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Abstract

As part of on-going arboviral surveillance activity in a semi-rural region in Haiti, Chikungunya

virus (CHIKV)-positive mosquito pools were identified in 2014 (the peak of the Caribbean

Asian-clade epidemic), and again in 2016 by RT-PCR. In 2014, CHIKV was only identified in

Aedes aegypti (11 positive pools/124 screened). In contrast, in sampling in 2016, CHIKV

was not identified in Ae. aegypti, but, rather, in (a) a female Aedes albopictus pool, and (b) a

female Culex quinquefasciatus pool. Genomic sequence analyses indicated that the CHIKV

viruses in the 2016 mosquito pools were from the East-Central-South African (ECSA) line-

age, rather than the Asian lineage. In phylogenetic studies, these ECSA lineage strains form

a new ECSA subgroup (subgroup IIa) together with Brazilian ECSA lineage strains from an

isolated human outbreak in 2014, and a mosquito pool in 2016. Additional analyses date the

most recent common ancestor of the ECSA IIa subgroup around May 2007, and the 2016

Haitian CHIKV genomes around December 2015. Known CHIKV mutations associated with

improved Ae. albopictus vector competence were not identified. Isolation of this newly iden-

tified lineage from Ae. albopictus is of concern, as this vector has a broader geographic

range than Ae. aegypti, especially in temperate areas of North America, and stresses the

importance for continued vector surveillance.

Introduction

From May through July 2014, a severe outbreak of Chikungunya fever (CF) occurred in

Haiti, with almost 65,000 suspected cases reported to the Pan American Health Organization

(PAHO) [1]. During this time, our group began a surveillance study in the Gressier region of

Haiti within a population of schoolchildren diagnosed with undifferentiated febrile illness

[2,3]. In this cohort, Chikungunya virus (CHIKV) was detected in 90 plasma specimens
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between May 29 and August 13, 2014. As previously reported, we obtained the complete geno-

mic sequences of 10 CHIKV isolates from these human cases; their viral genomes belonged

to the Asian lineage, and remained essentially unchanged during the three-month outbreak

[4]. Only rare CF cases have occurred in our study cohort after the 2014 outbreak and the

National Public Health Laboratory in Port-au-Prince has reported only two suspected CF

cases to PAHO in the intervening time period [5], consistent with cessation of the initial

human epidemic.

While our group, and others, have identified the CHIKV strain responsible for the 2014

Caribbean and South American epidemic as being in the Asian clade, there have been isolated

reports of identification of the East-Central-South African (ECSA) lineage in Brazil, including

identification in association with a localized outbreak in 2014 [6,7], and from patients and a

mosquito pool in 2016 [8–10]. The Asian lineage appears to have emerged originally from the

ECSA lineage, but quickly adapted to transmission in urban settings, unlike the ECSA lineage

that is maintained in a sylvatic cycle and spills-over into the human population causing small

localized outbreaks [11,12]. Considering that Ae. aegypti primiarly feed on humans, and are

commonly found in urban settings, it is not surprising that Ae. aegypti is a successful vector of

both the Asian and ECSA CHIKV lineages, whereas Ae. alpopictus, a forest dweller, is more

successful in transmitting the ECSA lineage (11). Adaptive mutations of Asian lineage CHIKV

(in the envelope protein gene segments 1 and 2, E1 and E2, including E1 T98A and A226V, and

E2 L210Q) have also been identified that result in greater infectivity to mosquitoes (Ae. aegypti
and Ae. albopictus) and increased vector competency of Ae. albopictus [13,14]. Another muta-

tion, of the opal stop codon at the end of the nsP3 gene, is associated with reduction of arthral-

gia signs in an animal model, effecting virus pathology [15].

We report here results of screening for CHIKV in mosquito pools collected in Haiti

during the 2014 CHIKV epidemic, and again in 2016. Our data document the apparent recent

introduction of the “American” ECSA CHIKV lineage IIa into Haiti, and its carriage by Ae.

albopictus.

