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The control of planetary rovers, which are high performance mobile robots that move on deformable rough terrain, is a challenging
problem. Taking lateral skid into account, this paper presents a rough terrain model and nonholonomic kinematics model for
planetary rovers. An approach is proposed in which the reference path is generated according to the planned path by combining
look-ahead distance and path updating distance on the basis of the carrot following method. A path-following strategy for wheeled
planetary exploration robots incorporating slip compensation is designed. Simulation results of a four-wheeled robot on deformable
rough terrain verify that it can be controlled to follow a planned path with good precision, despite the fact that the wheels will
obviously skid and slip.

1. Introduction

Wheeled mobile robots (WMRs) are typical nonholonomic
systems and they have attracted the attention of many
researchers as they do not satisfy Brockett’s necessary con-
dition [1]. A considerable amount of research related to the
control of WMRs has been carried out, addressing issues
such as posture stabilization, path following, and trajectory
tracking, in which perfect constraints with no longitudinal
or lateral wheel skid were usually assumed to exist [2–6].

Despite the rich results that have been obtained in
studies of WMRs that applied ideal assumptions, new con-
trol problems arose with the development of WMRs for
deployment in challenging terrain, such as the planetary
exploration rovers. The Mars exploration rovers, Sojourner,
Spirit, and Opportunity of the USA have greatly enhanced
our knowledge horizon [7] and they have led to a surge in
planetary exploration using WMRs. In the future, the Mars
rovers of theMSL and ExoMarsmissions and the lunar rovers
[8] of the SELENE and Chang’e missions will be launched. In
contrast with the assumed properties of conventional terrain,

that is, “hard” and “flat,” planetary terrain is deformable and
rough [9]. As a result, the assumptions of “single-point
contact” and “no longitudinal or lateral skid” are negated
for the planetary WMRs. Actually, it is obvious that when
moving on such a rough and deformable terrain the wheels
will experience longitudinal slip and lateral skid, causing the
rover to deviate from the planned path, lose efficiency, and
even get stuck [9, 10].

In addition to the longitudinal slip and lateral skid
of wheels moving on rough and deformable terrain, the
redundant control of different wheels is another challenging
problem. The current planetary exploration rovers have four
or six independently driving wheels, and the four wheels at
the corners are independently steering wheels, as shown in
Figure 1 [11]. Iagnemma et al. presented a physics-based con-
trol strategy for planetary rovers, considering the kinematics,
wheel-terrain interaction mechanics, dynamics (quasistatic),
terrain geometry, and so on, in order to increase their
tractive performance [12]. This control concept is in contrast
to the conventional approach, which uses limited or no
physical systems information. A rough terrain control (RTC)
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Figure 1: Flight rover Spirit [11].

method is developed by exploiting the actuator redundancy
of multiple wheels to improve the tractive performance and
reduce power consumption [13]. A control algorithm the
objective of which is to keep the slip ratios of the wheels
within a small value and limit excessive wheel force was
proposed by Yoshida and Hamano in order to increase the
traversing ability of the rovers and avoid their digging into
the soil or getting stuck [14]. An optimal torque control
method is presented by Lamon et al. for the six-wheeled
Shrimp rover based on the Hertz-Föppl model to calculate
the resistance force of the soil [15, 16]. In order to save the
energy and time expended by a planetary rover moving on
deformable rough terrain, a control approach was developed
in order to keep the slip ratios of all the wheels equal
and the velocity of the body constant by compensating for
the slip [17].

The above-mentioned research mainly concerns the
redundant control of planetary rovers, with the objective of
improving their traversing performance by coordinating the
velocity or torques of the driving wheels, while the path-
following problem is solved by coordinating the velocity or
position of the different steering wheels. A steeringmaneuver
strategy for a four-wheeled rover tested on lunar soil regolith
simulant was investigated under different steering angles
using both dynamics simulation and experiments [18]. A
path-following algorithm that provides both steering and
driving maneuvers was developed to direct a rover to follow
a path by compensating for the lateral slip [19]. The rough
terrain is simplified to the different slopes with which a
rover has contact. However, the path-following problem
of a planetary rover on very rough terrain has been little
researched.

This study focuses on the path-following problem of
a planetary rover on deformable and very rough terrain,
that is, when the wheels and the vehicle body are not
at the same slope and their local orientation coordinates
differ. A nonholonomic kinematics model of planetary rovers
traversing deformable rough terrain and a control strategy
that coordinates the different steering wheels to realize path-
following control of planetary rovers on challenging terrain
are presented. The control algorithm is verified using a high-
fidelity simulation platform [20].
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Figure 2: Contact area of a wheel moving on rough and deformable
terrain [20].

