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Abstract: Prodrugs are bioreversible drug derivatives which are metabolized into a pharmacologically
active drug following chemical or enzymatic modification. This approach is designed to overcome
several obstacles that are faced by the parent drug in physiological conditions that include rapid drug
metabolism, poor solubility, permeability, and suboptimal pharmacokinetic and pharmacodynamic
profiles. These suboptimal physicochemical features can lead to rapid drug elimination, systemic tox-
icities, and limited drug-targeting to disease-affected tissue. Improving upon these properties can be
accomplished by a prodrug design that includes the careful choosing of the promoiety, the linker, the
prodrug synthesis, and targeting decorations. We now provide an overview of recent developments
and applications of prodrugs for treating neurodegenerative, inflammatory, and infectious diseases.
Disease interplay reflects that microbial infections and consequent inflammation affects neurodegen-
erative diseases and vice versa, independent of aging. Given the high prevalence, personal, social,
and economic burden of both infectious and neurodegenerative disorders, therapeutic improvements
are immediately needed. Prodrugs are an important, and might be said a critical tool, in providing an
avenue for effective drug therapy.

Keywords: prodrugs; drug derivatization; neurodegenerative disorders; infectious diseases; human
immunodeficiency virus (HIV); SARS-CoV-2; hepatitis; HIV-associated neurocognitive disorders (HAND)

1. Introduction

Prodrugs are inactive drug derivatives that undergo chemical and or enzymatic-
mediated hydrolysis into an active parent drug in plasma and tissues [1]. The biotransfor-
mation is designed to overcome suboptimal physicochemical drug features, rapid drug
metabolism, poor absorption and distribution, and improve the overall pharmacokinetic
and pharmacodynamic (PK and PD, respectively) profiles. Such improvements could also
limit the systemic toxicities through targeted drug delivery [1–5]. Developing new drugs
is time limited and costly [6]. Prodrugs can speed up drug development by improving
the drug’s physicochemical characteristics while reducing the developmental cost. Indeed,
this approach is broadly used in all phases of the drug development from newly devel-
oped drug entities to commercialization [7]. Indeed, up to 10% of commercially available
medicines are prodrugs [8]. Important considerations in prodrug design and development
include several of the following:

Inherent native drug features. The physiochemical properties and nature of the
functional groups that are present on the native drug will determine the drug conjugation
sites, bond strength, and any needed molecular modifications.
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Auxiliary grafts. The promoieties for drug conjugation are selected for grafting based
on hydrophobicity, pH, and protein binding [9]. The graft must be biocompatible with the
microenvironment and excreted upon prodrug cleavage [3,10].

Linker. The linker, or the connecting segment, is typically located between the native
drug and the promoiety and is designed to affect the liberation of the native drug from
the prodrug assembly. It can also impact the overall stability of the prodrug and the
formulation process along with the compound conformation that affects drug-target site
interactions [11–15].

Formulation. This serves to optimize the prodrug fate, linker cleavage, native drug
release, bioavailability, and biodistribution. The prodrug may be encased [16], conju-
gated [17], or even incorporated into the delivery devices including transdermal patches,
microneedles [18], or implants [19]. Thus, the prodrug development platform provides
a versatile system for a wide range of therapeutics and for a spectrum of administration
routes that include enteral and parenteral routes. This approach remains an important
tool for modifying already existing, as well as newly developed drugs, and hereinafter
we will discuss in detail the use of this approach for some of the most challenging global
health conditions.

Infectious and neurodegenerative diseases are the leading causes of disease morbidity
and mortality worldwide [20]. Relationships between infectious and neurodegenerative
diseases that include Alzheimer’s and Parkinson’s diseases (AD and PD) and amyotrophic
lateral sclerosis (ALS) can be age-independent [21]. According to the World Health Orga-
nization (WHO), in 2019, AD and other forms of dementia ranked as the seventh leading
cause of death in the world. Indeed, AD alone accounts for 60–70% of all diagnosed de-
mentia cases, and the prevalence of AD cases is expected to exceed 130 million by 2050 [22].
Women are affected by AD disproportionately (65% of AD deaths are females) [23,24].
PD is only second to AD as the most common neurodegenerative disorder with a global
prevalence of over six million [25]. Infectious diseases, likewise, are amongst the most
common diseases worldwide and disproportionately affects low-income countries with
high death rates. In 2019, lower respiratory tract infections and diarrheal diseases were
ranked in the top ten causes of death worldwide by the WHO. Moreover, globally, there
are 300–500 million cases of malaria and 333 million of sexually transmitted diseases that
included syphilis, gonorrhea, chlamydia, and trichomonas. Another 40 million cases were
attributed to infections with the human immunodeficiency virus type-one (HIV-1), cholera,
and tuberculosis [26]. This is in addition to the 340 million cases of COVID-19, referenced
by World Health Organization (WHO) Coronavirus (COVID-19) Dashboard [27]. Based
on disease prevalence, a limited numbers of needed drugs have been US Food and Drug
Administration (FDA) approved [8]. High-throughput drug screening could overcome
this limitation. Nevertheless, this method of drug discovery leads to drug candidates with
undesirable physicochemical features (poor permeability, poor solubility, and poor site
targeting). Together with the fact that antimicrobial drugs face obstacles when it comes
to drug resistance, and several drugs that were developed to combat neurodegenerative
diseases face additional obstacles that are linked to blood brain barrier penetrance and
site specificity, improvements in the drug development process are desperately needed.
This review serves to highlight one part of drug development which is the development of
prodrugs. We posit that this pathway can aid in drug development, serving to improve
disease treatment and prevention.

