepth (87.00%), whereas CNVnator and RDXplorer identified the

most CNVs that were only called in a single method.

Sensitivity and specificity of CNV prediction

As shown in Fig 2a, the TPR curves of the ten methods were plotted at six sequencing depths

from 5X to 50X. At a low sequencing depth of 5X, the TPR of LUMPY reached 0.432, followed

Fig 2. The evaluation of sensitivity and specificity of CNV detection methods. (a) TPR curves of the ten applications at sequencing depths from 5X

to 50X. (b) FDR curves of the ten applications at sequencing depths from 5X to 50X.

https://doi.org/10.1371/journal.pcbi.1007069.g002
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by CNVnator (0.370) and GROM-RD (0.359), which was much greater than other methods

(0.021 to 0.254), implying that these three methods have greater sensitivity at low sequencing

depth. At high sequencing depths of 30X and 50X, CNVnator also showed the highest TPR of

0.725 and 0.800, followed by LUMPY (0.711, 0.753) and RDXplorer (0.678, 0.621), implying

higher sensitivity than other methods. Overall, at each sequencing depth from low to high,

CNVnator and LUMPY had the best performance with respect to the sensitivity of CNV

detection.

At increasing sequencing depths, the trends of the TPR curves were different from one

another. For CNVnator, LUMPY and ReadDepth, the range with varying TPR was much

wider (Fig 2a), and the TPR curve visibly increased, which indicates that the sensitivity of

CNV detection is positively correlated with the sequencing depth. The TPR curve of

RDXplorer also significantly increased with sequencing depth from 5X to 30X but reached a

plateau at a 30X depth. This may result from the algorithm design as mentioned above.

Considering the sensitivity of detecting CNVs and sequencing costs, a sequencing depth of

30X provides the best value for CNV detection, as is indicated by the trends in the TPR curves

(Fig 2a). However, the TPR curves were independent from sequencing depth for FREEC, cn.

MOPS and Canvas (Fig 2a). With regards to the specificity of CNV detection methods, the

FDR curves of Canvas and LUMPY were lower than the others, implying that the specificities

of these two methods are better than those of the other methods, i.e., they predicted the least

false positive results (Fig 2b). The FDR value of iCopyDAV reached a peak value at a 30X

depth (0.878), followed by CNVnator (0.767) and RDXplorer (0.731), but these three methods

also predicted the most CNVs (Fig 2b).

Computational demands. The computational demands of these methods with respect

to computing time and memory usage are shown in Fig 3. Computing times of these ten

Fig 3. The computational demands of the ten methods. (a) Computation time as a function of sequencing depth from 5X to 50X.

(b) Memory usage as a function of sequencing depth from 5X to 50X.

https://doi.org/10.1371/journal.pcbi.1007069.g003
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applications increased with the increment of sequencing depth (Fig 3a). In particular,

RDXplorer had the highest cost, followed by iCopyDAV and FREEC, with the other methods

being comparable with low runtime costs. As shown in Fig 3b, the memory usage rates of these

ten methods were positively related to sequencing depth. CNVnator, RDXplorer, RSICNV and

LUMPY used the least amount of memory, while iCopyDAV, Canvas and FREEC needed

more memory to run.

Discussion

This study surveyed the performance of ten CNV detection applications with regards to sensi-

tivity, specificity and computational demands over a range of sequencing depths.

We found that most CNVs detected by Canvas and ReadDepth could be explored by other

methods, but CNVnator and RDXplorer identified many specific CNVs (Fig 1c). Of all the

CNV detection methods, LUMPY showed the best performance in terms of both sensitivity

and specificity, probably because LUMPY integrates two different algorithms of PEM and RD

for CNV prediction[25], and the PEM algorithm can provide better mapping accuracy on

highly repetitive genomic regions than RD-based methods in some cases.

Since TPR values for most methods were below 0.8 and the FDR values for most methods

were above 0.3 (Fig 2), we believe that the sensitivity and specificity for CNV detection are not

likely to be improved in the future.

