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Abstract.
Over sixty years ago John Walton and Frederick Nattrass defined limb girdle muscular dystrophy (LGMD) as a separate entity

from the X-linked dystrophinopathies such as Duchenne and Becker muscular dystrophies. LGMD is a highly heterogeneous
group of very rare neuromuscular disorders whose common factor is their autosomal inheritance. Sixty years later, with the
development of increasingly advanced molecular genetic investigations, a more precise classification and understanding of the
pathogenesis is possible.

To date, over 30 distinct subtypes of LGMD have been identified, most of them inherited in an autosomal recessive fashion.
There are significant differences in the frequency of subtypes of LGMD between different ethnic populations, providing evidence
of founder mutations. Clinically there is phenotypic heterogeneity between subtypes of LGMD with varying severity and age
of onset of symptoms. The first natural history studies into subtypes of LGMD are in process, but large scale longitudinal data
have been lacking due to the rare nature of these diseases. Following natural history data collection, the next challenge is to
develop more effective, disease specific treatments. Current management is focussed on symptomatic and supportive treatments.
Advances in the application of new omics technologies and the generation of large-scale biomedical data will help to better
understand disease mechanisms in LGMD and should ultimately help to accelerate the development of novel and more effective
therapeutic approaches.
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INTRODUCTION

Limb girdle muscular dystrophy (LGMD) is an
umbrella term given to a group of rare, highly het-
erogeneous, autosomal neuromuscular disorders. The
term LGMD was first used in a seminal paper by
John Walton and Frederick Nattrass in 1954 [1]. The
authors identified LGMD as a separate entity from the
more common X-linked Duchenne and Becker mus-
cular dystrophies (DMD/BMD). Between subtypes
of LGMD, there are few common features, with the
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exception of autosomal inheritance. Other similarities
in LGMD, most of which are still relevant, were
described as illustrated in this quote from the original
paper:

“In our opinion, these cases should be regarded
as a distinct clinical and genetic group and we
suggest they should be called limb-girdle muscular
dystrophy. Leaving aside certain clinical charac-
teristics which may be added later, we feel that the
cardinal features of this type are (a) onset usually
late in the first or in the second or third decade
but sometimes in middle age, (b) commencement of
muscular weakness in either the shoulder or pelvic
girdle, (c) transmission usually via an autosomal
recessive gene, (d) a relatively slow course which
nevertheless leads to severe disablement and often
death before the normal age.” [1]
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A number of the cases identified in the paper by Wal-
ton and Nattrass continued to be treated in Newcastle
and were subsequently identified as LGMD2A and
LGMD2I. There are now over thirty subtypes of
LGMD identified. LGMD may present at any age and
in the severe forms can show an overlap with congenital
muscular dystrophies. Heterogeneity is seen between
subtypes in presenting complaint, most but not all,
experience proximal muscle weakness or myalgia. Dis-
tal muscle weakness and life threatening arrhythmias
may on the other hand be the first symptom, which
illustrates the wide variation between LGMD subtypes.

Over the last sixty years, molecular genetic investi-
gations have advanced, allowing precise classification
and improvements in our understanding of the patho-
genesis of LGMD subtypes. Other scientific advances
have increased our knowledge of the structure and
function of various parts of the sarcolemma and
myocyte function. In 1995 a consensus was achieved
on the categorisation of subtypes of LGMD [2].

Classification and epidemiology

All form of LGMD are inherited autosomally and
the classification is alphanumeric with assignation of

number ‘1’ or ‘2’ depending on whether they are
inherited dominantly or recessively. A letter is added
in order of discovery [2]. To date over 50 genetic loci
have been identified [3]. Dominantly inherited LGMD
is less common and reported to be only 5–10% of all
LGMD [4, 5].

Overall prevalence of LGMD worldwide has been
estimated to be 1 in 14,500–45,000 [4, 6]. A study by
Norwood et al suggested that within the population of
Northern England, LGMD accounts for 6.2% of all
neuromuscular patients [6]. There is a wide variation
in prevalence of LGMD subtypes in different ethnici-
ties, suggesting potential founder mutations [7]. In the
case of many of the newly discovered LGMD subtypes,
mutations have only been described in a handful of
families worldwide [8, 9]. Reportedly the most com-
mon LGMD subtype is LGMD2A (26.5–30%), then
LGMD2I (19%) although this varies widely between
populations [6, 10]. Because of the autosomal mode
of inheritance LGMD is supposed to affect both gen-
ders equally, although Magnetic resonance imaging
(MRI) studies have shown that phenotypic differences
may exist in the severity of affected muscles [11].
and in LGMD2L males seem to be more frequently
affected [12].

