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Abstract

Mouse models of medulloblastoma have proven to be instrumental in understanding 
disease mechanisms, particularly the role of epigenetic and molecular drivers, and 
establishing appropriate preclinical pipelines. To date, our research community has 
developed murine models for all four groups of medulloblastoma, each of which 
will be critical for the identification and development of new therapeutic approaches. 
Approaches to modeling medulloblastoma range from genetic engineering with 
CRISPR/Cas9 or in utero electroporation, to orthotopic and patient-derived ortho-
topic xenograft systems. Each approach or model presents unique advantages that 
have ultimately contributed to an appreciation of medulloblastoma heterogeneity 
and the clinical obstacles that exist for this patient population.

INTRODUCTION
Medulloblastoma (MB) is the most common pediatric malig-
nant brain tumor and occurs mainly in children aged between 
3 and 9  years (48). Medulloblastoma is characterized by 
four major molecular groups, with different pathologies, out-
comes and genetics: two with mutations in developmental 
pathways, Wingless (WNT) and Sonic Hedgehog (SHH), and 
two with less well-defined molecular alterations, Group 3 
(G3) and Group 4 (G4) (53, 71). Recently, each of the four 
groups has been further subdivided into subgroups by meth-
ylation profiling (14, 52). However, it is not yet clear whether 
specific subgroups are associated with distinct outcomes.

Since the generation of the first genetically engineered 
mouse model of Sonic Hedgehog medulloblastoma, in which 
the Sonic Hedgehog receptor, Patched (Ptch1), was condition-
ally deleted (26), a large number of mouse models recapitu-
lating each of the four groups has been developed. As 
medulloblastomas are separated into more subgroups, the 
development of accurate models recapitulating each of these 
is warranted if these models are to be used for preclinical 
studies. Several approaches have been employed over the years, 
but the discovery of CRISPR-Cas9 enzymes has accelerated 
the development and the precision with which mouse models 
are generated. This review will discuss all mouse models 
developed to date and how they have already been used to 
inform the development of clinical trials.

APPROACHES TO MODELING 
MEDULLOBLASTOMA IN MICE
The molecular analysis of human medulloblastoma has been 
instrumental in the development of mouse models that closely 

resemble their human counterparts. Several characteristics must 
be met for medulloblastoma mouse models to recapitulate 
human tumors. They must represent disease heterogeneity, 
recapitulate developmental origins and mimic molecular, epi-
genetic and genetic landscapes. Several approaches have been 
used over the years to develop accurate models, many of which 
fulfill most, if not all, of these requirements. These models 
have helped investigators better understand the disease.

Approaches to the development of mouse models or 
genetically engineered mouse models (GEMMs) include 
genetic engineering, in utero electroporation, viral gene transfer 
by the replication-competent avian sarcoma leukosis virus 
and its receptor Tva (RCAS-Tva) system and the Sleeping 
Beauty transposase, orthotopic transplant models using mouse 
or human cerebellar and neuronal progenitors, and the devel-
opment of established mouse and human cell lines and 
patient-derived orthotopic xenografts (PDOXs) (Figure 1). 
Each of these methods has advantages and disadvantages 
but all have facilitated the validation of genetic alterations 
found in human medulloblastoma groups, with the goal of 
finding new therapies and improving existing ones.

In vitro established cell lines

Several human medulloblastoma cell lines (44) have been 
established in vitro over the years and have been well described 
(34). Not surprisingly, most were generated using aggressive 
Group 3 MBs with MYC amplification. Although these 
established human tumor lines are easy to grow in culture, 
as monolayers or spheres, and are commonly used to assess 
the effect of drug treatments in preclinical trials, recent 
molecular analysis by next generation sequencing (NGS) 
has revealed that they do not always faithfully mimic 
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primary tumors and in some cases these lines have acquired 
additional mutations and/or have lost genetic material. In 
our own experience, while mouse Group 3 tumors are easily 
expandable in vitro and recapitulate the disease when re-
introduced into the cortex or cerebellum from naïve animals 
(37), we have been unable to generate stable lines from 
primary patient samples or PDOXs at low passage  <  2 
(Roussel, personal communication). Mouse or human SHH 
tumors fail to maintain a SHH signaling pathway signature 
when grown in vitro, and fail to generate tumors when 
cultured cells are implanted in the brain of mice, as previ-
ously reported (67). However, we have successfully grown 
PDOXs, both SHH tumors with MYCN amplification and 
TP53 mutations as well as MYC-driven Group 3 tumors, 
transiently for 3–7  days in neural stem cell culture condi-
tions. These transient cultures allow high throughput drug 
screens and the evaluation of specific compounds for their 
ability to induce perturbations of cell proliferation, cell death, 
cell cycle arrest or differentiation. We find that these culture 
conditions maintain tumor stem-like properties and a tumor’s 
genomic landscape (Roussel, personal communication).