2. Modeling of WMRs on
Deformable Rough Terrain

2.1. Geometry Modeling of Wheel-Terrain Contact. For the
sake of simplicity, studies in the literature often assume that
wheel-terrain interaction occurs at a single point beneath the
center of the wheel. This simplification will, however, lead to
large errors when a WMR traverses over deformable rough
terrain. On the one hand, the contact area between the wheel
and the soil is large enough to need to be considered; on the
other hand, it is determined by the geometry of the terrain
rather than by the point beneath the wheel’s center. The
local coordinates of the contact areas and the wheels should
be calculated, as they are indispensable for the kinematics
modeling of WMRs on rough and deformable terrain. For
instance, the direction of a wheel’s velocity is approximately
parallel to the contact surface rather than the horizontal
plane.

Figure 2 shows the contact area of a wheel moving on
rough and deformable terrain. The coordinate of a wheel’s
center 𝑊 is denoted by (𝑥

𝑤
, 𝑦
𝑤
, and 𝑧

𝑤
). The terrain is

characterized by a digital elevation map (DEM) so that the
coordinates of all the mesh grids are known.The contact area
can be simplified to an inclined plane, which is determined by
three boundary points 𝑃
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The equation of the inclined plane 𝑃
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3
is therefore
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Line𝑊𝐸 is perpendicular to the plane 𝑃
1
𝑃
2
𝑃
3
, where 𝑒 is

the end point at both line 𝑊𝐸 and the wheel’s surface. The
wheel sinkage 𝐸𝑒 can be calculated using analytic geometry
according to the coordinates of 𝑊 and the equation of the
inclined plane, 𝑃

1
𝑃
2
𝑃
3
[20]. In terms of control, the local

coordinates of the wheels are more important.
Figure 2 shows the coordinates and slope angles of a

wheel moving on the inclined plane 𝑃
1
𝑃
2
𝑃
3
. {Σ
𝑤
} is the local
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coordinate system of the wheel, and {Σ
𝑒
} is the coordinate

system with the same orientation as {Σ
𝑤
}; however, their

origins are different, being at the end point 𝑒 andwheel center
𝑊, respectively. x

𝑒
is the longitudinal direction of a wheel; y

𝑒

is its lateral direction; z
𝑒
is the normal direction of the wheel-

soil contact plane.
z
𝑒
is calculated using (1). x

𝑒
is the intersection line

between the wheel-soil contact plane and the plane with an
included angle of 𝜑

𝑤
with the 𝑥

𝐼
-axis, where 𝜑

𝑤
is the yaw

angle of a wheel, which is controlled by the steering motor of
the wheel. It is deduced that [20]
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is thus determined as follows:
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The transformation matrix from {Σ
𝑒
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} is calculated
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𝑒
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where
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In Figure 3, 𝜃cl and 𝜃cr denote the slope angles of a wheel
climbing up and moving across, respectively. The roll, pitch,
and yaw angles of a wheel on the inclined plane are then {𝜃cr,
𝜃cl, 𝜑𝑤}. 𝜃cl and 𝜃cr can be calculated from

𝜃cl = arcsin [
−𝐴
𝑡
− 𝐵
𝑡
tan𝜑
𝑤

𝑋
1

]
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)

𝑋
2

] .

(7)

When a virtual rover is being controlled in a numerical
simulation, the coordinates of its wheel’s center 𝑊 and the
angle of 𝜑

𝑤
are known; the methods of calculating the

coordinates of contact points 𝑃
1
, 𝑃
2
, and 𝑃

3
are presented in

[20]. The transformation matrix 𝐼A
𝑤
can be calculated using

(5). When an actual rover is being controlled, the angles {𝜃cr,
𝜃cl, 𝜑𝑤} for all the wheels can be measured with sensors, and
𝐼A
𝑤
can also be calculated.
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Figure 3: Coordinates and slope angles of a wheel moving on the
inclined plane.
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Figure 4: Model of a six-wheeled planetary rover.

2.2. NonholonomicKinematicsModel ofWMRs onDeformable
Rough Terrain. As the terrain is rough and deformable, the
wheels experience longitudinal slip and lateral skid and all
the coordinates of the wheels and of the rover’s vehicle are
different in terms of not only position but also orientation.
The nonholonomic kinematics model, which includes the
properties of the terrain, vehicle, and wheels, constitutes the
basis of path following. A model of a six-wheeled planetary
rover is shown in Figure 4.

Lateral velocity that is perpendicular to the longitudinal
direction of the vehicle body exists when a rover is moving
on rough and deformable terrain. There is an included angle
between the longitudinal velocity and the actual velocity of
the vehicle, which is called the side skid angle and denoted by
𝛽
0
:

𝛽
0
= arctan(

𝑏

̇𝑦
0

𝑏

�̇�
0

) . (8)
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Let 𝜙
0
denote the yaw angle of the vehicle’s body. The

nonholonomic kinematics model of the vehicle’s body is

̇𝑦
0
cos (𝜙

0
+ 𝛽
0
) − �̇�
0
sin (𝜙

0
+ 𝛽
0
) = 0. (9)