Table 1
A table to show current understanding of LGMD subtypes, genes and protein functions. Only LGMD subtypes with known genes are listed

LGMD Gene/Locus Protein Suggested function of protein References

1A 5q 22 – 34 (TTID) Myotilin Sarcomeric stabilisation of actin bundles [13–16]
1B 1q 11–21 (LMNA) Lamin A/C Nuclear membrane stabilisation and

transcriptional regulation
[17, 18]

1C 3p25 (CAV3) Caveolin 3 Stabilisation of the sarcolemmal membrane,
regulates cellular signal traffic

[19, 20]

1D 7q (DNAJB6) HSP40 Molecular chaperone involved in proteomic
and autophagic turnover

[21, 22]

1E 6q23 (DES) Desmin intermediate filament regulating sarcomere
and cytoskeletal architecture

[23, 24]

1F 7q32 (TNPO3) Transportin 3 Nuclear importing receptor [25, 26]
1G 4q21 (HNRNPDL) Heterogeneous Nuclear

Ribonucleoprotein D-like protein
pre-mRNA processing [27, 28]

2A 15q15–21 (CAPN3) Calpain 3 Implicated in cytoskeletal repair
mechanisms, binds titin

[29, 30]

2B 2p13 (DYSF) Dysferlin Regulation of vesicle fusion, receptor
trafficking and repair of damaged
membranes

[31, 32]

2C 13q12 (SGCG) �-sarcoglycan Connects the sarcolemma to the extracellular
matrix, stabilisation of the dystroglycan
complex

[33]

2D 17q 12–21 (SGCA) �-sarcoglycan Connects the sarcolemma to the extracellular
matrix, stabilisation of the dystroglycan
complex

[33–35]

2E 4q12 (SGCB) �-sarcoglycan Connects the sarcolemma to the extracellular
matrix, stabilisation of the dystroglycan
complex

[33, 36]

(Continued)
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Table 1
(Continued)

LGMD Gene/Locus Protein Suggested function of protein References

2F 5q33–34 (SGCD) δ-sarcoglycan Connects the sarcolemma to the extracellular
matrix, stabilisation of the dystroglycan
complex

[33, 37]

2G 17q11-12 (TCAP) Telethonin Binds to titin, T tubule organisation [38, 39]
2H 9q31–34 (TRIM 32) Tripartite Motif containing 32 Binds to myosin, may ubiquitinate actin [40, 41]
2I 19q13 (FKRP) Fukutin related protein Glycosylation of �-dystroglycan [42, 43]
2J 2q (TTN) Titin Multiple binding sites for other proteins,

connects the Z line to the M line in the
sarcomere

[44, 45]

2K 9q34 (POMT1) Protein-O-mannosyl transferase1 Involved in glycosylation of �-dystroglycan [46, 47]
2L 11p12-13 (ANO5) Anoctamin 5 Not completely understood – may act as a

chloride channel
[12]

2M 9q31 (FKTN) Fukutin Involved in glycosylation of �-dystroglycan [48]
2N 14q24 (POMT2) Protein-O-mannosyl transferase 2 Involved in glycosylation of �-dystroglycan [49]
2O 1p34 (POMGnT1) Protein-O-linked mannose beta 1,2

Nacetylglucosaminyl transferase
Involved in glycosylation of �-dystroglycan [50, 51]

2P 3p21 (DAG1) Dystroglycan Key basement membrane receptor and
component of the dystrophin-glycoprotein
complex,

[47, 52]

2Q 8q24 (PLEC1) Plectin Structural linkage between sarcomere and
sarcolemma

[53]

2R 2q35 (DES) Desmin Intermediate filament regulating sarcomere
and cytoskeletal architecture

[54]

2S 4q35 (TRAPPC11) Transport protein particle complex 11 Membrane trafficking [55]
2T 3p21 (GMPPB) GDP-mannose pyrophosphorylase B Involved in glycosylation of �-dystroglycan [56, 57]
2U 7p21 (ISPD) Isoprenoid synthase domain Aids in o-mannosylation of �-dystroglycan [58]
2V 17q25 (GAA) Alpha-1,4 glucosidase Lysosomal enzyme hydrolysing glycogen [8]
2W 2q14 (LIMS2) Lim and senescent cell antigen-like

domains 2
Part of the integrin-actin cytoskeleton,

signalling
[9, 59]

LGMD subtypes are often grouped according to
which protein is affected and many are allelic with
other conditions.