Genetically engineered mouse models

Some of the most accurate models of medulloblastoma have 
used conventional knock-out technology to generate geneti-
cally engineered mouse models (GEMMs). The Patched 1 
model (Ptch1+/−), the first mouse model of medulloblastoma 
to be developed, has been extensively used to assess the role 
of genes that drive tumorigenesis in SHH MBs. This includes 
mutations in genes of the SHH signaling pathway, from the 
cell surface to the nucleus, that drive G1 progression and 
impact DNA repair and apoptotic pathways (Table 1). 
Realizing that some of the gene deletions were deleterious 
to embryonic development, many conditional and inducible 
knock-out models have been developed, enabling precise 
temporal and spatial gene deletion. This required the devel-
opment of mouse lines in which Cre recombinase expression 
is driven in specific cerebellar cell types. In many examples, 
such transgenic mice express a Cre recombinase fused to 
the mutated estrogen receptor (ERTM) allowing its expression 
by addition of tamoxifen. When fused to the mutated estro-
gen receptor, the Cre-ERTM fusion protein is sequestered to 
the cytoplasm, but upon tamoxifen treatment is translocated 

Figure 1.  Summary of technical methods and approaches to medulloblastoma modeling. 
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to the nucleus enabling the expression of the Cre recombinase 
(20, 39). Cre technology permits the deletion of genes at 
specific times and in specific cell types in the mouse brain 
during embryonic development and also in adult mice. A 
number of Cre and Cre-ERTM lines have been developed 
over the years and are now available to investigators. These 
lines have been well characterized and successfully used to 
study the role of gene deletion upon Cre excision in specific 
cerebellar cell types (Table 2).

GEMMs of medulloblastoma have been developed by 
somatic gene transfer using polyethylenimine (PEI)-mediated 
transfection (2) and in utero electroporation (65) of plasmids 
carrying the genes of interest in the fourth ventricle of 
embryos (E) at 13.5  days post coitus. The advantage of 
these approaches is that they do not suffer the limitations 
imposed by the size of the retroviral and lentiviral vectors 
which cannot be much bigger than 10–15 kilobases and 

could provide tissue and cell-type specificity by combination 
with CRISPR-Cas9 or with specific Cre-mice. For example, 
somatic CRISPR-Cas deletion of Ptch1 by in utero elec-
troporation of wild type E13.5 mouse embryos (“CRISPR-
Ptch1”) induced SHH medulloblastoma with complete 
penetrance by 16  weeks of age. Tumor onset is accelerated 
when these experiments are performed in Trp53-null embryos. 
These tumors have the hallmarks of human SHH medul-
loblastomas (64) including overexpression of Gli1 and Sfrp1.

Several GEMMs of SHH or Group 3 medulloblastoma 
made use of the RCAS-TVA system (4). This technique 
relies on the use of an avian retroviral vector, RCAS, to 
target gene expression to neuronal progenitors in transgenic 
mice in which the Nestin gene promoter drives expression 
of the viral receptor, tva (3, 23, 41, 55). Several SHH models 
were developed by infection with RCAS virus expressing 
Shh, alone or in combination with genes that include MYCN, 
activated Akt, HGF, WIP1, BCL2 all of which accelerate 
the onset of SHH medulloblastoma (Table 1). GEM models 
of Group 3  MB were also generated in which the chicken 
retrovirus expressed the oncogenes Myc and Bcl2 in addi-
tion to RCAS-Shh which when transferred into the brain 
of mice induces Group 3 medulloblastoma (35) with large 
cell/anaplastic (LCA) features.

