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Abstract

Rapidly developing technology for large scale neural recordings has allowed researchers to

measure the activity of hundreds to thousands of neurons at single cell resolution in vivo.

Neural decoding analyses are a widely used tool used for investigating what information is

represented in this complex, high-dimensional neural population activity. Most population

decoding methods assume that correlated activity between neurons has been estimated

accurately. In practice, this requires large amounts of data, both across observations and

across neurons. Unfortunately, most experiments are fundamentally constrained by practi-

cal variables that limit the number of times the neural population can be observed under a

single stimulus and/or behavior condition. Therefore, new analytical tools are required to

study neural population coding while taking into account these limitations. Here, we present

a simple and interpretable method for dimensionality reduction that allows neural decoding

metrics to be calculated reliably, even when experimental trial numbers are limited. We illus-

trate the method using simulations and compare its performance to standard approaches

for dimensionality reduction and decoding by applying it to single-unit electrophysiological

data collected from auditory cortex.

Introduction

Neural decoding analysis identifies components of neural activity that carry information about

the external world (e.g. stimulus identity). This approach can offer important insights into

how and where information is encoded in the brain. For example, classic work by Britten et al.

demonstrated that the ability of single neurons in area MT to decode visual stimuli closely cor-

responds to animal’s perceptual performance [1]. Thus, by using decoding the authors identi-

fied a possible neural substrate for detection of motion direction [1]. Yet, behavior does not

depend solely on single neurons. In the years since this work, many theoretical frameworks

have been proposed for how information might be pooled across individual neurons into a

population code [2–8]. One clear theme that has emerged from this work is that stimulus
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independent, correlated activity (i.e. noise correlations) between neurons may substantially

impact information coding [2, 4–8]. This has now been confirmed in vivo using decoding anal-

ysis to measure the information content of large neural populations [9–11]. Therefore, covaria-

bility between neurons must be taken into account when measuring population coding

accuracy.

Under most experimental conditions, estimates of pairwise correlation between neurons is

unreliable due to insufficient sampling (e.g. too few stimulus repeats) [12]. In these situations,

traditional decoding algorithms are likely to over-fit to noise in the neural data. This issue

becomes even more apparent as the number of pairwise interactions that must be estimated

increases, a situation that is becoming more common due to the recent growth in large-scale

neurophysiology techniques [13]. In some cases, e.g. for chronic recording experiments and

anesthetized preps, the number of trials can be increased to circumvent this issue. However, in

behavioral experiments, where the number of trials is often fundamentally limited by variables

such as animal performance, new analytical techniques for decoding are required.

Here, we present decoding-based dimensionality reduction (dDR), a simple and generaliz-

able method for dimensionality reduction that significantly mitigates issues around estimating

correlated variability in experiments with a relatively low ratio of observations to neurons. Our

method takes advantage of recent observations that population covariability is often low-

dimensional [14–17] to define a subspace where decoding analysis can be performed reliably

while still preserving the dominant mode(s) of population covariability. The dDR method can

be applied to data collected across many different stimulus and/or behavior conditions, mak-

ing it a flexible tool for analyzing a wide range of experimental data.

We motivate the requirement for dimensionality reduction by illustrating how estimates of

a popular information decoding metric, d02 [4, 5], can be biased by small experimental sample

sizes. Building on a simple two-neuron example, we demonstrate that low-dimensional struc-

ture in the covariability of simulated neural activity can be leveraged to reliably decode stimu-

lus information, even when the number of neurons exceeds the number of experimental

observations. Finally, we use a dataset collected from primary auditory cortex to highlight the

advantages of using dDR for neural population decoding over standard principal component

analysis.

Materials and methods

Surgical procedure

All procedures were performed in accordance with the Oregon Health and Science University

Institutional Animal Care and Use Committee (IACUC) and conform to standards of the

Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC). The

surgical approach was similar to that described previously [18]. Adult male ferrets were

acquired from an animal supplier (Marshall Farms). Head-post implantation surgeries were

then performed in order to permit head-fixation during neurophysiology recordings. Two

stainless steel head-posts were fixed to the animal along the midline using bone cement (Pala-

cos), which bonded to the skull and to stainless steel screws that were inserted into the skull.

After a two-week recovery period, animals were habituated to a head-fixed posture and audi-

tory stimulation. At this point, a small (0.5–1 mm) craniotomy was opened above primary

auditory cortex (A1) for neurophysiological recordings.