Pathogenesis

LGMD is caused by multiple genes encoding for
proteins within the sarcolemma, cytosol or nucleus
of the myocyte (see Table 1 and Fig. 1). The lack
of a common aetiology explains some of the differ-
ences in severity of phenotypes. The heterogeneous
nature of LGMD makes it difficult to define a common
pathway of myocyte damage. Possible mechanisms
include membrane instability [33], errors in forma-
tion of a functional dystroglycan complex [60], and
defects in muscle repair mechanisms [32, 61]. It
is likely that the majority of the LGMD subtypes
eventually develop membrane instability, similar to
dystrophinopathies, which ultimately leads to muscle
fibre degeneration. High levels of intracellular cal-
cium have been implicated in myocytic damage [62],
although the exact mechanism of calcium ion influx
is not well described. It has been suggested that the
influx of calcium ions activates proteolysis, eventu-
ally leading to apoptosis/necrosis of the myocytes [63].

Damage of muscle fibres leads to the release of inflam-
matory cytokines and consecutively neutrophils and
macrophages are dispatched to degrade cellular debris
[64]. Muscle satellite cells (undifferentiated myocyte
progenitor cells) replace the damaged or necrotic tis-
sue [65]. Eventually muscular repair mechanisms and
satellite cell populations are overwhelmed and depo-
sition of fibrotic (collagen) tissue and adipose tissue
occurs [66].

Natural history of LGMD

A thorough understanding of the progression of
LGMD subtypes is dependent on the completion of
longitudinal natural history studies. Natural history
studies are essential in defining disease specific out-
come measures and in developing care standards.
To date, small scale cross-sectional studies and case
series provide most of the information we have on
the natural history of LGMD. The rarity of LGMD
makes recruitment to larger longitudinal studies chal-
lenging. Longitudinal natural history studies have been
completed on LGMD2I [67]. and a large cohort of
LGMD2B are currently being assessed in an inter-
national longitudinal study, the results of which are
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not yet published. LGMD1B and 2A cohorts have
been described, although no longitudinal natural his-
tory studies have been accomplished.

Patients with LGMD display predominantly sym-
metrical, proximal muscle weakness, although asym-
metry and distal involvement can be seen in LGMD2B
and 2L. Typical features and complications of LGMD
may include respiratory compromise, cardiomyopathy,
cardiac arrhythmias, scapular winging, calf hypertro-
phy, rigid spine and limb contractures, but almost all
of the known LGMD subtypes show clinical hetero-
geneity and assuming a diagnosis based on “classical”
phenotypes may be misleading. Less common associ-
ated features may aid to the diagnosis, as for example
rippling muscle disease in LGMD1C [68]. Serum cre-
atinine kinase (CK) levels are almost always raised
in LGMD2, although the degree to which the CK is
raised depends on the subtype, with LGMD2B and 2L
having exceptionally high serum CK activities. Auto-
somal dominantly inherited LGMD commonly have a
lower serum CK level than recessively inherited forms,
except for LGMD1C, which can present with CK levels
>2000 IU/l.

A brief summary of the features of the more common
and distinctive subtypes of LGMD is listed below.

LGMD1A (myotilinopathy)

LGMD 1A is allelic with myotilin-associated
myofibrillar myopathy and most patients with MYOT
mutations have been described with the latter pheno-
type. The onset of weakness occurs typically during
adult life and patients show normal or mildly elevated
serum CK levels [69]. Other features can include respi-
ratory failure, cardiomyopathy and dysarthric speech
[69]. Over the past years several imaging studies using
muscle MRI have been performed, showing a selec-
tive pattern of involvement. Of the hamstring muscles
the semimembranosus muscle is most severely affected
whereas the adjacent semitendinosus muscle is often
well preserved [70]. Most patients with LGMD1A
show the characteristic changes of a myofibrillar
myopathy in their muscle biopsy.