Let 𝛽
𝑖
denote the side skid angle of the 𝑖th wheel, that

is, the included angle between the component velocity along
the longitudinal direction of the wheel and its actual velocity.
𝛿
𝑖
denotes the steering angle of the 𝑖th steering wheel; for a

nonsteering angle, 𝛿
𝑖
is always zero. Let 𝑤

𝑖
denote the local

coordinate of the 𝑖th wheel; the nonholonomic kinematics
equation of the wheel is then

𝑤𝑖 ̇𝑦
𝑤𝑖
cos𝛽
𝑖
−
𝑤𝑖 �̇�
𝑤𝑖
sin𝛽
𝑖
= 0, (10)

where 𝑤𝑖 �̇�
𝑤𝑖

and 𝑤𝑖 ̇𝑦
𝑤𝑖
, respectively, denote the longitudinal

and lateral velocity of the 𝑖th wheel in its local coordinate
denoted by 𝑤

𝑖
. These velocities can be determined by kine-

matics analysis of the planetary rover’s movement on rough
and deformable terrain.

In order to demonstrate the calculation of 𝑤𝑖 �̇�
𝑤𝑖

and
𝑤𝑖 ̇𝑦
𝑤𝑖
, El-Dorado II, a four-wheeled planetary rover, the

coordinates of which are shown in Figure 5, is taken as
an example. On flat terrain, the orientations of coordinate
systems Σ

1
and Σ

2
are the same as the orientation coordinate

systems of Σ
3
, Σ
4
, Σ
5
, and Σ

6
and those of Σ

𝑤1
(Σ
7
), Σ
𝑤2
(Σ
8
),

Σ
𝑤3
(Σ
9
), and Σ

𝑤4
(Σ
10
). The routes from Σ

0
, the rover’s center,

to the wheels are Σ
0
→ Σ
1
→ Σ
3
→ Σ
𝑤1
, Σ
0
→ Σ
1
→

Σ
4
→ Σ
𝑤2
, Σ
0
→ Σ
2
→ Σ
5
→ Σ
𝑤3
, and Σ

0
→ Σ
2
→

Σ
6
→ Σ
𝑤4
. The model of calculating the velocity of Wheel 1

is deduced in detail.
According to [20], the velocity of Wheel 1 is

k
𝑤1

= k
0
+ 𝜔
0
× P
0𝑤1

+ A
0

0A
1

1Z
1
× P
1𝑤1

̇𝑞
1

+ A
0

0A
3

3Z
3
× P
3𝑤1

̇𝑞
3
,

(11)

where v
0
and𝜔

0
are the linear velocity and angular velocity of

the vehicle body, respectively, 𝑞
𝑖
is the generalized coordinate

of the 𝑖th joint, P
𝑖𝑗
is the vector from joint 𝑖 to joint 𝑗, and

𝑖Z
𝑖
= [0 0 1]

𝑇, denoting the projection coordinates on the
𝑖th coordinate system of the 𝑧-axis of joint 𝑖.

In (11), A
0
is the orientation matrix of the rover’s vehicle

body and is the function of the RPY (roll, pitch, and yaw)
angles (𝜓

0
, 𝜃
0
, 𝜙
0
):

A
0
= [
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0
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0
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0
𝑠𝜃
0
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0
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0
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0
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0
𝑐𝜃
0
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0
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0
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0
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0
𝑐𝜓
0
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0
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0
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0
− 𝑐𝜑
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0
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0
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]

]

.
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Figure 5: Coordinates of four-wheeled planetary rover.

0A
1
and 0A

3
are the transformation matrixes from Σ

1
to Σ
0

and from Σ
3
to Σ
0
, respectively:

0A
1
= [

[

𝑐𝑞
1
−𝑠𝑞
1

0

0 0 −1

𝑠𝑞
1

𝑐𝑞
1

0

]

]

0A
3
= [

[

𝑐𝑞
1
𝑐𝑞
3
−𝑐𝑞
1
𝑠𝑞
3
−𝑠𝑞
1

𝑠𝑞
3

𝑐𝑞
3

0

𝑠𝑞
1
𝑐𝑞
3
−𝑠𝑞
1
𝑠𝑞
3

𝑐𝑞
1

]

]

,

(13)

where 𝑐𝑞
𝑖
= cos(𝑞

𝑖
), 𝑠𝑞
𝑖
= sin(𝑞

𝑖
), 𝑞
1
and 𝑞

2
are the joint

angle coordinates of the suspension system, 𝑞
3
–𝑞
6
are the

coordinates of the steering joints, and 𝑞
7
–𝑞
10

are the joint
angle coordinates of the wheels.

P
0𝑤1

, P
1𝑤1

, and P
3𝑤1

are the position vectors from the
center of Wheel 1 to the origin of coordinates 0, 1, and 3,
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respectively. According to Figure 5, we obtain the following:
0P
01

= [0 𝐷
1
𝐷
2
]
𝑇, 1P

13
= [𝐷

3
𝐷
4
0]
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37
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5
𝑐
1
𝑐
3
− 𝐷
6
𝑠
1

𝐷
1
+ 𝐷
5
𝑠
3

𝐷
2
+ 𝐷
3
𝑠
1
+ 𝐷
4
𝑐
1
+ 𝐷
5
𝑠
1
𝑐
3
+ 𝐷
6
𝑐
1

]

]

.