2. Prodrug Strategies for Neurodegenerative Diseases
2.1. Current and Prospective Therapies for Neurodegenerative Diseases

Neurodegenerative diseases include but are not limited to, AD, PD, ALS, Huntington’s
disease (HD), and infections of the nervous systems in which neurons and glial cells are
injured then lost [28]. The symptoms are reflective of the disease and the area(s) of the cen-
tral nervous system (CNS) that are injured, which include motor, sensory, speech, and/or
cognitive impairments amongst others [29]. An underlying pathology in neurodegenera-
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tive diseases include cell-associated aggregation of misfolded and biochemically-modified
proteins. These include, for example, amyloid-β and tau, α-synuclein, and superoxide
dismutase 1 and TAR DNA-binding protein 43 (TDP-43) in AD, PD, and ALS, respec-
tively [30,31]. Moreover, each of the disorders is lifelong and currently without cure.
Current treatment options primarily treat the disease symptoms, but fail to slow the pro-
gression or address the causation. Novel neuroprotective, disease-modifying, replacement,
and immune transformative therapies are being developed to slow neurodegenerative
processes, but have not yet reached broad patient use [30,32], despite vigorous attempts to
affect the disease outcomes. One translational avenue to improve brain disease outcomes is
to affect the drug-targeting, pharmacokinetics, pharmacodynamics, and physicochemical
properties that can be achieved through the generation of prodrugs [33]. This improvement
may extend the drug effect, evade drug resistance, or prolong the therapeutic window nar-
rowing until new disease-transformative therapies become available. The most compelling
cause of multiple sclerosis is Epstein-Barr virus although absolute associations and specific
antiviral therapies remain in cause and development.

AD is the most common neurodegenerative disorder, and is the most common cause
of dementia. It is closely associated with aging as the elderly population is most dispro-
portionately afflicted. The disorder is mainly characterized by the deposition of misfolded
self-protein aggregates, extracellular amyloid beta (Aβ) plaques, and intracellular neurofib-
rillary tangles [34,35]. Prior to the FDA approval of the Aβ-targeting antibody, aducanumab,
in 2021, few therapeutics options were available. In larger measures, this therapeutic re-
ceived controversial accelerated approval for conditions, but with a recommendation to
re-examination [36–38].

PD is the second most common neurodegenerative disorder and the most common
neurodegenerative movement disorder [39]. Motor symptoms reflect the progressive de-
generation of dopaminergic neurons within the substantia nigra (SN) pars compacta with
projections to the caudate nucleus [40]. This leads to diminished dopamine levels, which
manifest as resting tremor, bradykinesia, rigidity, and gait dysfunction. Numerous, nonmo-
tor symptoms are common and include those that are associated with pain, fatigue, low
blood pressure, bladder and bowel dysfunction, sleep disorders, and dysphagia. Neuropsy-
chiatric symptoms that include hallucinations and delusions are also common [40]. Despite
efforts in understanding the pathobiology of PD, the available disease-modifying drugs
focus principally on restoring the brain dopamine levels [41].

For both AD and PD, current therapeutic research has been focused on developing
better means to combat disease [42]. Indeed, with no curative treatments available, intense
interests exist towards improving therapies that already exist. One strategy of interest is
the development of prodrugs. In recent years intense efforts have been made including
antibody targeting; nanomedicine-linked drug delivery that is associated with the use of
carbon nanotubes and lipid nanoparticles. These agents can overcome drug membrane
permeability and penetration as well as improving drug delivery, solubility, and stability,
while reducing toxicity. However, an equally encouraging vehicle for drug delivery is
through the development of prodrugs. Creating prodrugs serves to enhance the physical
and chemical parent drug properties, while overcoming the delivery barriers for an active
drug. Prodrugs can serve the field of neurodegenerative pharmacology as they contain
existing therapeutic parent drugs for AD and PD, which can be improved through the
prodrug approach. This approach will lower the side effects and hydrophilicity, while
improving blood-brain-barrier (BBB) permeability with higher brain–blood drug concen-
trations and improved efficacy. Each of these parameters are essential for better patient
disease outcomes [43]. Hereinafter, we present an overview of prodrugs that are used for
the two most common neurodegenerative diseases, AD and PD.