Methods

In 2014, adult Aedes mosquitoes were collected using Bio-Gents (BG) Sentinel traps (Bioquip,

Rancho Dominguez, CA) within households and courtyards in Gressier/Leogane where chil-

dren suspected of CHIKV infection resided. The traps were set from 7:00am to 6:00pm for

four consecutive days. This work was approved by the University of Florida (UF) and Haitian

National IRBs, and residents provided informed consents. In 2016, mosquitoes were also col-

lected using BG Sentinel traps which were set for one day per week for twelve consecutive

weeks at eight static locations within a ten mile radius in the commune of Gressier, a semi-

rural setting in the Ouest department of Haiti. Trap locations were selected based on environ-

mental considerations, security of traps, and in areas with known human arbovirus-caused ill-

nesses. During both 2014 and 2016 trapping events, trap bags were transported to our UF

BSL2-plus field laboratory in Haiti where mosquitoes were frozen at -20˚C, after which they

were identified by species (targeting Ae. aegypti, Ae. albopictus, or Cx. quinquefasciatus) and

sexed by trained technicians using morphological keys by Leopold Rueda and Walter Reed

Biosystematics Unit identification guides [16,17]. Thereafter, the mosquitoes were sorted

according to location, collection date, species (Ae. aegypti, Ae. albopictus, and ‘other’ with

inclusion of Cx. quinquefasciatus for 2016 collections), and sex.

The mosquitoes caught in 2014 were pooled for homogenization at the UF field laboratory

in Haiti. Each pool contained 1–10 mosquitoes and was tested for CHIKV by molecular meth-

ods [18]. Mosquitoes collected in 2016 were stored at -70˚C and shipped on dry ice to the

African-lineage Chikungunya virus, Haiti 2016
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Lednicky BSL3 laboratory at the Emerging Pathogens Institute at UF for further processing

and virus detection and isolation. As these mosquitoes were collected in an area with previous

active CHIKV transmission, and due to the possibility that viruses such as Yellow fever virus or

other BSL3 agents may have been present in the mosquitoes, homogenization and RNA extrac-

tion at UF were performed in our BSL3 laboratory.

Mosquitoes from the 2016 collections were homogenized in refrigerated phosphate buff-

ered saline (PBS) with two sizes of very high-density zirconium oxide beads (2mm and

0.1mm, Glen Mills, Clifton, NJ, USA) [19]. The homogenates were centrifuged, and the result-

ing supernatant halved: (a) one aliquot was placed in lysis buffer to initiate extraction of viral

RNA (vRNA) using a Qiagen QIAamp viral RNA mini kit (Qiagen, Germantown, MD, USA),

and (b) the remaining supernatant placed in PBS containing trehalose (15% (w/v) final treha-

lose concentration upon mixing with supernatant) for storage at -80˚C for cryopreservation of

virus particles for future isolation attempts in cell cultures. Each pool contained no more than

25 mosquitoes of the same species and sex, from at the same trap location. Extracted nucleic

acids were subsequently screened by real-time (rt) RT-PCR for CHIKV, DENV, and ZIKV

vRNAs using published protocols [18,20,21].

For the samples collected in 2016, pools that yielded a positive result for CHIKV vRNA

were inoculated onto subconfluent (40%) Vero E6 cells in a 75cm2 flask with reduced-serum

media and incubated at 37˚C in 5% CO2 for up to 30 days for virus isolation attempts. The

inoculated Vero E6 cells were refed every three days. Upon observation of virus-specific cyto-

pathic effects (CPE) throughout 50% of the monolayer, spent media and scraped cells in spent

media were collected and again tested by molecular methods for CHIKV, DENV, and ZIKV

vRNAs. Additionally, the mosquito species (Ae. aegypti, Ae. albopictus, and Cx. quinquefascia-
tus) was confirmed in virus-positive pools by published PCR protocols [22–25]. Mosquito

pools of ‘other’ species were not assessed. The homogenate and/or the spent media were used

for whole genome sequencing by Sanger sequencing methods as previously reported [26] to

obtain complete CHIKV genome sequences.

Pan-genomic alignment comprising of all CHIKV genomes publicly available in GenBank

and the two 2016 genomes sequenced in this study were obtained using the MUSCLE algo-

rithm implemented in MEGA7 (http://www.megasoftware.net/) [27–29]. Evidence of recom-

bination was assessed using the set of algorithms implemented in the RDP4 software (http://

web.cbio.uct.ac.za/~darren/rdp.html) [30]. Recombinant genomes were excluded from subse-

quent analyses. Presence of nucleotide substitution saturation was assessed using DAMBE6

(http://dambe.bio.uottawa.ca/DAMBE/) [31] and phylogenetic signal was evaluated using

Tree-Puzzle (http://www.tree-puzzle.de/) [32].