(14)

By substituting (12)–(14) into (11), the absolute velocity of
Wheel 1 can be obtained.Using the corresponding parameters
𝐷
1
–𝐷
6
for all the wheels, the velocity of each wheel can also

be obtained, using the same equation as for Wheel 1. For a
typical four-wheeled rover with symmetric structure, such as
the El-Dorado II rover of Tohoku University [21], only the
length, width, and height of the rover are considered, which
are denoted by 2𝑙, 2𝑑, and ℎ, respectively. The corresponding
𝐷
1
–𝐷
6
are𝐷
2
= 𝐷
4
= 𝐷
5
= 0 and

𝐷
1
=

{{{{

{{{{

{

𝑑 (𝑤1)

𝑑 (𝑤2)

−𝑑 (𝑤3)

−𝑑 (𝑤4) ,

𝐷
3
=

{{{{

{{{{

{

𝑙 (𝑤1)

−𝑙 (𝑤2)

−𝑙 (𝑤3)

𝑙 (𝑤4) ,

𝐷
6
=

{{{{

{{{{

{

−ℎ (𝑤1)

−ℎ (𝑤2)

−ℎ (𝑤3)

−ℎ (𝑤4) .

(15)

Let k
𝑤𝑖1

, k
𝑤𝑖2

, and k
𝑤𝑖3

denote the velocity components
caused by the angular velocity of the vehicle body, angular
velocity of Joint 1, and angular velocity of Joint 3, respectively.
They are expressed using (16)–(24):

k
𝑤𝑖1

= 𝜔
0
× P
0𝑤𝑖

= [

[

0 𝑓
1

−𝑓
2

−𝑓
1

0 𝑓
3

𝑓
2

−𝑓
3

0

]

]

[

[

�̇�
0

̇𝜃
0

̇𝜙
0

]

]

(16)

k
𝑤𝑖2

= A
0

0A
1

1Z
1
× P
1𝑤1

̇𝑞
1
= ̇𝑞
𝑟
[𝑓
4
𝑓
5
𝑓
6
]
𝑇 (17)

k
𝑤𝑖3

= A
0

0A
3

3Z
3
× P
3𝑤1

̇𝑞
3

= 𝐷
6
̇𝑞
3
(A
0
[−𝑠
1
0 𝑐
1
]
𝑇

) × (A
0
[−𝑠
1
0 𝑐
1
]
𝑇

) = 0.

(18)

𝑓
1
to 𝑓
6
in (15) and (16) are

𝑓
1
= − 𝑠𝜃 (𝐷

3
𝑐𝑞
1
− 𝐷
6
𝑠𝑞
1
) + 𝐷
1
𝑐𝜃𝑠𝜓

+ 𝑐𝜃𝑐𝜓 (𝐷
3
𝑠𝑞
1
+ 𝐷
6
𝑐𝑞
1
)

𝑓
2
= 𝑠𝜙𝑐𝜃 (𝐷

3
𝑐𝑞
1
− 𝐷
6
𝑠𝑞
1
) + 𝐷
1
(𝑐𝜙𝑐𝜓 + 𝑠𝜙𝑠𝜃𝑠𝜓)

+ (𝑠𝜙𝑠𝜃𝑐𝜓 − 𝑐𝜙𝑠𝜓) (𝐷
3
𝑠𝑞
1
+ 𝐷
6
𝑐𝑞
1
)

𝑓
3
= 𝑐𝜙𝑐𝜃 (𝐷

3
𝑐𝑞
1
− 𝐷
6
𝑠𝑞
1
) + 𝐷
1
(𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓)

+ (𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓) (𝐷
3
𝑠𝑞
1
+ 𝐷
6
𝑐𝑞
1
)

𝑓
4
= (𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓) (𝐷

3
𝑐𝑞
1
− 𝐷
6
𝑠𝑞
1
)

− 𝑐𝜙𝑐𝜃 (𝐷
3
𝑠𝑞
1
+ 𝐷
6
𝑐𝑞
1
)

𝑓
5
= (𝑠𝜙𝑠𝜃𝑐𝜓 − 𝑐𝜙𝑠𝜓) (𝐷

3
𝑐𝑞
1
− 𝐷
6
𝑠𝑞
1
)

− 𝑠𝜙𝑐𝜃 (𝐷
3
𝑠𝑞
1
+ 𝐷
6
𝑐𝑞
1
)

𝑓
6
= 𝑐𝜃𝑐𝜓 (𝐷

3
𝑐𝑞
1
− 𝐷
6
𝑠𝑞
1
) + 𝑠𝜃 (𝐷

3
𝑠𝑞
1
+ 𝐷
6
𝑐𝑞
1
) .