2.2. Prodrugs for Alzheimer’s Disease

Memantine is a second-line therapeutic agent that is used for the management of
AD. It is an N-methyl-D-aspartate (NMDA) receptor antagonist and blocks excessive



Pharmaceutics 2022, 14, 518 4 of 23

and prolonged glutamate exposure; more specifically, it blocks calcium channel flow by
extrasynaptic-, but not synaptic-NMDA receptors. This atypical behavior allows meman-
tine to attenuate excitotoxicity while preserving glutamatergic synaptic functions to offer
clinical tolerability [44,45]. A sulfide analogue of memantine was developed as the prodrug,
memit, by replacing the free amino group of memantine with hydrogen sulfide (H2S)
(Table 1). H2S is produced endogenously from the amino acids L-cysteine and homocys-
teine (HCy). This is aided by several enzymes (cystathionine β-synthase, cystathionine
γ-lyase, and 3-mercaptopyruvate sulfurtransferase together with cysteine aminotrans-
ferase). Moreover, it interacts with the NMDA receptor directly, through the sulfhydration
of cysteine residues, and indirectly, by regulating the intracellular Ca2+. Memit readily
converts into the memantine by releasing H2S through a cysteine-dependent mechanism.
This novel hybrid molecule demonstrated protective effects against neuronal inflammation
as well as diminished reactive oxygen species (ROS) production. Memit also protected
human neuronal cells and rat microglia against Aβ oligomer-induced toxicity [46]. Further
in vivo studies will confirm the synergic effects of a hydrogen sulfide-releasing moiety in
combination with other native drugs for the treatment of AD.

Another example of the prodrug that was developed for improving existing AD
drugs is galantamine benzoate (Gln-1062, Memogain®, Galantos Pharma GmbH, Mainz,
Germany), an inactive lipophilic prodrug of galantamine. It liberates the parent drug
on cleavage by carboxyesterases in the brain. It is a specific, competitive, and reversible
acetylcholinesterase inhibitor which shows mild cognitive benefits in AD patients. In
ferrets, Gln-1062 avoided peripheral side effects and offered more than 15-fold higher
bioavailability in the brain compared to native galantamine at a human equivalent dose.
In a scopolamine-induced amnesic mouse model, Gln-1062 completely reversed memory
impairments at a three-times lower dose compared to the parent drug [47]. In the 5xFAD
mouse model, Gln-1062 reduced the plaque load and improved memory functions. In a
first-in-human study, Gln-1062 was found to be safe and well tolerated up to 22 mg, twice
daily dose upon intranasal administration compared to oral galantamine. Due to higher
BBB penetration and rapid conversion into the parent drug, Gln-1062 was responsible
for improved cognitive functions in AD patients as measured by NeuroCart, a battery of
neuropsychological and neurophysiological tests [48].

Apart from the classical etiological factors, the role of growth factors is frequently
studied in AD pathogenesis, given their important role in regulating neuronal vitality and
differentiation. Brain-derived neurotrophic factor (BDNF) and other neurotrophic growth
factors exert pleotropic effects by activating cognate tropomyosin receptor kinase B (TrkB)
receptors [49,50]. Indeed, BDNF exerted protective effects against AD pathogenesis in
animal models by reducing amyloid load and improving cognitive functions [51]. Despite
encouraging preclinical outcomes, several clinical trials with recombinant BDNF failed,
presumably due to low bioavailability and poor delivery inside the brain. A potent TrkB
receptor agonist, 7,8-dihydroxyflavone (7,8-DHF) that mimics BDNF functions was iden-
tified as a potential agent that exhibits selective and high affinity for TrkB receptor [52].
Although, systemic administration of 7,8-DHF activated the TrkB receptor in the brain
and induced BDNF-like behavioral improvements in a variety of animal models, it ex-
hibits low bioavailability which hinders clinical translatability [52,53]. R13 is a prodrug
derivative of 7,8-DHF and was derivatized by masking the hydroxyl group by carbamate
functional group on the catecholamine ring in 7,8-DHF. These modifications prolonged
the half-life and increased the oral bioavailability more than ten-fold compared to the
parent drug (Table 1). The highly lipophilic nature of R13 significantly increased brain
exposure and attenuated amyloid deposition and memory impairments in 5xFAD mice in
a dose-dependent manner [54].

The role of neuroinflammation in AD pathogenesis has been well-established over the
last decades [55]. Aβ aggregates inside the brain activate microglia leading to the secretion
of proinflammatory cytokine milieu that ultimately affect neuronal viability and cognitive
functions [54]. N,N′-diacetyl-p-phenylenediamine (DAPPD) is a potent anti-inflammatory
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molecule that is reported to alleviate microglial activation and restore phagocytic capabil-
ities through modulating the NF-κB pathway and NLRP3 inflammasome expression in
AD mice brains, leading to reduced amyloid deposition and memory improvement [56,57].
However, DAPPD exhibits limited biological applicability due to low solubility in aqueous
medium and poor BBB permeability. The glucose transporter system (GLUT1) transports
glucose across the BBB. A Glu-DAPPD prodrug was designed by linking the glucose moi-
ety to DAPPD to facilitate brain entry. Glu-DAPPD lowered amyloid aggregation and
improved memory functions in the APP/PS1 double transgenic mouse model of AD [58].