LGMD1B (laminopathy)

Laminopathy is allelic with several other multi-
system disorders (i.e. lipodystrophy, Emery Dreifuss
muscular dystrophy) and may present from the first to
the fourth decade of life. Features include severe car-
diomyopathy and potentially life threatening cardiac
arrhythmias [71]. Cardiology follow up is therefore
very important. Due to the risk of life threatening

arrhythmias, LGMD 1B is an important diagnosis
to exclude in patients with an unidentified LGMD
following muscle biopsy analysis, which generally
shows unspecific findings. The only way to success-
fully exclude LGMD1B is by genetic testing. Rigid
spine and limb contractures are also associated but not
universal [71]. Serum CK levels are either normal or
mildly elevated, with MRI studies have shown the most
affected muscles include adductor magnus, semimem-
branosus, long head of the biceps femoris, soleus and
medial head of the gastrocnemius [72].

LGMD1C (caveolinopathy)

Caveolinopathy comprises 1-2% of all LGMD
[73, 74]. It usually presents within the first decade of
life. The most common presenting complaint is pri-
marily myalgia, followed by ‘rippling muscles’ and
proximal muscle weakness [68]. It may be possible to
elicit the ‘Rippling’ of the muscles by percussion with a
tendon hammer. Levels of serum CK may be moderate
to high; 4–25 times normal levels [75]. Hypertrophic
cardiomyopathy and cardiac arrhythmias can occa-
sionally occur in this disease and annual reviews are
suggested [76].

LGMD1E, 2R (The desminopathies)

Desmin is a structural protein involved in mem-
brane stabilisation. Most mutations in the DES gene
have been associated with myofibrillar myopathy and
also cardiomyopathy. LGMD 1E has been described
in families in America and Finland [77, 78] with
LGMD 2R only reported in a Turkish Family [54].
Patients typically present in adulthood with progres-
sive weakness. The dominant form (LGMD1E) has a
strong association with cardiomyopathy [77] with both
recessive and dominant forms associated with cardiac
arrhythmias [23]. Serum CK levels may be normal or
may show a modest increase (up to 4 times normal
levels). On muscle MRI patients with desminopathies
typically show involvement of the semitendinosus, gra-
cilis and sartorius muscles and muscle biopsies show
characteristic features of myofibrillar myopathies with
desmin accumulation [79, 80].

LGMD2A (calpainopathy)

Calpainopathy, probably the most common form of
LGMD worldwide, typically first presents from 2–40
years [6, 30]. The phenotype is highly variable but
studies have estimated that loss of ambulation can
occur from 5–39 years [30]. Respiratory compromise
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Fig. 1. A depiction of the organisation of the sarcolemma and LGMD subtypes associated with a defect in each protein. Of particular importance
to the stability of the myocyte is – the dystrophin-glycoprotein complex, a highly glycosylated oligomeric structure that links the extracellular
matrix to the sub-sarcolemmal cytoskeleton. (Amalgamated from Cotta [130], Laval [131]).

is common at later stages, but less severe than in the
LGMDs associated with the dystrophin-glycoprotein
complex. Patients with LGMD2A don’t show cardiac
involvement. Serum CK is typically moderately raised,
at 3–20 times normal levels. MRI studies have sug-
gested that the muscles of the shoulder girdle and of the
posterior compartments of the legs are most severely
affected, with relative sparing of the sartorius, gra-
cilis and vastus medialis muscles [81]. (see ‘Fig. 2’)
Muscle biopsies show dystrophic features with some-
times prominent inflammatory infiltrates and loss of
calpain 3 expression by Western blotting can suggest
the diagnosis, which should be genetically confirmed.

LGMD2B (dysferlinopathy)

Dysferlinopathy is one of the more common forms
of LGMD. One Italian study estimated this to be
the cause of 18% of all LGMDs in their population
[74]. Age of onset is variable (typically second to

third decade of life) and progression is often slow
[82]. Cardiomyopathy is not generally a feature in
LGMD2B. Serum CK activity may be very high; often
up to 40 times of normal levels. MRI studies have
shown gluteal muscles, tensor fasciae latae, semitendi-
nosus, semimembranosus, biceps femoris and triceps
surae to be the most severely affected muscles [83].
Dysferlin-deficiency with more prominent involve-
ment of the lower legs muscles is also known as
Miyoshi myopathy. Immunoanalysis of dysferlin in
muscle biopsies typically shows a lack of expression
by immunohistochemistry and Western blotting.