Another approach involves insertional mutagenesis with 
the transposase Sleeping Beauty that when conditionally 

Table 1.  Models of SHH medulloblastoma

SHH GEMM Reference

Ptch1+/−, LacZ (26)
Ptch1+/−, Trp53−/− (76)
Ptch1+/−, Cdkn2c−/− (73)
Ptch1+/−, Math1-Cre (68, 78)
Ptch1+/−. hGFAP-Cre (68, 78)
Ptch1+/−, Math1-CreER (47)
SmoA2 (5, 16)
NeuroD2-SmoA1 W539L (27, 30)
Sufu+/−, Trp53−/− (42)
Trp53−/−, H3K27M (40)
Trp53−/−. XRCC4−/− (77)
Trp53−/−, LigIV-/- (43)
Nestin-Cre+/−, Trp53−/−, Brca2fl/Fl (22)
Ptch1+/−, Cdkn1b−/− (7)
Ptch1+/−, Ptch2+/− (45)
KU80−/−, Trp53−/− (43)
Parp−/−, Trp53−/− (72)
PTEN floxed × RCAS-Cre + RCAS-Shh + radiation (28)
Trp53−/−, PTEN−/− (79)
Trp53−/−, RB−/− (49)
Ink4d−/−, Kip1−/−, Trp53−/− (44)
Ink4d−/−, Ink4c−/−, Trp53−/− (44)
Ptch1+/−, Hic+/− (12)
RCAS-Shh + RCAS-Mycn in Ntv-a mice (13)
RCAS-Shh + RCAS-MycnT48A in Ntv-a mice (13)
RCAS-Shh + RCAS-IGF2 in Ntv-a mice (60)
RCAS-Shh + RCAS-BCL2 in Ntv-a mice (50)
RCAS-Shh, RCAS-MYC, RCAS-BCL2 in Ntv-a mice (35)
RCAS-Shh + RCAS-WIP1 in Ntv-a mice (18)
RCAS-Shh + RCAS-HGF in Ntv-a mice (10)
RCAS-Shh + RCAS-MYC (60)
Math1-Cre; Nfia+/+; Ptch1+/Lox (24)
Nestin-Cre/T2-ONC × PTENFlox/Flox × Rosa26LslSB11/+ (9)
SHH Orthotopic
Trp53−/−, MYCN (31, 37)
Cdk6 (59)
Atoh1 + Gli1 (6)
Trp53−/−, Cdn2c−/−, MYCN (37)
MYCN in human iPSC-derived NES (33)
SHH In utero electroporation
CRISPR-Cas9 Ptch1 deletion (64)

Table 2.  Models of medulloblastoma

WNT GEMM Reference

Blbp-Cre, Ctnnb1+/fl (ex3), Trp53+/fl (25)
Blbp-Cre, Ctnnb1+/fl (ex3), Trp53+/fl, PI3CAOE (25)
Blbp-Cre, DDX3Xfl/fl Gilbertson, personal 

communication
G3 GEMM
Gtl1-tTA:TRE-MYCN-Trp53−/− (GTML) (70)
Nestin-Cre-MLL4 (17)
GMYC MYC GLT1 Tet-OFF System Swartling, personal 

communication
GTML Trp53KI/KI p53ER, TAM (31)
RCAS-TVA MYC + BCL2 in Ntv-a mice (35)
RCAS-TVA MYC + Trp53 (35)
Nestin-Cre/

T2-
ONC × Trp53LslR270H × Rosa26LslSB11/+

(9)

G3 Orthotopic
Myc OE, Trp53−/− in GNPs (37)
Myc OE, Trp53DN in GNPs and NSCs CD133+.Lin- (57)
Dox inducible MYC, DNTrp53 (57)
MycT58A OE, Trp53DN in GNPs and NSCs (57)
Myc OE, GFI1 in CD133 + Lin- NSC (54)
Myc OE, GFI1OE in GNPs (75)
Myc T58A OE, GFI1Flox in NSCs from 

CAG-CreERTM mice
(46)

MycT58A OE, GFI1WT in NSCs (46)
CRISPR-dCas9-MYC (74)
G3 In utero electroporation
conditional MYC, DNTrp53 in different neuronal 

progenitors
(36)

G4 In utero electroporation
constitutively activated Src, Trp53DN (21)
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expressed in Nestin-Cre mice together with a Trp53 muta-
tion (Nestin-Cre/T2-ONC  ×  Trp53LslR270H  ×  Rosa26LslS
B11/+) or PTEN knock-out (Nestin-Cre/T2-ONC  ×  PTEN 
Flox/Flox  ×  Rosa26LslSB11/+) induces SHH or Group  
3/Group 4 medulloblastoma (9).