Tramiprosate (homotaurine, 3-amino-1-propanesulfonic acid, or 3-APS) is a small
molecule that inhibits oligomerization and aggregation of Aβ [59]. Tramiprosate was
shown to be neuroprotective against Aβ toxicity through the activation of β-aminobutyric
acid-A (GABA-A) receptors [60]. Tramiprosate also reduced amyloid burden in hAPP-
TgCRND8 transgenic mice [61]. In clinical studies, orally administered tramiprosate re-
duced Aβ42 levels in the cerebrospinal fluid (CSF) of AD patients [62]. However, in a Phase
3 clinical trial, tramiprosate failed to show benefit in AD patients [60]. It was identified that
tramiprosate exhibits two major deficiencies: high variability in patients’ bioavailability,
most likely due to gastrointestinal metabolism, and incidences of nausea and vomiting. To
overcome such limitations, a novel valine-conjugated prodrug of tramiprosate, (13-(L-valyl)
amino-1-propanesulfonic acid, ALZ-801), was designed (Table 1). Orally administered
ALZ-801 is absorbed from the gastrointestinal tract and releases tramiprosate by cleavage
by hepatic or plasma amidases. This offeres significantly improved bioavailability over
the parent drug. Doses of 265 mg twice daily of ALZ-801 achieved a plasma concentration
that was equivalent to 150 mg of tramiprosate and improved cognition and function in
apolipoprotein E4/4 homozygous AD patients in a Phase 1 clinical trial [63]. Currently, AD
patients are being recruited for a Phase 3 clinical trial with ALZ-801.

Table 1. Structures of the selected prodrugs that were developed for AD therapy.

R13: 7,8-DHF prodrug [54]

Pharmaceutics 2022, 14, x FOR PEER REVIEW 6 of 25 
 

 

Table 1. Structures of the selected prodrugs that were developed for AD therapy. 

R13: 7,8-DHF prodrug [54] 

 

Memit [46] 

 

ALZ801 [63] 

 
  

2.3. Prodrugs for Parkinson’s Disease (PD) 
Levodopa (l-3,4-dihydroxyphenylalanine, L-DOPA) (LD), is a prodrug of dopamine 

and remains the gold standard for the treatment of PD [64], despite numerous drawbacks. 
Some of LD shortcomings are that it provides only symptomatic therapy, it has a short 
half-life due to decarboxylation by DOPA decarboxylase, and patients become retractile 
following years of treatment. LD also causes frequent side effects, such as nausea, vomit-
ing, and orthostatic hypotension [65]. To reduce metabolic instability, peripheral side ef-
fects, and improve the blood-brain bioavailability, LD is usually administered together 
with peripheral decarboxylase inhibitors such as benserazide and carbidopa. 

Over the years, several LD prodrugs were designed to overcome problems with LD 
bioavailability and peripheral metabolism [65–67]. Optimal LD prodrugs should replicate 
the physiological striatal dopamine (DA) levels, produce long-term safety/tolerability, de-
lay narrowing of the therapeutic window, and at the same time, delay disease progression; 
however, such a prodrug has yet to be identified. Extensive research is underway and 
numerous examples of prodrug development for PD have been reported in the literature. 
For instance, actively transported LD prodrug, XP21279, was studied in PD patients who 
experience motor fluctuations. The sustained-release of the LD prodrug was actively ab-
sorbed by high-capacity intestinal transporters and rapidly converted to levodopa via en-
zyme carboxylesterases (Figure 1). Thus, XP21279-carbidopa sustained-release bilayer 
tablets were developed to overcome high rates of prodrug conversion leading to pharma-
cokinetic limitations by providing greater continuous exposure [68]; nevertheless, further 
prodrug development was halted due to performance issues in attaining significant pri-
mary outcomes in clinical trials. 

DA is rapidly metabolized following oral administration, thus cannot enter the BBB 
via passive diffusion and necessitates the development of a prodrug approach to over-
come this obstacle. Amino acid prodrugs of dopamine carry the cationic drug into the 
brain by the L-type amino acid transporter 1 (LAT1, SLC7A5); a promising target for brain 
drug delivery of poorly penetrating drugs using a phenylalanine promoiety that is at-
tached to the DA parent drug through an amide bond [69]. 

Indeed, as mentioned earlier, the chemical structures of prodrugs play an important 
role in DA prodrug development. In general, studies show that amide LD prodrugs are 

Memit [46]

Pharmaceutics 2022, 14, x FOR PEER REVIEW 6 of 25 
 

 

Table 1. Structures of the selected prodrugs that were developed for AD therapy. 

R13: 7,8-DHF prodrug [54] 

 

Memit [46] 

 

ALZ801 [63] 

 
  

2.3. Prodrugs for Parkinson’s Disease (PD) 
Levodopa (l-3,4-dihydroxyphenylalanine, L-DOPA) (LD), is a prodrug of dopamine 

and remains the gold standard for the treatment of PD [64], despite numerous drawbacks. 
Some of LD shortcomings are that it provides only symptomatic therapy, it has a short 
half-life due to decarboxylation by DOPA decarboxylase, and patients become retractile 
following years of treatment. LD also causes frequent side effects, such as nausea, vomit-
ing, and orthostatic hypotension [65]. To reduce metabolic instability, peripheral side ef-
fects, and improve the blood-brain bioavailability, LD is usually administered together 
with peripheral decarboxylase inhibitors such as benserazide and carbidopa. 