(19)

Parameter ̇𝑞
𝑟
in (16) denotes the angular velocity of the

suspension joints. For Wheels 1 and 2, ̇𝑞
𝑟
= ̇𝑞
1
, whereas, for

Wheels 3 and 4, ̇𝑞
𝑟
= ̇𝑞
2
.The absolute velocity of the 𝑖th wheel

is

k
𝑤𝑖
= [

[

�̇�
𝑤𝑖

̇𝑦
𝑤𝑖

�̇�
𝑤𝑖

]

]

= [

[

�̇�
0

̇𝑦
0

�̇�
0

]

]

+ [

[

0 𝑓
1

−𝑓
2

−𝑓
1

0 𝑓
3

𝑓
2

−𝑓
3

0

]

]

[

[

�̇�

̇𝜃

̇𝜙

]

]

+ ̇𝑞
𝑟

[

[

𝑓
4

𝑓
5

𝑓
6

]

]

.

(20)

The velocity of the 𝑖th wheel in the coordination system
of {Σ
𝑤𝑖
} can be calculated using

𝑤𝑖k
𝑤𝑖
= inv (A

𝑤𝑖
) k
𝑤𝑖
= A𝑇
𝑤𝑖

k
𝑤𝑖
. (21)

Substituting (5) into (21), one obtains the following:

𝑤𝑖 �̇�
𝑤𝑖
= [�̇�
𝑤𝑖
𝐶
𝑡𝑤𝑖

+ ̇𝑦
𝑤𝑖
𝐶
𝑡𝑤𝑖

tan𝜑
𝑤𝑖

+ (−𝐴
𝑡𝑤𝑖

− 𝐵
𝑡𝑤𝑖

tan𝜑
𝑤𝑖
) �̇�
𝑤𝑖
] × (𝑋

1𝑤𝑖
)
−1

𝑤𝑖 ̇𝑦
𝑤𝑖
= {�̇�
𝑤𝑖
[−𝐴
𝑡𝑤𝑖
𝐵
𝑡𝑤𝑖

− (𝐵
2

𝑡𝑤𝑖
+ 𝐶
2

𝑡𝑤𝑖
) tan𝜑

𝑤𝑖
]

+ ̇𝑦
𝑤𝑖
[𝐶
2

𝑡𝑤𝑖
+ 𝐴
2

𝑡𝑤𝑖
+ 𝐴
𝑡𝑤𝑖
𝐵
𝑡𝑤𝑖

tan𝜑
𝑤𝑖
]

+ �̇�
𝑤𝑖
(𝐴
𝑡𝑤𝑖
𝐶
𝑡𝑤𝑖

tan𝜑
𝑤𝑖
− 𝐵
𝑡𝑤𝑖
𝐶
𝑡𝑤𝑖
)} × (𝑋

2𝑤𝑖
)
−1

𝑤𝑖 �̇�
𝑤𝑖
=

�̇�
𝑤𝑖
𝐴
𝑡𝑤𝑖

+ ̇𝑦
𝑤𝑖
𝐵
𝑡𝑤𝑖

+ �̇�
𝑤𝑖
𝐶
𝑡𝑤𝑖

𝑋
3𝑤𝑖

,

(22)

where 𝜑
𝑤𝑖

= 𝜙
0
+ 𝛿
𝑖
, the yaw angle of the 𝑖th wheel,

[𝐴
𝑡𝑤𝑖

𝐵
𝑡𝑤𝑖

𝐶
𝑡𝑤𝑖
]
𝑇 is the normal vector of the slope that is

in contact with the 𝑖th wheel, and 𝑋
1𝑤𝑖

, 𝑋
2𝑤𝑖

, and 𝑋
3𝑤𝑖

are
the functions of the normal vector calculated by (6).

By substituting (20) and (22) into (10), the nonholonomic
kinematics equations of all the wheels are obtained.
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Figure 6: A planned path in DEM.
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Figure 7: Classifications of goal points.

Table 1: Position coordinates and yaw angles of the planned path.

Number 1 2 3 4 5 6 7 8 9
𝑥/𝑥
𝑟
(m) 0 1 1 2 1 2 3 4 5

𝑦/𝑦
𝑟
(m) 0 0 1 2 3 4 4 5 5

𝜙 (∘) 0 𝜋/2 𝜋/4 3𝜋/4 𝜋/4 0 𝜋/4 0

3. Reference Path Generation Method

A rover’s optimal path in challenging terrain can be planned
on a digital elevation map (DEM) [22]. The coordinates of
each point in the DEM are composed of three elements, 𝑥, 𝑦,
and 𝑧. The 𝑥 and 𝑦 coordinates of each point on the path are
planned; their 𝑧 coordinates are determined by the terrain.
Figure 6 shows a typical planned path, which is characterized
by coordinates in the horizontal plane and the yaw angle 𝜙,
that is, (𝑥, 𝑦, 𝜙). Table 1 shows the position coordinates and
yaw angles of the planned path delineated in Figure 6, where
𝑥
𝑟
and 𝑦
𝑟
are the resolutions of the DEM.The unit of 𝑥, 𝑥

𝑟
, 𝑦,

and 𝑦
𝑟
is meter (m), and the unit of 𝜙 is degree (∘).