LGMD2C, 2D, 2E, 2F, (The sarcoglycanopathies)

The sarcoglycanopathies combined account for 12%
of all LGMD in an Italian population [84]. The
four types (2C, 2D, 2E, 2F) relate to the specfic
sarcoglycan protein which is missing, �, �, �, δ, respec-
tively. Phenotypically, sarcoglycanopathy resembles



S12 A.P. Murphy and V. Straub / LGMD: The Classification, Natural History and Treatment

Fig. 2. The images above show T1 weighted axial magnetic resonance images of the pelvic girdle and legs muscles of patients with LGMD2A,
2D and 2L. In all patients a selective pattern of muscle pathology can be seen, with advanced changes in the LGMD2A patient, well preserved
calf muscles in the LGMD2D patients and well preserved gluteal muscles in the LGMD2L patient.

dystrophinopathy, with severe, progressive proximal
muscular weakness [85]. Symptoms may present in
early life – typically 4–7 years old – and presentation
may occur up to the second decade. Respiratory failure
and cardiomyopathy are common features and should
be actively screened for. Serum CK activity is generally
very high and the diagnosis is typically established by a
lack or reduction of sarcoglycan expression on biopsies
and genetic testing. Imaging studies have shown that in
comparison to the thigh and shoulder girdle muscles,
the calf muscles are fairly well preserved in patients
with sarcoglycanopathies [86]. (See ‘Fig. 2’)

LGMD2G (telethoninopathy)

Telethoninopathy is described in only a small num-
ber of patients [39, 87] and onset of disease seems to
most frequently start in adolescence, with proximal and
distal limb weakness. Serum CK is moderately raised
(up to 10 times normal levels). The diagnosis can be
suggested by the lack of telethonin expression in bio-
psies, which typically show a dystrophic pattern [88].

LGMD2I, 2K, 2M, 2N, 2O, 2P, 2T, 2U (The
dystroglycanopathies)

Dystroglycanopathies are caused by defects in
the dystroglycan complex, mainly through abnormal

glycosylation of �-dystroglycan. Dystroglycan is
present in many tissues throughout the body and is
essential in function of myocytes and membrane stabil-
ity [89]. The phenotypic spectrum of disease is highly
variable, and presentation may be anywhere from the
first to the fourth decade of life. LGMD2I is the most
common of the dystroglycanopathies. Respiratory fail-
ure and cardiomyopathy are common features of this
group, with myoglobinuria and myalgia also reported
[90]. Serum CK is dependent on subtype, but ranges
from moderately raised (5–10 times normal) to very
high levels (up to 50 times normal). MRI studies have
shown that the most severely affected muscles are: gas-
trocnemius, soleus, long head of the biceps femoris,
semimembranosus and semitendinosus. The vastus lat-
eralis, gracilis and sartorius are relatively spared [11].
On muscle biopsies most patients show an abnormal
expression of �-dystroglycan.

LGMD2J (titinopathy)

The TTN gene has the largest number of exons and
has the longest coding sequence of any known gene.
Only recent advances in next generation sequencing
have enabled diagnosis of more patients with mutations
in this gene. Titinopathy is thought to be under-
recognised due to the difficulties in diagnosis, and
may be far more common than previously believed.
Originally titinopathy was described in a family from



A.P. Murphy and V. Straub / LGMD: The Classification, Natural History and Treatment S13

Finland [91] with presentation of severe weakness
in the first to third decades of life. Cardiomyopa-
thy was not described in the original Finnish family;
[91] however other mutations in titin have predis-
posed patients to cardiac involvement. Serum CK can
be highly raised. Patients with mutations in the TTN
gene may also present with distal weakness, severe
respiratory involvement and characteristic features of
a myofibrillar myopathy [92]. It can still be very chal-
lenging to confirm the diagnosis of LGMD2J and other
titin-associated myopathies.

LGMD2L

LGMD2L is one of the most common forms of
LGMD in Northern Europe and Canada. Onset of
symptoms may be from the third decade of life onwards
[12, 93]. Unlike most subtypes of LGMD, LGMD2L
predominantly affects males although it is not fully
understood why this appears to be the case. No cardiac
involvement has been reported [93]. Serum CK levels
are typically highly elevated and the diagnosis needs to
be established genetically. An example of MRI findings
is seen in ‘Fig. 2’.