Over the years, several LD prodrugs were designed to overcome problems with LD 
bioavailability and peripheral metabolism [65–67]. Optimal LD prodrugs should replicate 
the physiological striatal dopamine (DA) levels, produce long-term safety/tolerability, de-
lay narrowing of the therapeutic window, and at the same time, delay disease progression; 
however, such a prodrug has yet to be identified. Extensive research is underway and 
numerous examples of prodrug development for PD have been reported in the literature. 
For instance, actively transported LD prodrug, XP21279, was studied in PD patients who 
experience motor fluctuations. The sustained-release of the LD prodrug was actively ab-
sorbed by high-capacity intestinal transporters and rapidly converted to levodopa via en-
zyme carboxylesterases (Figure 1). Thus, XP21279-carbidopa sustained-release bilayer 
tablets were developed to overcome high rates of prodrug conversion leading to pharma-
cokinetic limitations by providing greater continuous exposure [68]; nevertheless, further 
prodrug development was halted due to performance issues in attaining significant pri-
mary outcomes in clinical trials. 

DA is rapidly metabolized following oral administration, thus cannot enter the BBB 
via passive diffusion and necessitates the development of a prodrug approach to over-
come this obstacle. Amino acid prodrugs of dopamine carry the cationic drug into the 
brain by the L-type amino acid transporter 1 (LAT1, SLC7A5); a promising target for brain 
drug delivery of poorly penetrating drugs using a phenylalanine promoiety that is at-
tached to the DA parent drug through an amide bond [69]. 

Indeed, as mentioned earlier, the chemical structures of prodrugs play an important 
role in DA prodrug development. In general, studies show that amide LD prodrugs are 

ALZ801 [63]

Pharmaceutics 2022, 14, x FOR PEER REVIEW 6 of 25 
 

 

Table 1. Structures of the selected prodrugs that were developed for AD therapy. 

R13: 7,8-DHF prodrug [54] 

 

Memit [46] 

 

ALZ801 [63] 

 
  

2.3. Prodrugs for Parkinson’s Disease (PD) 
Levodopa (l-3,4-dihydroxyphenylalanine, L-DOPA) (LD), is a prodrug of dopamine 

and remains the gold standard for the treatment of PD [64], despite numerous drawbacks. 
Some of LD shortcomings are that it provides only symptomatic therapy, it has a short 
half-life due to decarboxylation by DOPA decarboxylase, and patients become retractile 
following years of treatment. LD also causes frequent side effects, such as nausea, vomit-
ing, and orthostatic hypotension [65]. To reduce metabolic instability, peripheral side ef-
fects, and improve the blood-brain bioavailability, LD is usually administered together 
with peripheral decarboxylase inhibitors such as benserazide and carbidopa. 

Over the years, several LD prodrugs were designed to overcome problems with LD 
bioavailability and peripheral metabolism [65–67]. Optimal LD prodrugs should replicate 
the physiological striatal dopamine (DA) levels, produce long-term safety/tolerability, de-
lay narrowing of the therapeutic window, and at the same time, delay disease progression; 
however, such a prodrug has yet to be identified. Extensive research is underway and 
numerous examples of prodrug development for PD have been reported in the literature. 
For instance, actively transported LD prodrug, XP21279, was studied in PD patients who 
experience motor fluctuations. The sustained-release of the LD prodrug was actively ab-
sorbed by high-capacity intestinal transporters and rapidly converted to levodopa via en-
zyme carboxylesterases (Figure 1). Thus, XP21279-carbidopa sustained-release bilayer 
tablets were developed to overcome high rates of prodrug conversion leading to pharma-
cokinetic limitations by providing greater continuous exposure [68]; nevertheless, further 
prodrug development was halted due to performance issues in attaining significant pri-
mary outcomes in clinical trials. 

DA is rapidly metabolized following oral administration, thus cannot enter the BBB 
via passive diffusion and necessitates the development of a prodrug approach to over-
come this obstacle. Amino acid prodrugs of dopamine carry the cationic drug into the 
brain by the L-type amino acid transporter 1 (LAT1, SLC7A5); a promising target for brain 
drug delivery of poorly penetrating drugs using a phenylalanine promoiety that is at-
tached to the DA parent drug through an amide bond [69]. 