Maximum likelihood (ML) phylogenetic inference was performed using the software

IQ-TREE package and was based on the best-fit model chosen according to Bayesian Informa-

tion Criterion [33,34]. UFBoot—Ultrafast Bootstrap (BB) Approximation (2,000 replicates)

was chosen to assess statistical robustness for internal branching order in the phylogeny, and

strong statistical support along the branches was defined as BB>90% [35].

The presence of temporal signal was assessed using TempEst v1.5 (http://tree.bio.ed.ac.uk/

software/tempest) [36]. Time-scaled tree phylogenies were obtained performing Bayesian

coalescent inference using BEAST v1.8.4 software package (http://beast.bio.ed.ac.uk), [37,38]

testing the constant size demographic model against Bayesian Skyline Plot, [39] and assessing

the fit of the strict or uncorrelated lognormal relaxed molecular clock model. Markov chain

Monte Carlo samplers were run for 500 million generations and runs with ESS>200 (after

10% burn-in) were considered of proper mixing. The HKY substitution model [40] was used

with empirical base frequencies and gamma distribution of site-specific rate of heterogeneity.

Best model to fit the data was estimated by marginal likelihood estimates (MLE) obtained

African-lineage Chikungunya virus, Haiti 2016

PLOS ONE | https://doi.org/10.1371/journal.pone.0196857 May 10, 2018 3 / 11

http://www.megasoftware.net/
http://web.cbio.uct.ac.za/~darren/rdp.html
http://web.cbio.uct.ac.za/~darren/rdp.html
http://dambe.bio.uottawa.ca/DAMBE/
http://www.tree-puzzle.de/
http://tree.bio.ed.ac.uk/software/tempest
http://tree.bio.ed.ac.uk/software/tempest
http://beast.bio.ed.ac.uk
https://doi.org/10.1371/journal.pone.0196857


using path sampling and stepping-stone sampling methods [37,41]. The strength of evidence

against the null hypothesis (H0) was evaluated via MLE comparison with the more complex

model (HA), referred to as they Bayes Factor (BF), wherein lnBF<2 indicates no evidence

against H0.

Results

Between May and November 2014, a total of 350 mosquitoes were caught within and around

61 households in the Gressier/Leogane area, and between May and August 2016, 1756 mosqui-

toes were captured from eight locations in Gressier, Haiti. In rtRT-PCR screens on the year

2014 samples for CHIKV vRNA, 11 (8.9%) of 125 Ae. aegypti pools were positive, and none

of 24 Ae. albopictus pools (p = 0.2. Fishers exact test, two tail). For the year 2016 samples,

CHIKV vRNA was identified in 2 (1%) of 171 mosquito pools tested: (a) two female Ae. albo-
pictus mosquitoes caught on May 17, 2016, and (b) twenty-three female Cx. quinquefasciatus
caught on June 27, 2016. No CHIKV were identified in any of the 82 Ae. aegypti pools (n = 805

mosquitoes).

Upon culturing the two CHIKV-positive pools from 2016, CHIKV-induced CPE were

observed 14 days post-infection of Vero cells inoculated with aliquots of the Ae. albopictus and

Cx. quinquefasciatus homogenates, but not in non-inoculated controls maintained in parallel.

The supernatant from both tested positive for CHIKV vRNA by rtRT-PCR, and vRNA purified

from each were subsequently used for sequencing, in addition to the vRNA purified directly

from mosquito homogenate from the May 17 pool (Table 1). As the mosquitoes had been

identified to species by manual inspection, confirmatory testing of mosquito species in the

pooled samples was accomplished using the PCR methods devised by Das et al [22] and by

Smith et al [23]. The PCR tests indicated that only Ae. albopictus were present in the May 17

pool and only Cx. quinquefasciatus in the June 27 pool.

Sequencing analyses revealed that the two isolates did not contain any of the expected

mutations in the E1 and E2 regions that contribute to changes in vector competency, nor

changes to the opal stop codon. These sequences were highly similar to one another (99%);

however, compared to previous CHIKV isolates from Haiti in 2014, the sequences were differ-

ent, sharing only 93% identity.

All sequenced CHIKV strains cluster into three main lineages: West African, East-Central-

South African (ECSA), and the Asian lineage [12]. Based on our tests, no recombination (data

not shown) or substitution saturation (S1A Fig) were detected, and likelihood mapping dis-

played relatively low phylogenetic noise (9.8%) (S1B Fig), indicating that the dataset was opti-

mal for phylogenetic analysis. Our pan-genomic ML phylogenetic analysis of all CHIKV

genomes available indicated that the two novel CHIKV genomes obtained from Ae. albopictus
and Cx. quinquefasciatus mosquitoes in Haiti in 2016 belong to the ECSA lineage (Fig 1).