Neurophysiology

Recording procedures followed those described previously [19, 20]. Briefly, upon opening a

craniotomy, 1–4 tungsten micro-electrodes (FHC, 1–5 MO) were inserted to characterize the
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tuning and response latency of the region of cortex. Sites were identified as A1 by characteris-

tic short latency responses, frequency selectivity, and tonotopic gradients across multiple pene-

trations [21]. Subsequent penetrations were made with a 64-channel silicon electrode array

[22]. Electrode contacts were spaced 20 μm horizontally and 25 μm vertically, collectively

spanning 1.05 mm of cortex. Data were amplified (RHD 128-channel headstage, Intan Tech-

nologies), digitized at 30 KHz (Open Ephys [23]) and saved to disk for further analysis.

Spikes were sorted offline using Kilosort2 (https://github.com/MouseLand/Kilosort2).

Spike sorting results were manually curated in phy (https://github.com/cortex-lab/phy). For

all sorted and curated spike clusters, a contamination percentage was computed by measuring

the cluster isolation in feature space. All sorted units with contamination percentage less than

or equal to 5 percent were classified as single-unit activity. All other stable units that did not

meet this isolation criterion were labeled as multi-unit activity. Both single and multi-units

were included in all analyses.

Acoustic stimuli

Digital acoustic signals were transformed to analog (National Instruments), amplified

(Crown), and delivered through a free-field speaker (Manger) placed 80 cm from the animal’s

head and 30˚ contralateral to the the hemisphere in which neural activity was recorded. Stimu-

lation was controlled using custom MATLAB software (https://bitbucket.org/lbhb/baphy),

and all experiments took place inside a custom double-walled sound-isolating chamber (Pro-

fessional Model, Gretch-Ken).

Auditory stimuli consisted of narrowband white noise stimuli with�0.3 octave bandwidth.

In total, we presented fifteen distinct, non-overlapping noise bursts spanning a 5 octave range.

Each noise was presented alone (-Inf dB) condition, or with a pure tone embedded at its center

frequency for a range of different signal to noise ratios (−10dB, −5dB, 0dB). Thus, each experi-

ment consisted of 60 unique stimuli (4 SNR conditions X 15 center frequencies). Overall

sound level was set to 60 dB SPL. Stimuli were 300ms in duration with 200ms ISI and each

sound was repeated 50 times per experiment in a pseudo-random sequence.

Bootstrapped estimates of decoding performance for different sample sizes

In Fig 6 panels d and g, we present the relative performance of dDR vs. taPCA and stPCA
applied to real neural data across different sample sizes. Unlike our simulations, here we were

restricted to a finite number of total trials (k = 50). Therefore, we utilized the following boot-

strapping procedure to compute unbiased estimates of the standard error in cross-validated

decoding performance at each sample size.

First, we selected a subset of the available trials (k = 15) to hold out for validation. Next, we

re-sampled, with replacement, from the remaining data to build bootstrapped estimation sets.

For example, for k = 20 this means that for each bootstrap sample we randomly selected 5 tri-

als, with replacement, excluding the validation data. We then performed dimensionality reduc-

tion using dDR, taPCA, or stPCA and fit a decoding axis in the reduced dimensionality space

for these 5 trials. Finally, we evaluated the decoding performance using this decoding axis on

the held out k = 25 validation trials. We normalized the resulting decoding metric, d02, for

taPCA and stPCA to the mean dDR d02 across all bootstraps for a given sample size. Thus, for

each sample size k, we obtained a bootstrapped distribution of relative decoding performance

between dDR and either taPCA or stPCA. The lines in Fig 6d, g represent the mean of this met-

ric across bootstraps and the shading represents the standard deviation across bootstraps i.e.,

the bootstrapped estimate of standard error [24]. For k< 50 we performed a bootstrap
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correction on the standard error in order to account for re-sampling only a subset of our full

k = 50 trials sample [25].

Results

Neural population decoding and noise correlations

Decades of neurophysiology experiments have demonstrated that neural activity under most

experimental conditions is variable. For example, in the auditory system, the number of action

potentials a neuron produces in response to a sound stimulus varies each time that sound is

presented. This stimulus-independent variability has often been attributed to stochastic noise.

However, it is increasingly appreciated that latent physiological processes, such as changes in

arousal and attention, could be driving these apparently spontaneous fluctuations in neural

responses [15, 17, 26, 27].

Supporting the hypothesis that latent processes drive variability, modern neural recording

techniques have demonstrated that stimulus-independent variability is often correlated

between neurons. Thus, it cannot simply be attributed to independent noise in each neuron.

Because this variability is not related to an experimentally controlled variable, like stimulus

condition, it is commonly referred to as noise correlation. A rich literature exists describing

the importance of noise correlation for understanding neural population codes (for a review,

see [7]). For the purposes of our work, it is useful to briefly highlight some of the main con-

cepts and define key terminology that we use throughout this manuscript. Readers familiar

with previous work on pairwise noise correlation may wish to skip to the next section.