Indeed, as mentioned earlier, the chemical structures of prodrugs play an important 
role in DA prodrug development. In general, studies show that amide LD prodrugs are 

Successful prodrug design was shown to alleviate neuroinflammation, improve effi-
cacy, and accomplish enhanced safety and delivery of existing therapeutic agents to combat
this devastating disease. This is particularly important in conditions, such as AD, with
limited therapeutic alternatives.
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2.3. Prodrugs for Parkinson’s Disease (PD)

Levodopa (l-3,4-dihydroxyphenylalanine, L-DOPA) (LD), is a prodrug of dopamine
and remains the gold standard for the treatment of PD [64], despite numerous drawbacks.
Some of LD shortcomings are that it provides only symptomatic therapy, it has a short
half-life due to decarboxylation by DOPA decarboxylase, and patients become retractile
following years of treatment. LD also causes frequent side effects, such as nausea, vomiting,
and orthostatic hypotension [65]. To reduce metabolic instability, peripheral side effects,
and improve the blood-brain bioavailability, LD is usually administered together with
peripheral decarboxylase inhibitors such as benserazide and carbidopa.

Over the years, several LD prodrugs were designed to overcome problems with LD
bioavailability and peripheral metabolism [65–67]. Optimal LD prodrugs should replicate
the physiological striatal dopamine (DA) levels, produce long-term safety/tolerability,
delay narrowing of the therapeutic window, and at the same time, delay disease progres-
sion; however, such a prodrug has yet to be identified. Extensive research is underway
and numerous examples of prodrug development for PD have been reported in the litera-
ture. For instance, actively transported LD prodrug, XP21279, was studied in PD patients
who experience motor fluctuations. The sustained-release of the LD prodrug was actively
absorbed by high-capacity intestinal transporters and rapidly converted to levodopa via
enzyme carboxylesterases (Figure 1). Thus, XP21279-carbidopa sustained-release bilayer
tablets were developed to overcome high rates of prodrug conversion leading to pharma-
cokinetic limitations by providing greater continuous exposure [68]; nevertheless, further
prodrug development was halted due to performance issues in attaining significant primary
outcomes in clinical trials.
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BioRender.com (Accessed on 2 January 2022).

DA is rapidly metabolized following oral administration, thus cannot enter the BBB
via passive diffusion and necessitates the development of a prodrug approach to overcome
this obstacle. Amino acid prodrugs of dopamine carry the cationic drug into the brain by
the L-type amino acid transporter 1 (LAT1, SLC7A5); a promising target for brain drug
delivery of poorly penetrating drugs using a phenylalanine promoiety that is attached to
the DA parent drug through an amide bond [69].

Indeed, as mentioned earlier, the chemical structures of prodrugs play an important
role in DA prodrug development. In general, studies show that amide LD prodrugs are
more stable than ester-containing prodrugs. In fact, amide, cyclic, and peptidyl LD pro-
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drugs increased the enzymatic/hydrolytic stability and consequently improved the PK
parameters [66], while monomeric- and dimeric-amide prodrugs enhanced the blood brain
barrier (BBB) penetration and better central nervous system (CNS) pharmacokinetics. In
addition, attaching LD to sugars has been used to exploit glucose transport mechanisms
into the brain [70]. Examples of LD prodrugs have been designed to improve physico-
chemical characteristics that enable suitable formulation and delivery, which in turn, may
accomplish higher LD selectivity/targeting towards the striatum. For instance, L-DOPA
methyl ester hydrochloride (LDME), an ester prodrug of LD, was designed for intranasal
delivery, a route that ensures direct brain penetration, since it bypasses the limitations
of the BBB. Administration of the nasal powder containing LDME reaches up to 80%
bioavailability [71]. Another example of successful prodrug formulation is ABBV-951
(foslevodopa/foscarbidopa), which is a formulation of levodopa/carbidopa prodrug in
development for the treatment of motor complications for patients with advanced PD
(aPD) [72,73]. The solubility of ABBV-951 allows for continuous subcutaneous (s.c.) in-
fusion (as opposed to usual oral), which is able to provide a stable levodopa exposure
over 72 h [74] and is currently being evaluated in a Phase 3 study (NCT04380142) in pa-
tients with aPD [75]. Another interesting example of levodopa/carbidopa treatment is the
device-aided administration to PD patients via intestinal gel [76].

Besides DA and LD derivatives, a novel prodrug derivative of geraniol and ursodeoxy-
cholic acid (UDCA) is a PD drug candidate [77]. Geraniol and UDCA ester conjugate
produces a GER-UDCA prodrug which undergoes esterase hydrolysis. Geraniol has a
strong anti-inflammatory effect, which promotes the survival of dopaminergic neurons
through increased levels of antioxidant enzymes and neurotrophic factors as well as reduced
levels of apoptotic factors [78]. This was combined with the mitochondrial rescue effect
that is associated with UDCA, which countered interactions of the glucocorticoid receptor
and increased phosphorylation of the Akt protein that leads to mitochondrial-dependent
programmed cell-death [79]. Encapsulation of this prodrug into lipid nanoparticles (LNPs)
enabled the successful intranasal delivery and brain targeting of the prodrug. This allows
the central effects of LNP-encapsulated prodrugs without the unwanted peripheral effects;
however, the efficacy of this approach on dopaminergic survival has yet to be evaluated.