Orthotopic transplant of genetically modified 
precursors

Whereas GEMMs were the only mouse models of medul-
loblastoma initially developed for the SHH and WNT groups, 
for which mutations of Ptch1 and β-catenin had been identi-
fied in human tumors, a lack of obvious genetic drivers 
was initially responsible for the delay in developing GEMMs 
for the other two MB groups. As a result, we and other 
investigators initially decided to use purified granule neuronal 
progenitors (GNPs) (37) or neural stem cells (NSCs/CD133+/
Prominin+, Lin−) (56), to assess the role of potential drivers 
of medulloblastoma, including Myc and Gfi1 (53, 56). This 
evaluation made use of retroviral or lentiviral vectors that 
could conditionally express or repress genes of interest to 
modify mouse neuronal progenitors or human induced pluri-
potent stem cells (iPSC)-derived neuroepithelial stem cells 
(NSC) (33). Marked progenitors are then implanted into 
the cortices or cerebella of naïve immune-compromised NSG 
or CD1-nude mice or of naïve syngeneic animals, giving 
rise to tumors consistent with Group 3 based on histo-
pathological and molecular analyses.

Patient-derived xenograft models

GEMMs of MB provide valuable tools for in vitro and in 
vivo testing but fall short of capturing the heterogeneity or 
microenvironment of human tumors. Patient-derived orthotopic 
xenograft (PDOX) models address these limitations and have 
become increasingly prevalent in MB preclinical research. 
PDOXs are generated by implanting tissue from a patient’s 
tumor into immune-compromised mice. After initial processing 
of the tumor sample, there are no intermediate in vitro steps, 
eliminating the risk of artifact or genetic drift that can arise 
during cell culture. Most groups working with MB PDOXs 
utilize orthotopic models, amplifying tumors intracranially in 
vivo. The presence of stromal environmental components and 
the heterogeneity of the tumor cell population provide a sig-
nificant advantage, particularly with regard to preclinical evalu-
ation of small molecules or other interventions (11, 66, 69). 
Research from St. Jude Children’s Research Hospital, the 
German Cancer Research Center and the Fred Hutchinson 
Cancer Research Center suggests that the genetic, epigenetic 
and molecular signatures of MB tumors are maintained from 
patient sample to PDOX models ((11, 32, 66), Roussel, per-
sonal communication). Unlike the artificially homogenous cell 
lines generated from genetic manipulation of progenitor cells, 
PDOX models retain intra- and inter-tumoral heterogeneity 
that facilitates more accurate interrogation of disease mecha-
nism and therapeutic response. Currently, PDOX models exist 
for each of the major MB groups, some from primary tumor 
biopsy and others from disease relapse or metastasis. Single 
cell RNA sequencing of PDOX models continues to provide 

insights into spatial and temporal tumor evolution, while 
analysis of the genetic and epigenetic landscape reveals new 
insights into tumorigenesis and progression (32).

MOUSE MODELS OF THE FOUR MAJOR 
MEDULLOBLASTOMA GROUPS
The wealth of data on human medulloblastomas from mul-
tiple “omics” approaches has facilitated the development of 
mouse models for each medulloblastoma group and some 
of the recently described subgroups (Figure 2).