The rover’s reference path is updated in real time based on
the carrot followingmethod according to the path planned in
DEM. Let 𝑅

𝑓
denote the look-ahead distance of a planetary

rover when moving forward. To describe circle, the center
of the rover is used as the center and 𝑅

𝑓
as the radius; the

forward intersection points of the circle with the planned
path are then found. Next, the forward goal point toward
which the rover should move from the intersection points is
determined. The forward points are the points toward which
the rover will move and do not include the points it has
already passed. The following four types of situation should
be considered when determining the goal points.

(1) If there is only one forward intersection point, it is the
goal point, as shown in Figure 7(a).

(2) If there are several forward intersection points, the
most forward one is the goal point, as shown in
Figure 7(b).

(3) If there is no forward intersection point and the
shortest distance from the rover’s center to the
planned path is larger than 𝑅

𝑓
, the forward point
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Figure 8: Influence of 𝑅
𝑓
on reference path and desired yaw angle.

on the planned path that is the smallest distance
from the rover’s center is the goal point, as shown in
Figure 7(c).

(4) If there is no forward intersection point and the
entire forward path is within the look-ahead circle,
the destination point is the goal point, as shown in
Figure 7(d).

The look-ahead distance, 𝑅
𝑓
, has an obvious influence on

the reference path and the desired yaw angle, 𝜙
𝑑
, as shown

in Figure 8. A smaller 𝑅
𝑓
can generate a reference path,

the precision ofwhich is greater than that of the planned path.

Increasing 𝑅
𝑓
decreases the precision of the reference path,

but the angle 𝜙
𝑑
varies much less, meaning that the reference

path is smoother. The value of 𝑅
𝑓
should be chosen taking

both the exploration requirements and the dimension of the
rover into account. In this study, when controlling the El-
Dorado II rover,𝑅

𝑓
is set to be 0.5m, a dimension comparable

to that of the rover. This dimension can both ensure path-
following precision and decrease the steering angle of the
rover.

For the DEM to show the small dimensional obstacles
or craters that the rover has to overcome, the resolution of
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Figure 9: Influence of 𝑑
𝑢
on reference path and desired yaw angle.

the DEM should be comparable to the dimension of the
wheels. However, 𝑅

𝑓
is much larger, compared to the dimen-

sions of the rover’s body, in order to smooth the reference
path. Because of this difference, the reference path cannot
reflect the effective information of the planned path in DEM.
For example, in Figure 9(a), the resolution of the DEM
is 0.2m, while 𝑅

𝑓
is 0.4m so that the error between the

reference path and the planned path is large. In order to
solve the problem, a path updating distance,𝑑

𝑢
, is introduced,

the value of which is equal to or smaller than the resolution
of the DEM. As soon as the rover moves over a distance
𝑑
𝑢
, the reference path is updated using a look-ahead circle

with a radius of 𝑅
𝑓
so that it can find its next goal point.

As shown in Figure 9, the combination of a larger 𝑅
𝑓
and a

smaller 𝑑
𝑢
has its advantages; the information in the DEM is

reflected very well and the steering frequency that is required
is decreased. Moreover, a smaller 𝑑

𝑢
is helpful for finding

the deviation caused by the rover’s slip and skid and for
decreasing the path-following error.

4. Strategy of Following the Reference Path

For the rover to follow the reference path and to compensate
for the lateral skid, path-following strategy should be studied.
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Figure 10: Illustration of path-following control.

Figure 10 shows the path-following control diagram.
When the goal point 𝑃

𝑑
is determined, the reference path is

the line 𝑃
0
𝑃
𝑑
. The rover will move from point 𝑃

0
= {𝑥
0
, 𝑦
0
} to

point 𝑃
𝑑
= {𝑥
𝑑
, 𝑦
𝑑
}. 𝜙
𝑑
, the desired yaw angle of the rover, is

the included angle between line 𝑃
0
𝑃
𝑑
and the 𝑥

𝐼
-axis.

When following the reference path, (1) the yaw angle
of the rover, 𝜙

0
, should be close to the desired yaw angle,

𝜙
𝑑
, (2) the velocity of the rover’s body should be along its

longitudinal direction in order to decrease the lateral skid,
and (3) the distance from the rover’s center𝑃

0
to the reference

path, denoted by 𝑙
𝑒
, should be as small as possible. Let 𝜙

𝑒
=

𝜙
𝑑
−𝜙
0
denote the error in the yaw angle.The control objective

of path following is 𝜙
𝑒

→ 0, 𝛽
0

→ 0, and 𝑙
𝑒

→ 0.
However, this control objective cannot be directly realized.
Thevariables that can be controlled directly are (1) the angular
velocity of the wheels, 𝜔

𝑖
, and (2) the steering angle of the

wheels, 𝛿
𝑖
.