Other LGMD subtypes

LGMD1D, 1F, and 1G are all described in very small
numbers, and sometimes within single families. The
age of presentation is varied, but typically onset is with
proximal muscle weakness in adulthood. Serum CK
in these subtypes may be normal or increased by ten
times. The role of cardiac and respiratory involvement
is not yet clear in these LGMD subtypes [26–28, 37,
94–96]. Patients with LGMD1D show similar features
to patients with myofibrillar myopathies.

LGMD2H, 2Q, 2S, 2V, 2W are very rare LGMD
subtypes and have only been described in a few cases,
although LGMD2H is frequently diagnosed in the
Hutterites due to a common founder mutation [40].
These subtypes typically present in the first to second
decades. All of these subtypes give a rise in serum CK;
in some cases as much as fifty times normal [8, 9, 53,
55, 97].

Differential diagnosis

LGMD is a group of highly heterogeneous disorders
with many distinguishing features. A wide differential
diagnostic spectrum should be considered, as several
conditions may have similar presentations. Below are

some conditions which have certain features in com-
mon with some of the LGMD subtypes.

DMD and BMD are more common than LGMD
and are often suspected first. Dystrophinopathies may
present with similar onset and patterns of weakness to
some of the LGMD. Female carriers may also manifest
mild proximal weakness and are easily misdiagnosed
with LGMD [98]. It is likely that there are more female
carriers of DMD and BMD than most of the LGMD
subtypes. Genetic studies identifying the mutation in
the DMD gene or immunohistochemical analysis are
diagnostic.

In facioscapulohumeral muscular dystrophy
(FSHD) the pattern of muscle weakness can be
variable, and progression to facial features may not be
seen for many years, leading to suspicions of LGMD.
Confirmation of FSHD is through genetic testing [99].

Patients with spinal muscular atrophy (SMA) types
II and III can present similarly to LGMD with pro-
gressive proximal muscle weakness. Diagnosis is
confirmed with genetic testing to identify deletions of
SMN1.

Patients with Emery Dreifuss muscular dystrophy
(EDMD) also form an important differential diagnosis
to LGMD. The most prominent sign of EDMD is
cardiac involvement and arrhythmias and patients com-
monly present with progressive joint contractures,
typically in elbow flexion, and hip girdle related weak-
ness in the first decade of life [100].

Pompe disease is another differential diagnosis that
needs to be considered in patients with limb girdle
weakness. Pompe disease is highly variable in presen-
tation and may present at any age from childhood to
adulthood. It is diagnosed by a deficiency or reduction
of glucosidase enzyme activity [101].

Bethlem myopathy, caused by mutations in any of
the three genes for collagen VI, may present in early
childhood or develop later in life and can form an
important differential diagnosis to LGMD. Contrac-
tures are common and patients frequently present with
skin changes that are suggestive of a collagen VI
related disorder [102].

Acquiredmusclediseases, suchaspolymyositis, der-
matomyositis and inclusion body myositis can present
with signs of proximal muscle weakness and elevated
serum CK levels and may mimic a form of LGMD.
Historyofskinchanges,arthritisandelevationininflam-
matory markers should be ascertained. Histological
changes on muscle biopsy can be similar to types of
LGMD, in particular LGMD2A, 2B and 2L, as all may
show inflammatory infiltrates [103, 104]. Patients with
refractory cases of inflammatory myositis, i.e. unre-
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sponsive to immunosuppression,shouldbe investigated
for LGMD as misdiagnosis is possible [105].

Diagnostic investigations

Thorough history and examination is vital in the first
line of investigating patients with suspected neuromus-
cular disease. Features such as: age of onset, presence
of cardiomyopathy or arrhythmia, ‘rippling’ muscles,
or symptoms of rigid spine may give clues as to the
subtype of LGMD. When considering any genetic con-
dition, thorough family history is vital.

Serum CK is raised in the majority of the LGMD
subtypes and should always been tested in patients with
limb girdle weakness. The degree to which it is raised
may provide diagnostic clues.

Genetic investigation in patients with progressive
limb girdle weakness is directed by history, exami-
nation, specific family history and the results of other
investigations such as electrophysiology, muscle imag-
ing and muscle biopsy analysis.

Electrophysiology is useful to rule out some of the
differential diagnoses such as neuromuscular junction
disease, SMA III and neuropathies. LGMD elec-
trophysiology findings are of nonspecific myopathic
changes.