WNT

The molecular landscape of Wingless (WNT) group medul-
loblastomas is relatively well understood, and as such the 
genetically engineered mouse model (GEMM) developed by 
Gibson and collaborators has proved ideal to study this 
disease group (25). The majority (~85%) of patients with 
WNT MB harbor mutations in β-catenin (CTNNB1) leading 
to over-activation of the WNT signaling pathway, the nuclear 
localization of β-catenin, and accelerated cell division and 
proliferation (19). Initial experiments targeted overexpression 
of a mutated CTNNB 1S37F in mouse Atoh1-positive granule 
neural progenitors with or without Trp53 loss. Whereas 
β-catenin protein was clearly overexpressed, no tumors ever 
formed, suggesting that GNPs were not the cell of origin 
of WNT MBs. It was only by mapping genes expressed in 
WNT MBs during embryonic cerebellar development that 
Gibson and collaborators discovered the cell of origin of 
WNT MBs in the floor of the fourth ventricle. Crossing 
the Blbp-Cre line into Ctnnb1lox(ex3)  × Trp53flx/flx mice drove 
the initiation of tumors closely resembling WNT MB in 
anatomic features, chromosomal changes and transcriptomic 
landscape. The penetrance of the disease was further increased 
by enforced expression of PI3KCA to activate the PI3K 
pathway. Importantly, analysis of this WNT model revealed 
an aberrant tumor blood–brain barrier, consistent with 
increased propensity for hemorrhage at surgery and improved 
response to chemotherapy (58). Because patients with WNT 
MBs respond well to current therapy and recognizing that 
intensive craniospinal irradiation causes long-term neurologi-
cal sequelae, this model has facilitated the evaluation of 
CSI dose reduction (ongoing SJ clinical trial with lower 
radiation doses—NCT02724579). Recently, a new model of 
WNT MB has been created based on recurrent DDX3X 
mutation found in a subset of WNT MB tumors (52) 
(Richard Gilbertson, personal communication).

SHH

Since the development of the first Ptch1+/− GEM model in 
1997 (26), a plethora of SHH medulloblastoma mouse models 
has been developed using multiple approaches (Table 1). 
Many investigators generated these models by initially test-
ing the role of mutations and overexpressed genes found 
in human SHH medulloblastomas. Initial GEMMs all led 
to tumors mimicking the SHH group (16, 42, 68). This 
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was the first set of data pointing to GNPs as the cell of 
origin of SHH medulloblastoma. Subsequent experiments 
confirmed that SHH medulloblastomas arose from GNPs 
that were blocked in their exit from the cell cycle and dif-
ferentiation to post-mitotic granule cells, thus remaining in 
the external granule layer (6). Recognizing that GNPs are 
highly susceptible to DNA damage, the McKinnon labora-
tory and others tested the role of DNA repair enzymes 
responsible for homologous recombination (HR) and non-
homologous end joining (NHEJ) (43, 77). These investigators 
found that loss of enzymes, including Ligase IV, Xrcc4 and 
Brca2 led to embryonic lethality, which was rescued by the 
loss of Trp53. While mice developed into adulthood, they 
all succumbed to SHH medulloblastomas. These studies 
emphasized the importance of intact p53 and DNA repair 
pathways in maintaining a healthy cerebellum during devel-
opment. Whereas SHH MB models recapitulate the human 
tumors, they rely on the modification of mouse cells. Recent 
humanized models have been developed using human 

neuroepithelial stem cells (NSC) from iPSCs that are rep-
resentative of cerebellar progenitors. Transduction of MYCN 
in human NSC induced tumors of the SHH medulloblastoma 
subgroup (33). Interestingly, these tumors did not lose TP53 
function nor the PTCH1 gene. The same group showed 
that orthotopic transplantation of NSC cells from a Gorlin 
patient caring a germline PTCH1 mutation also induced 
SHH medulloblastoma. It is likely that the use of human 
NSC will be important to model mutations and gene fusions 
found in human medulloblastoma.

Group 3

Overexpression of the MYC oncogene typifies Group 3 
medulloblastomas. MYC is amplified in about 17% of cases 
and correlates with frequent metastasis at diagnosis, an 
aggressive clinical behavior and poor prognosis. While MYC 
overexpression is seen in most human Group 3 MBs, rare 
tumors in this group display MYCN amplification.

Figure 2.  For each subgroup of medulloblastoma, the proportions of 
driver events as determined by Next-Generation Sequencing (NSG) are 
displayed; Copy Number Variants (CNV) and mutation analysis. Modeled 
Drivers: of all driver events identified by NGS for this subgroup, the 
proportion represented by established in vivo models. Other: Driver 
events identified by NGS which have not been modeled in vivo. 