In order to realize the control objective by coordinating
the angular velocities and steering angles of the wheels,
the relationship between them should be analyzed. On
deformable rough terrain, the motion in the vertical direc-
tion, that is, the motion along the 𝑧-axis, is passively deter-
mined by the terrain. The results of studies of path following
for a WMR moving on flat, hard terrain therefore provide a
basic understanding of this relationship. The path-following
objective is realized by controlling the linear velocity V

0𝑑
and

angular velocity 𝜔
0𝑑

of the robots’ body, and these velocities
are in turn to be controlled by the angular velocities and
steering angles of the wheels.

The differences between the control of WMRs on flat,
hard terrain and on deformable rough terrain involve the
longitudinal slip and lateral skid of wheels and the non-
holonomic kinematics models. All the factors except for
the longitudinal slip are well considered in this study. The
longitudinal slip is characterized by a variable named slip
ratio: 𝑠 = (𝑟𝜔

𝑖
− V
𝑖
)/𝑟𝜔
𝑖
. The slip ratios of the wheels should

be coordinated in order to save energy. Since this is not the
key issue addressed by this study, the angular velocities of the
wheels can be set to constant values. The slip ratios of the
different wheels are not equal on rough terrain, and the linear
velocity of the rover’s body, V

0𝑑
, is determined mainly by the

angular velocity 𝜔
𝑖
and the slip ratios.

The remaining problem is how to coordinate the steering
angles of the wheels in order to realize the path-following
objective.The proportional-integral-derivative (PID) control

algorithm is used to generate the angular velocity of the
rover’s body:

𝜔
0𝑑

= 𝑘
𝑓𝑝
𝜙
𝑒
+ 𝑘
𝑓𝑑

̇𝜙
𝑒
+ 𝑘
𝑓𝑖
∫𝜙
𝑒
d𝑡 +

𝑘
𝑙𝑝
𝑙
𝑒

V0𝑑


+
𝑘
𝑙𝑑

̇𝑙
𝑒

V0𝑑


+
𝑘
𝑙𝑖
∫ 𝑙
𝑒
d𝑡

V0𝑑


+ 𝑘
𝛽𝑝
𝛽
0

+ 𝑘
𝛽𝑑

̇𝛽
0
+ 𝑘
𝑏𝑖
∫𝛽
0
d𝑡.

(23)

The angular velocity of the rover’s body should follow the
yaw angle and compensate for lateral skid. Such an angular
velocity is realized by the steering motion of the wheels.
The forward wheels and the rear wheels can play different
roles by using different PID parameters. For example, the
forward wheels compensate mainly for the skid and the rear
wheels mainly follow the yaw angle. Variables 𝜔

0𝑑𝑓
and 𝜔

0𝑑𝑟

are used to denote the angular velocity of the rover’s body
that is generated by the forward wheels and the rear wheels.
Reference [19] used this concept to control a rover so that it
followed a straight line on slopes.

Given the desired velocity of the rover’s body, V
0𝑑
, one can

calculate the desired velocity in the inertia coordinate system:
�̇�
0𝑑

= V
0𝑑
cos𝜙
𝑑
and ̇𝑦

0𝑑
= V
0𝑑
sin𝜙
𝑑
. Thus the state variables

of the rover’s body are

[�̇�
0𝑑

̇𝑦
0𝑑

𝜔
0𝑑
]
𝑇

= [V
0𝑑
cos𝜙
𝑑

V
0𝑑
sin𝜙
𝑑
𝜔
0𝑑𝑓

(𝜔
0𝑑𝑟

)]
𝑇

.

(24)

The state variables of the 𝑖th wheel in the inertia coordi-
nate system are

[
�̇�
𝑤𝑖𝑑

̇𝑦
𝑤𝑖𝑑

] = [
V
0𝑑
cos𝜙
𝑑

V
0𝑑
sin𝜙
𝑑

] + [
0 𝑓
1
−𝑓
2

−𝑓
1

0 𝑓
3

][

[

�̇�

̇𝜃

𝜔
0𝑑

]

]

+ ̇𝑞
𝑟
[
𝑓
4

𝑓
5

] .

(25)

The angular velocity of the suspension joints, ̇𝑞
𝑟
, can be

measured using angle sensors, such as encoders. The angular
velocity of the roll and pitch angle can be measured using the
on-board IMU sensors. They can also be neglected for the
sake of simplicity, since their values are small:

[
�̇�
𝑤𝑖𝑑

̇𝑦
𝑤𝑖𝑑

] = [
V
0𝑑
cos𝜙
𝑑

V
0𝑑
sin𝜙
𝑑

] + 𝜔
0𝑑
[
−𝑓
2

𝑓
3

] + ̇𝑞
𝑟
[
𝑓
4

𝑓
5

] . (26)

Substituting the above desired wheel velocity into (22),
one obtains the velocity components of the 𝑖th wheel:
[
𝑤𝑖 �̇�
𝑤𝑖𝑑

𝑤𝑖 ̇𝑦
𝑤𝑖𝑑

]
𝑇

. According to the nonholonomic kinemat-
ics model of the wheels and Figure 10, we deduce the desired
steering angle of the 𝑖th wheel:

𝛿
𝑑𝑖
= arctan(

𝑤𝑖 ̇𝑦
𝑤𝑖𝑑

𝑤𝑖 �̇�
𝑤𝑖𝑑

) − 𝛽
𝑖
. (27)

In order to maneuver the wheels to achieve the steering
angle, 𝛿

𝑑𝑖
, a PID controller is used to calculate the torque,
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Figure 11: Wheel’s steering control strategy for path following.
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Figure 12: Path-following results of simulation of the El-Dorado II rover.