Noise correlation can be visualized by plotting the response distribution of a pair of neu-

rons in state-space (Fig 1a–1c), where state-space refers to the euclidean space in which each

axis represents the activity of a single neuron. If two neurons share a noise correlation, as is

shown in Fig 1a–1c, their response distribution (illustrated by ellipses) will be elongated. This

Fig 1. Neuronal noise correlation and population coding. a.-c. In each panel, the spiking responses of two neurons are simulated for two

experimental conditions (blue vs. orange). Noise correlation strength and the absolute distance between the mean responses were fixed across all

simulations. Top: Response distributions in state-space under each condition are summarized using an ellipse that shows one standard deviation of

responses around the mean. Middle: Responses are projected onto the optimal linear decoding axis, where decoding metrics such as d02 can be

visualized and measured. d02 quantifies how discriminable two Gaussian distributions are. Bottom: Responses are projected onto a sub-optimal

decoding axis. Unlike the optimal axis, this does not take into account noise correlations. Figure is adapted from Averbeck & Lee, 2006 [6].

https://doi.org/10.1371/journal.pone.0271136.g001
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reflects the observation that when one neuron fires more spikes than average, the other neuron

tends to do so as well. The sign and strength of a noise correlation is reflected by the shape of

this response distribution.

Theoretical work has shown that the ability of a population of neurons to discriminate

between different stimulus conditions critically depends on how noise correlation interacts

with sensory tuning. To illustrate this point, Fig 1a–1c shows simulated response distributions

for two neurons under two different stimulus conditions (blue vs. orange). When the noise

correlation is aligned with the coding axis, it interferes with the ability to discriminate between

the two distributions (Fig 1a). However, when the noise correlation is orthogonal, discrimina-

tion is actually easier (Fig 1c). This makes sense intuitively—if the uncontrolled variability

(noise correlation) changes neural activity in the same way as the stimulus, then it is impossible

to know if a change in the activity should be attributed to stimulus, or to noise.

In practice, noise correlation need not be perfectly aligned with, or orthogonal to, the cod-

ing axis. The specific alignment of noise correlation can be leveraged to achieve an optimal

decoding strategy. The intuition for this optimization is illustrated in Fig 1b. The linear decod-

ing axis is rotated to minimize the amount of noise correlation observed by a e.g. downstream

readout neuron (Fig 1c, middle) relative to a sub-optimal decoding strategy that only takes

into account the trial-averaged activity of each response distribution (Fig 1b, bottom). Thus,

accurately measuring noise correlation is important for optimally decoding neural population

activity.

Small sample sizes limit the reliability of neural decoding analysis

Linear decoding identifies a linear, weighted combination of neural activity along which dis-

tinct experimental conditions (e.g. different sensory stimuli) can be discriminated. In neural

state-space, this weighted combination is referred to as the decoding axis, wopt, the line along

which the distance between stimulus classes is maximized and trial-trial variance is minimized

(Fig 2a and 2b). To quantify decoding accuracy, single-trial neural activity is projected onto

this axis and a decoding metric is calculated to quantify the discriminability of the two stimu-

lus classes. Here, we use d02, the discrete analog of Fisher Information [4, 5]. This discrimina-

bility metric has been used in a number of previous studies [6, 9–11, 28] and has a direct

relationship to classical signal detection theory [4, 29].

Looking at the simulated data in Fig 2a and 2b, one can appreciate that an accurate estimate

of wopt requires knowledge of both the mean response evoked by each stimulus class (μa vs.

μb), as well the population noise correlations, S (summarized by the ellipses in Fig 2a and 2b).

Indeed, d02, is directly dependent on these features:

d02 ¼ DmTwopt ð1Þ

wopt ¼ S� 1Dm ð2Þ

Dm ¼ ma � mb ð3Þ

Where μa and μb are the Nx1 vectors describing the mean response of an N-neuron population

to two stimuli, a vs. b, respectively, and S is the average N x N covariance matrix 1

2
ðSa þ SbÞ

(e.g. Fig 2c).

In practice, the noise correlations between neurons (or rsc) is reported to be very small—on

the order of 10−1 or 10−2 [30–32]. As we can see from the shuffled distribution in Fig 2a (bot-

tom), this can pose a problem for accurate estimates of the off-diagonal elements in S, and, as

a consequence, wopt itself. This difficulty is especially pronounced when sample sizes are
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relatively small (compare Fig 2a to 2b). The estimates of covariance and stimulus discrimina-

bility improve with increasing sample size, but robust performance is not reached until�100

stimulus repetitions, even for this case with relatively strong covariance (Fig 2d). The sample

sizes (e.g. number of trials) in most experiments, especially those involving animal behavior,

are typically much lower, raising the question: How can one reliably quantify coding accuracy

in large neural populations observed over relatively few trials?