Unexplained Cases: cases of this MB group for which no events have 
been identified through NGS approaches. Recently, defined subdivisions 
of groups into subgroups are also displayed (14), with those in bold 
having corresponding in vivo models. 
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The first mouse model of  G3 MB was developed in a 
GEMM in which MYCN expression was driven by the 
glutamate transporter 1 (Glt1) promoter expressed in hind-
brain progenitors (GTML) (70). In this model, most tumors 
exhibit a classic or large cell/anaplastic (LCA) morphology 
and a G3 MB molecular profile, although some more 
closely resemble other groups. Crossing the Glt1-tTA; 
TRE-MYCN/luciferase model to mice lacking Trp53 accel-
erates tumorigenesis. Because many recurrent cases of 
human G3 MB have deletion of  one copy of  TP53 as 
part of  an isochromosome 17q, this transgenic model 
might represent a more efficient tool to examine MB 
relapse (31). Despite the histological relevance of  the 
GTML model, MYCN amplification is far less common 
than MYC amplification in G3 MB. To overcome this 
criticism, the Swartling group recently developed a deriva-
tive model (GMYC), in which MYC is driven from the 
hindbrain-specific glutamate transporter 1 (Glt1) promoter. 
Demonstrating differential expression of  key features 
between MYC- and MYCN-driven tumors, this new GMYC 
model highlights a role for CDKN2A in MB pathogenesis 
(Swartling, Personal Communication).

In 2012, our group and Wechsler-Reya’s laboratory 
independently developed mouse models of  G3 MB that 
mimicked the histology and gene expression signatures of 
human tumors. Both groups leveraged enforced MYC 
overexpression by retroviral gene transfer and the loss of 
Trp53 function to reprogram granule cell neuronal pro-
genitors (GNPs) or Prominin/CD133-positive neural stem 
cells (37, 57). These two models relied on orthotopic 
transplants of  modified neuronal progenitors in the cer-
ebellum or cortices of  naïve recipient mice. To better define 
the cell of  origin of  Group 3 medulloblastomas, Kawauchi 
and colleagues conditionally enforced MYC co-expression 
with luciferase and a dominant form of  Trp53 (DNp53) 
by in utero electroporation in embryonic cerebellar pro-
genitor cells using several specific Cre lines. Irrespective 
of  the cerebellar lineage targeted, all tumors were Group 
3 suggesting that the combination of  the two genetic 
insults, rather than a specific cell of  origin, drive this 
MB group This conclusion was recently confirmed by 
single cell sequencing of  primary tumor samples from 
patients with human Group 3 MBs (32). Because these 
G3 MB mouse models grow in vitro as spheres in stem 
cell media conditions, they have been instrumental for 
conducting high-throughput drug screens and identifying 
novel therapies, some of  which are currently in clinical 
trials (SJMB12-NCT01878612, SJDAWN-NCT03434262 
and SJELiOT‐NCT04023669.

Most existing models of G3 MB rely on predetermined 
genetic perturbation and complex preimplantation protocols. 
In order to mimic the sporadic genetic changes that occur 
during tumor initiation in somatic cells, Jenkins et al devel-
oped a retroviral transfer system whereby MYC is delivered 
to and ectopically expressed in Nestin-positive neural pro-
genitor cells in postnatal mice (35). Similar to previous 
models, this RCAS/tv-a model of G3 MB requires Trp53 
loss or overexpression of Bcl-2 to escape Myc-induced apop-
tosis. Uniquely, this model develops within an intact host 

immune system which enables interrogation of the native 
microenvironment and immunotherapeutic testing.

In most of the murine models of G3 MB developed to 
date, MYC overexpression is driven by strong retroviral 
promoter elements. While this approach is effective at gen-
erating G3 MB tumors, it presents a limitation in investi-
gating the signals that regulate MYC transcription. To 
circumvent this challenge, Vo and collaborators developed 
CRISPR/dCas9 gene activation in which endogenous MYC 
is activated by dCas9-VP160 in Trp53-null neural progeni-
tors (74). Many of these tumors recapitulate G3 MB by 
histology and microarray analysis and importantly provide 
a useful model to interrogate endogenous Myc regulation 
and signaling.