Preclinical data have shown that low doses of mitochondrial uncoupling agent 2,4-
dinitrophenol (DNP) can protect neurons and improve functional outcome in animal
models of AD and PD, as well as epilepsy, and cerebral ischemic stroke by stimulating
stress-response signaling pathways in neurons including those involving BDNF, the tran-
scription factor cyclic AMP response element-binding protein (CREB), and autophagy [80].
A prodrug of DNP was synthesized to improve the pharmacokinetics profile of DNP, result-
ing in 20-fold lower Cmax and 3-fold longer elimination time [81]. In a recent study DNP,
and its prodrug MP201 were evaluated in the 6-hydroxydopamine PD animal model [82].
Animals receiving low doses of both the parent drug and the prodrug were protected
against dopaminergic loss and motor dysfunction. Microglial reactivity and astrocytes
reactivity that is caused by the 6-hydroxydopamine (6-OHDA) lesion were significantly
reduced in mice that were treated with MP201 compared to mice in the placebo group. In
addition, the pretreatment of mice with MP201 protected dopaminergic neurons against
toxicity of mitochondrial complex I inhibition. Preclinical results of this prodrug approach,
a modification of the mitochondrial uncoupling agent, might be the basis for the new
disease-modifying therapies for PD [82].

Ultimately, PD patients often suffer from neurogenic orthostatic hypotension which
leads to hypotension upon orthostatic challenge and depleted levels of norepinephrine.
For this purpose, a prodrug of norepinephrine, droxidopa, was developed to increase con-
centrations of norepinephrin and dopamine in the body and brain, respectively. Increased
levels of norepinephrine in the peripheral nervous system enable the body to maintain
blood flow upon and while standing. Droxidopa can also cross the BBB and is converted to
norepinephrine within the brain [83]. It was approved by the FDA in 2014 and is indicated
for off-label therapy in neurogenic orthostatic hypotension in PD patients [8].
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The development of new prodrugs that can pass through the BBB unaltered and
exhibit translatable ADME (absorption, distribution, metabolism, elimination) profiles
and pharmacological efficacies represent exciting challenges for medicinal chemists. We
have presented several prodrug approaches that have been developed in recent years that
resulted in products that demonstrated good pharmacokinetic profiles, sustained release of
L-DOPA, and afforded reduced plasma level fluctuations. In the case of L-DOPA, prodrugs
should have a fine balance of lipophilicity and hydrophilicity, be completely absorbed in
the gut, be resistant to metabolic/chemical degradation, and deliver L-DOPA to the site
of action intact. Importantly, ideal prodrug candidates should also provide stable plasma
levels that result in continuous dopamine release, thereby avoiding side effects such as
L-DOPA-related motor oscillations and dyskinesia.

3. The Use of Prodrugs for Infectious Diseases

Many microbial infections cause inflammation within the CNS through the activa-
tion of brain-resident immune cells and infiltration of peripheral immune cells. Such
responses are necessary to protect the brain from lethal infections, but they also provoke
neuropathological changes that lead to neurodegeneration. Indeed, studies suggest a po-
tential involvement of enteroviruses and herpesviruses in the etiology of ALS [84], hepatitis
virus in dementia [85], HIV in various neurological consequences [20], and most recently,
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with the development of
neurodegenerative pathology [86]. Prodrug approaches could provide better management
of infectious diseases and potential prevention or intervention of the neuropathological
consequences of infection.

The need for improvement of antiviral drug therapy grows rapidly with the recogni-
tion of more infectious viruses. Drug discovery methods have advanced significantly over
the past 40 years, and the entire process of discovery can be broken down into sub-processes
that include lead generation, lead optimization, and lead development. Lead generation
includes numerous screening methodologies to the extent that hundreds to thousands of
candidates can be screened against a particular target. These techniques present a new
challenge, as many of the generated drug candidates have undesirable physicochemical
features (poor permeability, poor solubility, and poor targeting) or likely to identify similar
scaffolds. These drug candidates still require chemical modifications or use of different
formulation techniques to accomplish an appropriate pharmacological effect and fulfill
regulatory requirements. Another obstacle in antiviral drug development is antiviral drug
resistance. To address these obstacles, prodrug design has proven to be one of the most
effective approaches to more efficient treatments. On the other hand, in recent years, the
enormous growth in the number of therapies that have been applied to infectious diseases
has also necessitated a constant need for improvement to parental drugs. Thus, utilization
of prodrug strategies to improve on first line drugs will afford products that exhibit lower
dosing equivalents, longer dosing intervals, less toxicity, sustained release and/or retention
times, and better efficacies.