Neural population activity is low-dimensional

Analysis of neural population data with dimensionality reduction has consistently revealed

low-dimensional structure in neural activity [33]. Specifically, recent studies have found that

this noise correlation is dominated by a small number of latent dimensions [14, 15, 17, 27].

Noise correlation impacts stimulus coding accuracy [7] and is known to depend on internal

states, such as attention, that affect behavioral task performance [15, 16, 30, 34, 35]. These find-

ings suggest that the space of neural activity relevant for understanding stimulus decoding,

Fig 2. Measurements of noise correlations and discriminability are unreliable when sampling is limited. a. Top: k = 10 single trial

spike count responses are drawn from standard multivariate Gaussians N ðma;SÞ and N ðmb;SÞ corresponding to two different stimulus

conditions, a and b. Ellipses show the standard deviation of spike counts across trials. Bottom: Reliability of the noise correlation

estimate between neuron 1 (n1) and neuron 2 (n2) is calculated by shuffling values of n1 500 times. The true covariance (red line) falls

within this distribution, indicating that estimates of covariance are not reliable for k = 10. b. Same as in (a), but drawing k = 100 samples

for each stimulus. The narrower distribution of permuted measures indicates a greater likelihood of identifying an accurate estimate of

covariance. c. The covariance matrix, S, used to generate data in (a)/(b). The true pairwise covariance for this pair of simulated neurons

has a value of 0.4. d. Variance (σ2) of covariance estimates based on the permutation analysis in (a)/(b) for a range of sample sizes,

k (blue). Variance decays as O 1

k� 1

� �
(see S1 Appendix). Overlaid is the difference in stimulus discriminability, d02 (Eq 1), between

estimation and validation sets (50–50 split) estimated for each sample size (orange). Large values in the d02 difference for low k indicate

overfitting of wopt to the estimation data. This difference asymptotes toward zero as sample size increases and the estimate of covariance

becomes reliable.

https://doi.org/10.1371/journal.pone.0271136.g002
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and its relationship to behavior, may be small relative to the total number of recorded

neurons.

When population data exhibits low-dimensional structure, the largest eigenvectors of S (i.e.

the top principal components of population activity) provide a reasonable, low-rank approxi-

mation to the full-rank covariance matrix. Importantly, these high variance dimensions of cov-

ariability can be estimated accurately even from limited samples. To illustrate this point, we

simulated population spike counts, X, for N = 100 neurons by drawing k samples from a multi-

variate Gaussian distribution with mean μ and covariance S (Eq 4).

X ¼ N ðm;SÞ þ �indep: ð4Þ

Where in Eq 4, �indep. represents a small amount of independent noise added to each neu-

ron, effectively removing any significant structure in the smaller noise modes.

To investigate how different noise structures impact estimates of S, we simulated three dif-

ferent surrogate populations. First, we simulated data with just one large, significant noise

dimension (Fig 3b–3d, 1-D data, orange). In this case, the first eigenvector can be estimated

Fig 3. Low-dimensional noise correlation can be estimated reliably for neural populations, even when pairwise

noise correlation cannot. a. Example covariance matrix, S, for a 100-neuron population with low-dimensional

covariance structure. b. Scree plot shows the fraction of total population variance captured along each noise

dimension, computed by PCA, for three different datasets with varying dimensionality. Orange: 1-dimensional noise

(1-D), covariance matrix in (a); green: independent noise (Indep.); blue: power law decay (1/n). c. Surrogate datasets

with varying numbers of samples, k, are drawn from the three noise distributions in (b). For each dataset, the cosine

similarity between the estimate of the largest noise dimension, ê1, and the true noise dimension, e1, is plotted as

function of sample size. For low-dimensional data, e1 can be estimated very reliably. d. Variance in the estimate of

covariance, Si,j, for two neurons with a true covariance of 0.04 is plotted as a function of the number of trials, as in Fig

2d. Even at sample sizes>100, VarðŜ i;jÞ � 0:02, corresponding to a standard deviation of�0.14. Therefore, estimates

of Si,j, may be off by up to an order of magnitude. Note that the amount of uncertainty does not depend on the

dimensionality of the data, and results for all three datasets overlap (see S1 Appendix for an analytical derivation).

https://doi.org/10.1371/journal.pone.0271136.g003
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reliably, even from just a few samples (Fig 3c). However, when the noise is independent and

shared approximately equally across all neurons, estimates of the first eigenvector are poor

(Fig 3c, Indep. noise, green). These first two simulations represent extreme examples—in prac-

tice, population covariability tends to be spread across at least a few significant dimensions

[36]. To investigate a scenario that more closely mirrors this structure, we simulated a third

dataset where the noise eigenspectrum decayed as 1/n, where n goes from n = 1 to N. Recent

studies of large neural populations suggest that this power law relationship is a reasonable

approximation to real neural data [36]. In this case, by k� 50 trials, estimates of the first eigen-

vector are highly reliable, approaching a cosine similarity of�0.9 between the estimated and

true eigenvectors (Fig 3c, 1/n noise, blue). In all simulations, regardless of dimensionality, we

find that estimates of single elements of S (i.e. single noise correlation coefficients) are highly

unreliable (Fig 3d), as we see in the two-neuron example (Fig 2d).