Presence of temporal signal that allows for reconstruction of the evolutionary history of the

ECSA lineage was assessed (S2 Fig) before performing Bayesian coalescent phylogenetic infer-

ence. The time-scaled Maximum Clade Credibility (MCC) phylogeny of the ECSA lineage

(Fig 2 and S3 Fig) was inferred using the Bayesian Skyline demographic enforcing an uncorre-

lated lognormal relaxed clock as determined by model testing (S1 Table). While the 2013–2014

Table 1. Characteristics of CHIKV-positive mosquito pools, Haiti, 2016.

Pool ID Trap location Date collected Mosquito sex Mosquito species GenBank accession number

16-5-1701 5 May 17 Female Aedes albopictus MG000876

16-5-1931 4 June 27 Female Culex quinquefasciatus MG000875

https://doi.org/10.1371/journal.pone.0196857.t001
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Fig 1. Pangenomic maximum likelihood phylogenetic inference of CHIKV. Phylogeny was inferred based on maximum likelihood method using the

software IQ-TREE for the complete dataset of publicly available CHIKV genomes. Indian Ocean lineage (IOL), East/Central/South African (ECSA)

lineage and Asian lineage are indicated. Branch lengths reflect genetic distances, and diamonds at each node shows strong statistical support based on

ultrafast-bootstrap (BB>90%).

https://doi.org/10.1371/journal.pone.0196857.g001

Fig 2. Maximum clade credibility tree of the ECSA lineages. Time-scaled phylogenetic maximum clade credibility tree inferred using the Bayesian

Skyline demographic enforcing a uncorrelated lognormal relaxed clock implemented in BEAST v1.8.4. Black diamonds represent branches supported

by posterior probability>0.90.

https://doi.org/10.1371/journal.pone.0196857.g002
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CHIKV outbreak in the Americas aligned with the Asian lineage, our MCC phylogeny shows,

in accordance with the ML phylogeny, that the novel CHIKV genomes obtained in Haiti clus-

ter together with strains isolated in Brazil in 2014 [7] that belong to the ECSA lineage (Fig 2

and S3 Fig). The MCC tree portrayed the clear distinction between the subgroups ECSA iso-

lates from Africa (ECSA I and II), and from the Indian Ocean region (IOL) (ECSA III) [42,43],

and a new distinct ECSA subgroup IIa (ECSA IIa) arising from the ECSA II lineage (Fig 2 and

S3 Fig).

The estimated time of the most recent common ancestor (tMRCA) for the new ECSA IIa

subgroup was found to be May 2007 with a 95% highest posterior density (HPD) interval of

April 2006 –January 2008. The MCC tree shows presence of two clades within the ECSA IIa

lineage, one of which contained both Brazilian and Haitian sequences. The tMRCA for this

clade was December 2013 (HPD 95% interval of April 2012 –February 2015). The Haitian

strains obtained in this study share a common ancestor that was dated around December 2015

with a HPD 95% interval of October 2015 –January 2016, suggesting recent introduction to

the country.

Discussion

Here we report the first detection of the CHIKV ECSA lineage in Haiti, with our Haitian

strains forming a new ECSA subgroup IIa together with CHIKV strains previously reported

from Brazil [8,9]. Our molecular clock analysis suggests that this “American” ECSA lineage

diverged from the African ECSA lineages sometime in the range of mid-2012-early 2015,

within the range of the time period when the major Asian-clade CHIKV epidemic started in

the Americas. Our analyses further suggest that the Haiti ECSA lineage IIa strain diverged

from the earlier Brazilian strains sometime between October, 2015 and January, 2016, suggest-

ing that it was introduced into Haiti after passage of the main CHIKV Asian clade epidemic.

We have previously noted what appears to have been transfer of arbovirus strains between Bra-

zil and Haiti [44,45]; under these circumstances, movement of the ECSA CHIKV strain from

Brazil to Haiti in the time period noted would clearly be plausible.