𝜏
𝑑𝑖
, of the steering motors. The path-following strategy

is illustrated in Figure 11. The necessary data for control,
including the orientation of the rover’s body and the position
and velocity of the joints, can be measured and processed

by sensors. The skid angle and slip ratio of the wheels
can be estimated using the methods presented in [23, 24].
The position of the rover’s body is calculated by kinematics
analysis using the measurement data.
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Figure 13: Simulation results for the wheels of El-Dorado II rover.

5. Simulation Verification

The El-Dorado II rover and the parameters of Toyoura sand
were applied in the simulation, and the DEMof rough terrain
was generated using MATLAB [20].

The rear wheels were controlled to follow the yaw angle;
the PID parameters in (23) were 𝑘

𝑓𝑝𝑟
= 2, 𝑘

𝑓𝑖𝑟
= 0.1, and

𝑘
𝑓𝑑𝑟

= 0.5; the others were zero. The forward wheels were
controlled to follow the yaw angle and compensate for the
lateral skid; the PIDparameters in (23)were 𝑘

𝑓𝑝𝑓
= 0.4, 𝑘

𝑓𝑖𝑓
=

0.02, 𝑘
𝑓𝑑𝑓

= 0.1, 𝑘
𝛽𝑝𝑓

= 0.5, 𝑘
𝛽𝑖𝑓

= 0, and 𝑘
𝛽𝑑𝑓

= 0.1; the
others were zero.The lateral skid distance 𝑙

𝑒
was compensated

using a small reference path updating distance 𝑑
𝑢
, the value

of which was 0.2m. The forward angular velocities of all the
wheels were 3 rad/s.

Figure 12 shows the simulation results of controlling
the El-Dorado II rover so that it follows a path in rough
deformable terrain. Figure 12(a) presents the snapshots of
the El-Dorado II rover and Figure 12(b) shows the trajectory
of the wheels on rough terrain. Figure 12(c) shows that the
center of the rover’s body can follow the planned path very
well, although there is a slight deviation. If path-following
strategy is not applied, the rover would deviate by a large
distance from its planned path due to lateral skid, even
though the path is a straight line in the horizontal plane. The
effectiveness of the path-following algorithm in deformable
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and rough terrain is verified. Figure 12(d) shows the roll angle
𝜓
0
and pitch angle 𝜃

0
of the rover’s body and the angles of

the rocker joints. When moving on rough terrain, the rocker
joints rotate passively in order to keep all thewheels in contact
with the terrain and 𝑞

1
= −𝑞
2
. The rover’s body also rolls and

pitches to adapt to the rough terrain.
The curves in Figure 13 denote the simulation results for

the wheels of the El-Dorado II rover. The slip ratios and the
drawbar pull (the net traction force generated by the wheel)
of the wheels are different as they are at different slopes. The
varying trend of the drawbar pull is similar to that of the
slip ratio [25], which can be explained by terramechanics.
Figure 13(c) shows the slope angles of 𝛼cl and 𝛼cr of the
forward right (𝑖 = 4) wheel. The varying trends of the slip
ratio and drawbar pull are primarily determined by the angle
of 𝛼cl, which is also demonstrated by the curves.

6. Conclusions

This paper presents a path-following control method for
wheeled planetary exploration robotsmoving on deformable,
rough terrain. The modeling of a WMR on such challenging
terrain includes a geometric model of the wheel-terrain
contact area and a nonholonomic kinematics model. The
coordinate systems of the rover’s body and of the wheels
are different, and their transformation matrix to the inertia
coordinate system can be described using the derived equa-
tions presented in this paper. In order to follow the path
planned in DEM, the reference path should be updated in
real time. By combining a longer look-ahead distance and
a shorter path updating distance, the DEM information can
be reflected very well and the actual path is smoothed to
decrease the steering motion of the rover. The path following
of a WMR is primarily achieved by controlling the angular
steering velocity of the rover’s body, which in turn is realized
by coordinating the position of the steering wheels. The
path-following strategy for a WMR moving on deformable
and rough terrain is designed. Different PID parameters can
ensure that the forward and rear wheels play different roles
in terms of following the yaw angle and compensating for the
lateral skid. The four-wheeled El-Dorado II rover is used in
a simulation experiment, and the effectiveness of the path-
following strategy in deformable and rough terrain is verified.
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