Collectively, these simulations demonstrate that accurate estimates of noise correlation

need not necessarily be limited by uncertainty in estimates of individual noise correlation coef-

ficients themselves. In the following sections we describe a simple decoding-based dimension-

ality reduction algorithm, dDR, that leverages low-dimensional structure in neural population

activity to facilitate reliable measurements of neural decoding.

Decoding-based Dimensionality Reduction (dDR)

The dDR algorithm operates on a pairwise basis. That is, given a set of neural data collected

over S different conditions, a different dDR projection exists for each of the S!

2!ðS� 2Þ!
unique pairs.

For simplicity, we will describe the case where S = 2, and consider these to be two unique stim-

ulus conditions. However, note that the method can be applied in exactly the same manner to

handle datasets with many different types and numbers of decoding conditions, where a

unique dDR projection would then exist for each pair.

Let us consider the spiking response of an N-neuron population evoked by two different sti-

muli, Sa and Sb, over k-repetitions of each stimulus. From this data we form two response

matrices, A and B, each with shape N x k. Remembering that our goal is to estimate discrimina-

bility (d02, Eq 1), the dDR projection should seek to preserve information about both the mean

response evoked by each stimulus condition, μa and μb, as well as the noise correlations, S.

Therefore, we define the first dimension of dDR to be the axis that maximally separates μa and

μb. We call this the signal axis.

signal ¼ ma � mb ¼ Dm ð5Þ

Next, we compute the first eigenvector of S, e1. This represents the largest noise mode of

the neural population activity. Together, signal (Δμ) and e1 span the plane in state-space that is

most optimized for reliable decoding. Finally, to form an orthonormal basis, we define the sec-

ond dDR dimension as the axis orthogonal to Δμ in this plane. As this second dimension is

designed to preserve noise covariance, we call this the noise1 axis.

noise1 ¼ e1 � e1Dm
T ð6Þ

The process outlined above is schematized graphically in Fig 4.

Thus, the signal and noise1 axes make up a 2 x N set of weights, analogous to the loading

vectors in standard PCA, for example. By projecting our N x k data onto this new basis, we cap-

ture both the stimulus coding dimension (Δμ) and preserve the principal noise correlation

dimension (e1), two critical features for measuring stimulus discriminability. Importantly,

because e1 can be measured more robustly than S itself (Fig 3), performing this dimensionality
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reduction helps mitigate the issues we encounter due to small sample sizes and large neural

datasets.

As mentioned in the previous section, neural data often contains more than one significant

dimension of noise correlation. To account for this, dDR can easily be extended to include

more noise dimensions. To include additional dimensions, we deflate the spike count matrix,

X, by subtracting out the signal and noise1 dimensions identified by standard dDR, then per-

form PCA on the residual matrix to identify m further noise dimensions. Note, however, that

for increasing m the variance captured by each dimension gets progressively smaller. There-

fore, estimation of these subsequent noise dimensions becomes less reliable and will eventually

become prone to over-fitting, especially with small sample sizes. For this reason, care should

be taken when extending dDR in this way.

To demonstrate the performance of the dDR method, we generated three sample datasets

containing N = 100 neurons and S = 2 stimulus conditions. Each of the three datasets con-

tained unique noise correlation structure: 1. S contained one significant dimension (Fig 5a) 2.

S contained two significant dimensions (Fig 5b) 3. Noise correlation decayed as 1/n (Fig 5c).

For each dataset, we measured cross-validated d02 between stimulus condition a and stimulus

condition b using standard dDR with one noise dimension (dDR1), with two noise dimensions

(dDR2), or with three noise dimensions (dDR3). We also estimated d02 using the full-rank data,

without performing dDR. The bottom panels of Fig 5a–5c plot the decoding performance of

each method as a function of sample size (i.e. number of stimulus repetitions). In each case, d02

is normalized to the asymptotic performance of the full-rank approach, when the number of

samples is >> than the number of neurons. This provides an approximate estimate of true

discriminability for the population.

In contrast to the full-rank data where overfitting leads to dramatic underestimation of d02

on the test data for most sample sizes (Fig 5a–5c, bottom, grey lines), we find that d02 estimates

after performing dDR are substantially more accurate and, critically, more reliable across sam-

ple sizes. That is, asymptotic performance of the dDR method is reached much more quickly

than for the full-rank method.