Not unexpectedly, given the massive size of the initial CHIKV epidemic in Haiti and the

Caribbean, our 2014 studies documented CHIKV in close to 9% of the Ae. aegypti pools sam-

pled. In contrast, we were not able to identify CHIKV in any of the 24 Ae. albopictus pools col-

lected in 2014. While numbers are small and differences between rates of Ae. aegypti and Ae.

albopictus identification are not statistically significant, these findings lend credence to the

idea that Ae. aegypti was the primary vector for the Asian clade epidemic strain. In contrast, in

2016, the two CHIKV ECSA lineage IIa strains identified were from Ae. albopictus and Culex
quinquefasciatus–with no identification in any Ae. aegypti pools. Again, numbers are small;

however, our findings raise the possibility that Ae. albopictus, even in the absence of genetic

changes that have been associated with increased Ae. albopictus transmission, plays a more

important role in transmission of this new clade than does Ae. aegypti. This is of potential pub-

lic health concern, given that Ae. albopictus is highly prevalent in the Caribbean and the Amer-

icas, with a range that reaches further into temperate regions of the United States than is seen

with Ae. aegypti [11,46]. While Cx. quinquefasciatus was defined as a poor CHIKV vector in

one study [47], this concept should also be re-examined in contemporary terms with the

viruses in circulation and relevant mosquito subspecies. It is plausible that the CHIKV genome

could adapt for enhanced vector to human transmission by Cx. quinquefasciatus, particularly

as others have detected CHIKV in wild-caught Cx. quinquefasciatus [48].

There are some limitations when conducting mosquito surveillance efforts and utilizing

wild-caught mosquitoes for virus detection. It is possible that during tests of our mosquito
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pools additional CHIKV-positive pools were missed due to the limits of detection by

rtRT-PCR. We have found on numerous occasions that virus isolation in cell cultures

enhances the ability to identify virus-positive samples when the viral loads are too low for

rtRT-PCR, but virus isolation is resource-intensive and impractical for every mosquito pool.

To further improve our chances of virus detection, excess PBS is not used during our mosquito

homogenization protocol so as not to dilute the concentration of virus in the homogenates,

as that negatively impacts downstream applications such as detection by RT-PCR and virus

isolation in cultured cells. CHIKV was detected in approximately 1% of all wild-caught mos-

quito pools identified by species and tested for CHIKV vRNA (2/171 x 100) in the 2016 por-

tion of the study. This detection rate is ten-fold greater than a previous estimate for the natural

infection rate for CHIKV in Ae. aegypti and Ae. albopictus mosquitoes [49], underscoring the

potential utility of our approach.

Given the high levels of infection seen with the 2014 CHIKV Asian clade epidemic in the

Caribbean and South America, it is unlikely that we will see another major Asian clade epi-

demic in the near future. However, we are seeing a very different pattern with the CHIKV

ECSA lineage IIa strains, with only small numbers of reported cases and localized outbreaks

[9,10]. This would be consistent with some level of endemicity in either the vector population

or a natural reservoir, possibly within a sylvatic cycle similar to what has been reported in

Africa. While there are no nonhuman primates to serve as a CHIKV reservoir in Haiti, other

mammals and some birds have been noted as potential reservoirs [50]. Of additional concern,

studies of wild-caught mosquitoes have generated evidence of vertical transmission in both

Ae. aegypti and Ae. albopictus [51–53], which indicates that CHIKV can be maintained within

the mosquito population until human immunity wanes over time and another outbreak can

occur. This, in turn, underscores the importance of continuing vector surveillance and screen-

ing for clinical CHIKV infections, to detect possible ongoing endemic infection, outside of epi-

demic settings.

Supporting information

S1 Fig. Substitution saturation and phylogenetic signal for pan-genomic CHIKV dataset.

(A) Scatter plot of nucleotide transition (s) and transversion (v) substitutions over genetic dis-

tance measured by TN93 nucleotide substitution model. (B) Likelihood triangle showing sup-

ports for each of three alternative topologies (tips), unresolved quartets (center) and partly

resolved quartets (edges).

(TIF)

S2 Fig. Assessment of temporal signal. The plot represents regression analysis of root-to-tip

genetic distance for the ECSA lineage assessed using TempEst v1.5. The positive slope and the

correlation coefficient “r” indicate presence of temporal signal for the dataset.

(TIF)

S3 Fig. ECSA maximum clade credibility tree of the ECSA lineages with tips. Time-scaled

phylogenetic maximum clade credibility tree inferred using the Bayesian Skyline demographic

enforcing a uncorrelated lognormal relaxed clock implemented in BEAST v1.8.4. Black dia-

monds represent branches supported by posterior probability >0.90.

(TIFF)

S1 Table. Molecular clock and demographic tree prior model comparison.
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