MRI is a non-invasive, highly sensitive way of
assessing patients with suspected primary muscle dis-
ease, although it’s application is more useful for the
differential diagnosis of congenital myopathies and
myofibrillar myopathies than for LGMD. MRI is on the
other hand particularly useful in assessing disease pro-
gression and in targeting muscle biopsy. Studies have
investigated LGMD using MRI to investigate patterns
of muscle involvement which can also help to direct
genetic and immunohistochemical analysis [11, 81, 86,
94, 95].

A wide panel of immunohistochemical stains are
used in analysis of muscle biopsy tissue. For many
forms of LGMD muscle histology is nonspecific
and may share several features with other neuro-
muscular disorders such as the dystrophinopathies.
Histology findings include rimmed vacuoles, muscle
regeneration, necrosis, macrophage infiltration and
inflammation but are nonspecific to any of the LGMD
subtypes. Immunohistochemical and Western blot
analysis using a panel of antibodies greatly increases
diagnostic capabilities and can either guide or confirm
genetic testing [106]. Due to the highly population spe-
cific nature of some of the LGMD, a selection of the
most common subtypes of LGMD are investigated ini-
tially in this way. Next generation sequencing (NGS)

has been used to aid in identification of more genetic
loci and subtypes of LGMD [107].

Management

To date, no cause-specific treatment is available for
any of the LGMD subtypes. Limited evidence exists
for response to immunomodulating therapies such as
corticosteroids which has been reported to have some
effects in some of the LGMDs [108, 109]. To date,
only one large scale randomised controlled trial has
assessed the effects of corticosteroids on LGMD. In
2008, Walter et al found no significant clinical ben-
efit in giving Deflazacort to patients with LGMD 2B
(dysferlinopathy) [110].

Supportive management is important with ther-
apies being tailored to the subtype of LGMD and
the individual’s needs. Specialist multidisciplinary
management is vital. Physiotherapy and orthotic
intervention is directed at aiding the individual to
maintain independence and ambulance for as long as
possible. Efforts should be focussed on prevention of
contractures and orthopaedic referral where necessary
[111]. Non maximal aerobic exercise should be
encouraged.

Respiratory failure is a feature of many types of
LGMD. Regular assessment of forced vital capacity
via spirometry, and overnight pulse oximetry is very
important. Interventions such as non-invasive ventila-
tion and cough assist machines should be considered
on an individual basis [112]. Several of the subtypes of
LGMD are associated with cardiomyopathy and car-
diac arrhythmias. Cardiologist review for those at risk
is essential; this should include regular echocardio-
gram and ECG.

FUTURE RESEARCH

In the past, research into rare diseases has been
hindered by small numbers of patients available on
a regional and even national level. Multinational net-
works such as TREAT NMD [113] have been created to
encourage research into rare neuromuscular conditions
and to enable recruitment on a larger scale.

Multicentre, natural history studies are important in
increasing our knowledge of LGMD. Ongoing long
term follow up studies are looking at the measurable
progression of LGMD 2I and LGMD 2B using both
functional outcomes and MRI [67, 114]. Characteri-
sation of the natural history of LGMD subtypes is the
first step in developing LGMD subtype specific treat-
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ments with the involvement of funding agencies such
as the European Union, NIH, patient organisations and
pharmaceutical companies.

Patient registries are also important in research into
rare disease. Registries give researchers the ability to
contact and review details of patients with rare dis-
eases across large geographical areas. Registries are
available for LGMD 2A, 2B, 2C, 2D, 2I, 2K, 2M, 2N,
and 2O [115–120].

Future avenues for research include gene therapy.
Some success has been seen in ameliorating murine
models of subtypes of LGMD [121–123]. Barriers
to successful treatment with adeno-associated virus
(AAVs) include difficulties in delivery to affected
muscle and the size of molecule [124]. Functionality
of a truncated protein in some LGMDs has been
confirmed including dysferlin. Approaches such as
gene transfer of ‘mini-dysferlin’ and exon skipping
which can create a shortened but functional protein
has been used in vitro and murine models [125, 126].
Another, non-subtype specific approach is to block
myostatin, one of the body’s regulators of muscle
growth [127]. Proteasome inhibition [128] and stem
cell therapy are also under investigation [129]. With
improved diagnostic tools, the identification of new
drug targets and increased collaboration in the field
or rare diseases, there is hope that more effective
treatments will be developed for future use in patients
with LGMD.
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