For the one-dimensional noise case, note that there is no benefit of including additional

dDR dimensions (Fig 5a), while for the higher dimensional data shown in Fig 5b and 5c, we

see some improvements with dDR2 and dDR3. However, these benefits don’t begin to appear

Fig 4. Decoding-based Dimensionality Reduction (dDR). Left to right: Responses of 3 neurons (n1, n2, n3) to two different stimuli are schematized in state-

space. Ellipsoids illustrate the variability of responses across trials. 1. To perform dDR, first the difference is computed between the two mean stimulus

responses, Δμ. 2. Next, the mean response is subtracted for each stimulus to center the data around 0, and PCA is used to identify the first eigenvector of the

noise covariance matrix, e1 (additional noise dimensions em, m> 1 can be computed, see text). 3. Finally, the raw data are projected onto the plane defined by

Δμ and e1.

https://doi.org/10.1371/journal.pone.0271136.g004
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until k becomes large and they diminish with increasing noise dimensions—the improvement

of dDR2 over dDR1 is larger than that of dDR3 to dDR2 Fig 5b and 5c. This is because subse-

quent noise dimensions are, by definition, lower variance and therefore more difficult to esti-

mate reliably from limited sample sizes.

dDR recovers more decoding information than standard principal

component analysis

One popular method for dimensionality reduction of neural data is principal component anal-

ysis (PCA) [33]. Generally speaking, PCA can be implemented on neural data in one of two

ways: application to single trial spike counts PCA or trial-averaged spike counts PCA. In the

single trial approach (stPCA), principal components are measured across all single trials and

all experimental conditions. The resulting PCs capture variance both across trials and across e.
g. stimulus conditions. In trial-averaged PCA (taPCA), single trial responses are first averaged

per experimental condition and PCs are measured over the resulting N-neuron x S-condition

spike count matrix. In this case, for different stimulus conditions, the PCs specifically capture

variance of stimulus-evoked activity rather than trial-trial variability, making it a more logical

choice for many decoding applications. In the case of S = 2, as we have outlined above for the

dDR illustration (Fig 4), taPCA is equivalent to Δμ, the first dDR dimension. Thus, dDR can

Fig 5. Evaluation of decoding accuracy and reliability with dDR. a. Analysis of data with one-dimensional (1-D) noise covariance.

For each sample size, k, 100 datasets were generated from the same multivariate Gaussian distribution (Eq 4) where S was a rank-one

covariance matrix and the mean response vector, μ, corresponded to one of two stimulus conditions, a or b. Top: Scree plot of noise

covariance. Bottom: Cross-validated discriminability, d02, between a and b computed with full-rank data and with dDR using one

(dDR1), two (dDR2) or three (dDR3) noise dimensions, as a function of sample size. Mean d02 across all 100 surrogate datasets is

shown here. For k>>N, the dDR results converge to the asymptotic value of the full-rank d02. However, even for small k, the dDR
analyses estimates are much more accurate than the full-rank approach. b. Same as in (a), but for two-dimensional noise covariance

data. In this case, dDR2 captures the second noise dimension and outperforms the standard 1-D approach (dDR1) c. Same as in (a)

and (b), but for 1/n noise covariance.

https://doi.org/10.1371/journal.pone.0271136.g005
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roughly be thought of as a way to combine taPCA and stPCA—taPCA identifies the signal
dimension and stPCA identifies the noise dimension(s).

To demonstrate the relative decoding performance achieved using each method, we applied

each to a dataset collected from primary auditory cortex in an awake, passively listening ferret.

N = 52 neurons were recorded simultaneously using a 64-channel laminar probe [22] as in [19,

20, 37]. Auditory stimuli consisting of narrowband (0.3 octave bandwidth) noise bursts were

presented alone (-Inf dB) or with a pure tone embedded at varying SNRs (0 dB, −5 dB, −10

dB) in the hemifield contralateral to the recording site (see Experimental Methods). Each stim-

ulus was repeated 50 times. The neural response to each stimulus was defined as the total num-

ber of spikes detected during the 300 ms stimulus duration for each neuron. For stPCA and

dDR, we selected only the top m = 2 total dimensions, and for taPCA, we selected the single

dimension, Δμ, that exists for S = 2. This dataset allowed us to investigate how each dimension-

ality reduction method performs for two distinct, behaviorally relevant neural decoding ques-

tions: One, how well can neural activity perform fine discriminations (tone-in-noise detection),

discriminating noise alone vs. noise with tone? Two, how well can it perform coarse discrimi-

nations (frequency discrimination), discriminating noise centered at frequency A vs. noise at

frequency B?