Since the development of GEMM and orthotopic mouse 
models of G3 MB that all rely on the loss of Trp53, recent 
studies have demonstrated that enforced MYC expression 
can collaborate with GFI1 or GFI1B overexpression in neural 
progenitors, bypassing the requirement for Trp53 loss (54, 75). 
Prevalent genomic structural variants have been identified 
in human G3 and G4 MBs that result in the activation of 
the transcription factor repressors GFI1 and GFI1B by rear-
ranging coding sequences to juxtapose them to active enhancer 
elements. These novel mouse models recapitulate one of the 
recently described subgroups of MYC-driven Group3 medul-
loblastoma (14). Because medulloblastomas have a paucity 
of mutations but many chromosomal anomalies, it is likely 
that currently undiscovered rearrangements may lead to new 
targets and mouse models.

Recent sequencing studies have revealed mutations in 
epigenetic regulators in all medulloblastoma groups, includ-
ing Group 3, but it is unclear whether these mutations 
drive tumor development. One epigenetic regulator Mll4 
mutated in Group 3  MB was recently found to be a driver 
mutation (17). Whether other genetic alterations in chromatin 
regulators are driving medulloblastoma development will 
require further studies including CRISPR or/and shRNA 
screens of libraries of epigenetic regulators.

Group 4

Phosphoproteomic studies of human medulloblastomas have 
provided a better understanding of potential drivers in G4 
tumors and facilitated the development of a G4 medullo-
blastoma model that has eluded investigators up to now. 
Investigators showed that G4 tumors harbor a phosphopro-
teomic landscape distinct from their RNA signature and 
characterized by activation of a tyrosine kinase program 
highlighting a unique receptor tyrosine signaling network 
(ERBB4-SRC) specific to this group (21). Using these insights, 
the first mouse model of G4 MB was created using in utero 
electroporation to deliver a dominant negative form of Trp53 
(DNp53) and a constitutively active form of SRC, with a 
truncated C-terminal domain (SRC-CA), into the fourth 
ventricle of E13.5 mouse embryos, an age selected to target 
the nuclear transitory zone (NTZ) progenitors of the devel-
oping cerebellum. Comparative analysis by cross-species 
comparison confirmed that gene expression most closely 
resembled G4 MB. This model for the first time recapitulates 
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the landscape integrity of G4 MBs and suggests that G4 
MBs could be susceptible to kinase inhibitors, many of which 
are widely available and used in treating adult cancers.

PRECLINICAL USE OF MOUSE MODELS 
OF MB
A key impetus for the development of accurate and rep-
resentative mouse models of medulloblastoma was to create 
preclinical testing tools. The requisite characteristics of pre-
clinical models are now represented across the spectrum of 
mouse models. Tumors driven by specific genetic perturba-
tions are useful for assessing response to targeted therapies 
(SMO inhibitors, BET inhibitors, etc), while syngeneic 
orthotopic models will be invaluable to explore the immune 
landscape in medulloblastoma. PDOXs are increasingly 
becoming the gold standard for preclinical testing, consistent 
with a trend away from established cell lines that fail to 
recapitulate the primary tumors from which they are derived. 
The heterogeneity of MB warrants testing interventional 
approaches in multiple models, particularly to define relevant 
patient populations for trial stratification. Most of the pre-
clinical work in MB has focused on SHH and Group 3, 
due in part to the development of multiple representative 
models and the need for improved therapies for the high-
risk subsets of these groups. However, major challenges are 
the blood–brain and blood–tumor barriers. These have limited 
the number of drugs that can be used to treat MB patients. 
While several drugs and small molecules have been tested 
in mouse models and found to be efficacious in suppressing 
medulloblastoma proliferation, most used established cell 
lines and flank tumors. Thus, ideally preclinical trials should 
be performed in multiple mouse models in vitro and in 
vivo and should require that all drugs be investigated for 
their brain and tumor penetration.

SHH

Some of the earliest preclinical studies for MB capitalized 
on PTCH and SMO mutations in SHH tumors and explored 
the potential of SMO inhibitors like Vismodegib and 
Sonidegib (63). The most common model to evaluate efficacy 
of SHH pathway inhibitors has been the Ptch1−/−; Trp53−/− 
mouse model, followed closely by SHH PDOXs. Our under-
standing of the signaling pathways involved in SHH MB, 
and the availability of a GEMM model that so closely 
recapitulates the genetic signature of these tumors has been 
immensely valuable in translating preclinical testing into 
Phase II clinical trials PBTC-025B and PBTC-032 
(Vismodegib for recurrent or refractory MB with a 41% 
response in SHH patients) (62). However, as suggested by 
mouse studies, treatment of children with Vismodegib expe-
rienced growth plate fusion, and this has stimulated the 
identification of alternative therapeutics for this patient 
population (38, 61).