Limiting the CNV detection algorithms studied, our results are consistent with a previous

report[39]. For all the ten methods, including RD-based algorithms, the read depth distribu-

tion is affected by the following three major causes. First, the GC-content in genomes leads to

PCR bias during the construction of sequencing libraries, and the genome regions with ultra-

high or ultralow GC-contents are difficult to sequence, so the read depths on these regions are

uneven. Second, because the genome sequencing was performed using short reads and it is dif-

ficult to correctly map short reads to genome regions with highly repetitive sequences, false

positive CNV results arise in most studies. Lastly, the valuation results for cn.MOPS fall short

of expectations. Since the cn.MOPS method was designed for input data from multisamples,

the sensitivity and specificity are both very low when inputting single samples.

The high FDR of CNV detection was also likely caused by the imperfectness of the standard

CNV dataset. We also conducted the evaluation with another set of gold standard CNVs used

in a previous study[40], but the evaluation results were similar. A possible explanation is that it

is difficult to identify all the CNVs on real experimental data, in spite of the fact that many plat-

forms were used to confirm the detected CNVs on DGV Gold Variations. Therefore, the stan-

dard CNV dataset may not comprise all the true CNVs in NA12878, and it may include some

incorrect CNVs. For example, of all the CNVs in the standard CNV data set, 623 CNVs were

not detected by any of the ten methods; these are most likely false positive detection results.

The benchmarking above was based on single subsampling on each sequencing depth. To

avoid subsampling bias, we evaluated the effect of subsampling on CNV prediction using mul-

tiple random subsampling. As shown in S2 Fig, we calculated TPR and FDR using five times

subsampling for each CNV program on 30X depth (S2a & S2b Fig), which is a typical depth

for whole genome resequencing studies, and also subsampled five times on each depth for one

program LUMPY (S2c & S2d Fig). Most CNV prediction results of multiple subsampling are

steady and the trends of TPR and FDR curves of each program were consistent with previous

benchmarking conclusions (Fig 2a & 2b).

The aim of this survey is to help researchers choose appropriate CNV detection methods

according to their specific purposes and the features of their data. We suggest that (1) when

low FDR is preferable, LUMPY and Canvas are better choices (Fig 2); (2) when high sensitivity
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is preferable, LUMPY, CNVnator and RDXplorer are better choices (Fig 2); and (3) if the

speed/computation demand is the first priority, CNVnator and ReadDepth should be consid-

ered (Fig 3).

In this study, we employed the default or recommended parameters of each application for

performance comparison. We plan to compare the best performance for each application by

fine tuning the parameters and to include more recently published CNV applications in the

future. Considering the limitations of sequencing data comprised of short reads, we are also

preparing to evaluate CNV detection methods using long sequencing reads, such as PacBio or

Oxford Nanopore, which may further improve the CNV prediction performance with regards

to sensitivity and specificity.

Supporting information

S1 Fig. The evaluation workflow.

(TIF)

S2 Fig. Evaluation of sensitivity and specificity of CNV detection methods using five times

subsampling. (a) TPR of the ten application at 30X depth using five times subsampling. (b)

FDR of the ten application at 30X depth using five times subsampling. (c) TPR of Lumpy from

5X to 50X depth using five times subsampling at each depth. (d) FDR of Lumpy from 5X to

50X depth using five times subsampling at each depth.

(TIF)

S1 Table. The detailed information concerning the tested software.

(DOCX)

S1 File. Standard CNVs for NA12878.

(XLSX)

S2 File. Detected CNVs using Canvas.

(XLSX)

S3 File. Detected CNVs using cn.MOPS.

(XLSX)

S4 File. Detected CNVs using CNVnator.

(XLSX)

S5 File. Detected CNVs using iCopyDAV.

(XLSX)

S6 File. Detected CNVs using GROM-RD.

(XLSX)

S7 File. Detected CNVs using Rsicnv.

(XLSX)

S8 File. Detected CNVs using Control-FREEC.

(XLSX)

S9 File. Detected CNVs using RDXplorer.

(XLSX)

S10 File. Detected CNVs using ReadDepth.

(XLSX)
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