The A1 dataset displayed a range of frequency tuning (Fig 6a), with the majority of units

tuned to�3.5 kHz. We therefore defined this as the best frequency of the recording site (on-

BF, Fig 6b). For tone detection, we measured discriminability (d02, Eq 1) between on-BF noise

alone (on-BF, -Inf dB) and on-BF noise plus tone (on-BF, −5 dB), which each drove similar

sensory responses (Fig 6b and 6c). For frequency discrimination, we measured discriminability

between the neural responses to on-BF noise and off-BF noise, where off-BF was defined as�1

octave away from BF, and drove a very different population response (Fig 6b and 6f). In both

cases, taPCA and dDR outperformed stPCA (Fig 6d and 6g). This first result is unsurprising

due to the fact that stPCA is the only method not explicitly designed to capture variability in

the sensory response. The top PCs are dominated by dimensions of trial-trial variability that

do not necessarily contain stimulus information and thus underestimate d02 relative to the

other two methods.

We also find that dDR consistently performs as well or better than taPCA. For the tone
detection data, the sensory signal (Δμ) is small (i.e., trial-averaged responses to the two stimuli

were similar) and covariability is partly aligned with Δμ. Under these conditions, dDR makes

use of correlated activity to optimize the decoding axis (wopt) and improve discriminability.

taPCA, on the other hand, has no information about these correlations and is therefore equiva-

lent to projecting the single trial responses onto the signal axis, Δμ. Thus, it underestimates d02

(Fig 6c and 6d). In the frequency discrimination example, Δμ is large. The covariability has sim-

ilar magnitude to the previous example, but it is not aligned to the discrimination axis, and

thus has no impact on wopt. In this case, dDR and taPCA perform similarly (Fig 6f and 6g).

These examples highlight that under behaviorally relevant conditions, dDR can offer a signifi-

cant improvement over standard PCA, even with as few as 20 trials.

Discussion

We have described a simple new method for robust decoding analysis of neural population

data, decoding-based dimensionality reduction (dDR). This approach combines strategies for

both trial-averaged PCA and single-trial PCA to identify important dimensions of population

activity that govern neural coding accuracy. Using both simulated and real neural data, we

demonstrated that the method performs robustly for neural decoding analysis in low experi-

mental trial count regimes where the performance of full-rank methods break down. Across a
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range of behaviorally relevant stimulus conditions, dDR consistently performs as well or better

than standard principal component analysis.

Applications

dDR is designed to optimize the performance of linear decoding methods in situations where

sample sizes are small. This is often the case for neurophysiology data collected from behaving

animals, where the number of stimulus and/or behavior conditions are fundamentally limited

by task performance. In these situations, using full-rank decoding methods is unfeasible as it

leads to dramatic overfitting and unreliable performance [12]. Dimensionality reduction

methods, such as PCA, can be used to mitigate overfitting issues. However, the correct imple-

mentation of PCA in neural data is often ambiguous, and multiple different approaches to

dimensionality reduction have been proposed [33]. We suggest dDR as a simple, standardized

alternative that captures the strengths of different PCA approaches. Unlike conventional PCA,

Fig 6. dDR outperforms PCA for fine sensory discrimination. a. Heatmap shows mean z-scored spike counts of N = 52 simultaneously recorded units for 15

different narrowband noise bursts (0.3 octave bandwidth tiling 5 octaves, x-axis). Each row shows tuning for one unit, with red indicating higher firing rate response.

x-axis (Noise Center Frequency of the sound stimulus) is shared with panel b. b. Population tuning curve for noise alone (black, data from panel a) and noise plus −10,

−5, and 0 dB tones (light to dark red), computed by averaging tuning curves across neurons. c-e. Decoding analysis for tone-in-noise detection. c. Scatter plot

compares single trial responses to noise alone at best frequency (on-BF, blue) vs. noise + −5dB tone (orange), projected into dDR space. Ellipses show standard

deviation across trials, marginal histograms show projection of data onto optimal decoding axis (wopt) or onto Δμ (equivalent to performing trial-averaged PCA). d.

Estimate of relative d02 as a function of sample size (number of trials, k) using each dimensionality reduction method. For each data point, relative d02 was measured

between taPCA vs. dDR and stPCA vs. dDR. This metric was averaged over 200 bootstrap samples of k trials. Shading indicates standard error. See Methods for details.

e. Fraction variance explained by each noise component (green) computed by performing PCA on mean-centered single trial data. The alignment of each noise

component with the signal axis is shown in purple. f-h Same as panels (c)-(e), for noise alone on-BF vs. noise alone off-BF (see panel b).

https://doi.org/10.1371/journal.pone.0271136.g006
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the signal and noise axes that comprise the dDR space have clear interpretations with respect to

neural decoding. Importantly, dDR components explicitly preserve stimulus-independent

population covariability. In addition to being important for overall information coding, this

covariability is known to depend on behavior state [15, 16, 30, 34, 38] and stimulus condition

[31, 39–41]. Therefore, approaches that do not preserve these dynamics, such as trial-averaged

PCA, may not accurately characterize how information coding changes across varying behav-

ior and/or stimulus conditions.