Molecular analysis of tumor propagating cells in the 
Math-GFP/Ptch1+/− mouse model revealed increased expres-
sion of G2/M regulators and led to the evaluation of Aurora 

Kinase (AurkA) and Polo-like kinase 1 (Plk1) inhibitors as 
targeted therapies (29). Whether these small molecules effec-
tively cross the blood–brain barrier is unknown. Preliminary 
studies from collaborative teams at St. Jude Children’s 
Research Hospital, Telethon Kids Institute in Perth, Australia 
and the German Cancer Research Center (DKFZ) in 
Heidelberg, Germany are utilizing high-risk SHH PDOX 
models of MB to test the preclinical efficacy of checkpoint 
inhibitors in combination with traditional chemotherapy and 
the DNA damage agent cyclophosphamide. The clinical trial 
based on this work (SJELiOT–NCT04023669) was recently 
approved by the FDA and began enrolling in 2019.

Group 3

Despite the relatively quiet mutational landscape of Group 
3 MBs, early mouse models faithfully recapitulated the most 
common perturbation of MYC overexpression. Many groups 
use the Myc-driven, Trp53−/− mouse model to investigate 
the utility of small molecule inhibitors. Because this model 
is amenable to in vitro culture, high-throughput screening 
can be conducted to identify novel small molecules. Pei and 
collaborators identified a cooperative effect between HDAC 
inhibitors and PI3K inhibitors in this, and other PDOX 
models, while Morfouace and collaborators demonstrated a 
new combination approach of pemetrexed and gemcitabine 
(1, 51, 56). From these, preclinical efforts have emerged 
early stage clinical trials including SJMB12-NCT0187861 
(Pemetrexed and Gemcitabine for Newly diagnosed patients 
with Non-WNT, Non-SHH, MB). A more recent St. Jude 
clinical trial, SJDAWN-NCT03434262 include the use of a 
CDK4/6 inhibitor (ribociclib) in combination with gemcit-
abine for recurrent G3 MB. Inhibition of CDK4/6 with 
Palbociclib (IBRANCE) was found to significantly extend 
the survival of mice harboring a MYC-amplified Group3 
medulloblastoma patient-derived orthotopic xenograft, Med-
311FH (15). These studies stimulated a phase 1 study with 
Palbociclib in children with recurrent, progressive or refrac-
tory CNS tumors including medulloblastoma (PBTC-042). 
More recently, inhibitors of DNA repair enzymes Check 1 
and Check 2 were found to efficiently suppress the prolif-
eration of mouse and human Group 3 medulloblastomas, 
with or without TP53 mutation, in combination with the 
DNA-damaging agents, gemcitabine or cyclophosphamide 
(Roussel and Gottardo, personnal communication). The 
clinical trial designed based on this work (SJELiOT, 
NCT04023669 was recently approved by the FDA and began 
enrolling in July 2019.

Several groups have used the Myc-amplified GEMM model 
and various PDOX models to demonstrate the efficacy of 
epigenetic regulation perturbation via BET bromodomain 
inhibitors (8, 74). Early G3 models were created using exog-
enous plasmids with foreign promoters to drive overexpres-
sion of Myc. Although they have provided preclinical value, 
Vo and collaborators recently developed a CRISPR-Myc-
driven system that leveraged the endogenous Myc promoter 
and created a better tool to interrogate inhibitors that impact 
epigenetic regulation at the MYC promoter (74).
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CONCLUSION
Since the development of the SHH medulloblastoma Ptch1+/− 
mouse model, all four medulloblastoma groups have been 
modeled in mice, and many have been used in preclinical 
studies that have led to clinical trials. It is likely that in the 
near future new mouse models will be developed that will 
accurately recapitulate MB subgroups. This should strengthen 
the preclinical pipeline and contribute to finding novel therapies 
for the most aggressive forms of medulloblastoma.
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