Interpretability and visualization

A key benefit of dDR is that the axes making up the dDR subspace are easily interpretable: The

first axis (signal) represents the dimension with maximal information about the difference in

evoked activity between the two conditions to be decoded, and the second (noise) axis captures

the largest mode of condition-independent population covariability in the data. Therefore,

within the dDR framework it is straightforward to investigate how this covariability interacts

with discrimination, an important question for neural information coding. Further, standard

dDR (with a single noise dimension) can be used to easily visualize high-dimensional popula-

tion data, as in Fig 6. For methods like PCA, it can be difficult to dissociate signal and noise

dimensions, as the individual principal components can represent an ambiguous mix of task

conditions, stimulus conditions, and trial-trial variability [42]. Moreover, with PCA the num-

ber of total dimensions is typically selected based on their cumulative variance explained,

rather than by selecting the dimensions that are of interest for decoding, as in dDR.

Extensions

Latent variable estimation. dDR makes the assumption that latent sources of low-dimen-

sional neural variability can be captured using simple, linear methods, such as PCA. While

these methods often seem to recover meaningful dimensions of neural variability [16], a grow-

ing body of work is investigating new, alternative methods for estimating these latent dynam-

ics [15, 17, 43–45], and this work will continue to lead to important insights about the nature

of shared variability in neural populations.

We suggest that dDR can be extended to incorporate these new methods. For example,

rather than defining dDR on a strictly per decoding pair basis, a global noise axis could be iden-

tified across all experimental conditions using a custom latent variable method. This could

then be applied to the decoding-based dimensionality reduction such that the resulting dDR
space explicitly preserves activity in this latent space to investigate how it interacts with coding.

Incorporating additional dDR dimensions. In this work we have described dDR primar-

ily as a transformation from N-dimensions to two dimensions, signal and noise, with the

exception of Fig 5. In our code repository, https://github.com/crheller/dDR, we include exam-

ples that demonstrate how the dDR method can be extended to include additional dimensions.

However, as discussed in the main text, it is important to remember that estimates of neural

variability beyond the first principal component may become unreliable as variance along

these dimensions gets progressively smaller, especially in low trial regimes. In short, while

information may be contained in dimensions >m = 2, caution should be used to ensure that

these dimensions can be estimated reliably.

Related methods for dimensionality reduction and neural decoding

A growing number of techniques exist for performing dimensionality reduction on neural

data [33]. It is outside the scope of this work to provide an exhaustive review of these methods,

however, it is useful to highlight a couple of methods that share similarities with dDR.
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Standard principal component analysis (PCA) remains the most commonly applied method

for dimensionality reduction of neural data. Indeed, many other methods, (e.g. k-means clus-

tering, non-negative matrix factorization etc.), can simply be viewed specially constrained ver-

sions of PCA [46]. In the case of dDR, the key distinction from PCA is that dDR explicitly

preserves information about both trial-trial neural variability and mean, e.g. stimulus evoked,

activity. PCA, on the other hand, is an entirely unsupervised method. Therefore, individual

principal components often contain a mixture of trial-trial variability and mean activity, mak-

ing their interpretation challenging. Furthermore, performing PCA can lead to sub-optimal

neural decoding, as we demonstrate above.

Recently, Kobak et al. developed a powerful method called demixed PCA (dPCA) which

produces interpretable low-dimensional representations of neural population data [42]. While

this work shares some conceptual similarities with dDR, namely that both measure interpret-

able, low-dimensional representations of neural data, their applications are distinct. With

dPCA, the idea is to produce components that allow accurate decoding of e.g. stimulus condi-

tion and also maintain a faithful representation of the underlying neural state space geometry.

In the context of optimal decoding, these two aims can sometimes be at odds—the best geo-

metrical representation of the data does not necessarily lead to optimal decodability. This

trade off is illustrated nicely in their manuscript [42].

Unlike dPCA, dDR, only seeks to maximize information that can be used for decoding.

Therefore, dDR can be thought of as a preprocessing step that should be applied prior to per-

forming standard decoding methods, such as linear discriminant analysis (LDA). Further,

dDR is designed for optimal decoding of only two experimental conditions at a time. dPCA is

not restricted in this pairwise way. Therefore, dPCA is useful when an interpretable, constant

low-D space across many different experimental conditions is desired, while dDR should be

used when optimal decoding is the goal.

Code availability

We provide Python code for dDR which can be downloaded and installed by following the

instructions at https://github.com/crheller/dDR. We also include a short demo notebook that

highlights the basic work flow and implementation of the method to simulated data. All code

used to generate the figures in this manuscript is available in the repository.
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