3.1. Prodrug Therapies for Herpesviridae Infection: Herpes Simplex Virus (HSV) and Varicella
Zoster Virus (VZV)

The development of acyclovir for the treatment of herpesvirus infections 50 years ago
marked the age of antiviral therapy and provided one of the first examples of genuinely
selective, efficacious antiviral drugs. It is still used today as an effective means for the
treatment of herpes simplex virus (HSV) infections and varicella zoster virus (VZV), despite
its poor bioavailability. The amino acid ester approach in designing nucleoside analogs has
been implemented several times in the past to facilitate appropriate targeting of human
intestinal peptide transporter 1 (PEPT1) to improve oral absorption. Indeed, a 5’valyl ester
acyclovir prodrug, valacyclovir, was developed as a potent antiviral agent that increased
oral bioavailability of acyclovir by three- to five-fold due to the permissive binding to and
transport by PEPT1 [87]. Nevertheless, the exact mechanism of valacyclovir activation
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was unknown. The activation of amino acid ester prodrugs was considered non-specific,
until the discovery of an enzyme that was responsible for its activation. Subsequently,
valacyclovir conversion to its parent drug was shown to be dependent on the serine
hydrolase, human valacyclovirase (hVACVase) enzyme [88]. This finding revealed one of
the main steps in valacyclovir activation that is responsible for transformation to acyclovir
and ultimate therapeutic effect. On this basis, other prodrugs were developed as well.
For instance, the guanidino group on valacyclovir plays a significant physiological role
due to its positive charge and strong electrostatic interactions with carboxylic groups
(negatively charged). Numerous receptors show an attraction towards the amino acid, L-
arginine, which contains a guanidino group that forms a strong bond due to the presence of
carboxylate from the receptor active site. Prodrugs, designed to mimic the guanidino group,
show specific targeting to that desired site [89]. However, drugs with guanidino groups
typically exhibit low bioavailability following oral administration due to low passive
diffusion that is attributable to an ionized drug in the intestinal environments. By masking
the guanidino group, an amino acid ester prodrug [3-(hydroxymethyl)phenyl]guanidine
(3-HPG) was created. This approach led to a double targeted prodrug design; the guanidino
group for valacyclovirase-mediated activation and PEPT1 targeted intestinal absorption.
This novel double prodrug approach demonstrated increased permeability compared to the
parent drug and was attributable to PEPT1 transport of 3-HPG, and successful activation
and conversion to the parent drug by valacyclovirase [89]. This unique design utilizes
both activation and transport mechanisms to facilitate bioavailability and efficiency of the
prodrug strategy. This example highlights the importance of identifying prodrug activation
mechanisms to reduce the unnecessary testing during prodrug development and achieve
higher predictability with greater performance and efficacy.

3.2. Prodrug Therapies for Human Immunodeficiency Virus (HIV)

Human immunodeficiency virus 1 (HIV-1) has been a significant challenge to global
health for four decades since the first reported case [90]. The unique set of therapeutic
challenges that HIV-1 poses include, but are not limited to rapid mutation, extensive
incubation periods, and localization in tissue reservoirs [91]. However, even 40 years after
the discovery of the virus, HIV-1 has evaded eradication from vaccines [92]. Furtherance
of the therapeutic and prophylactic strategies comprised of daily oral antiretroviral drugs
has been largely responsible for the significant decrease in the incidence of acquired
immunodeficiency syndrome (AIDS) [93], but not eradication. This strategy is not without
its own drawbacks and limitations such as low patient compliance, therapy exhaustion,
poor availability of drugs, and cross-target toxicities that have led to the persistence of HIV
infections [94]. A failure of the oral antiretroviral (ART) regimen could also be attributed to
the poor tissue penetration of drugs, which leads to low drug levels in viral reservoirs such
as lymph nodes, spleen, lung, and brain [95]. Persistent viral activity has been reported in
reservoir sites even with direct parenteral administration of ART [95,96]. In the absence
of promising avenues for vaccine development against HIV-1, long-acting antiretroviral
prodrugs are promising candidates for chemovaccine development.

Recurrent issues with the clinical potential of several promising drugs against HIV-1
include inferior pharmacokinetics due to suboptimal physicochemical features; inferior
absorption, distribution, metabolism, and excretion (ADME) characteristics; poor PK/PD
profile; and formulation difficulty [9]. Some prodrug strategies involve the development
of drug conjugates that are devoid of biological activity until the prodrug is activated by
cleavage of the derivatizing promoiety through hydrolysis, which is mediated by either pH
and/or metabolic enzymes to provide the pharmacologically-active parent drug.

The HIV viral life cycle involves several key steps which provide potential pharmaco-
logical targets for therapeutic intervention. The sequence of events in the viral life cycle
includes surface binding of the virus to the cell surface of a CD4+ T cell or macrophage
and subsequent fusion therein; capsid uncoating and reverse transcription of the viral
RNA to cDNA followed by integration into the host genome; and eventually leading to
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transcription and translation of the viral DNA to produce new viruses that are released
from the cell by budding [97]. Prodrug development for the treatment of HIV has also
shown great promise. Most of the initiatives in ART prodrugs have been designed to inhibit
proteins such as reverse transcriptase (the key protein in viral DNA synthesis), integrase
(responsible for integration of the viral DNA into the host genome), and protease (responsi-
ble for cleavage of the protein and the generation of viral particles) [17]. Nucleoside reverse
transcriptase inhibitors (NRTIs) were the first class of drugs to show utility against HIV-1
and remain one of the most prescribed ART therapeutics to date. This work has led to the
development of eight drug candidates that have successfully obtained FDA approval for
the treatment against HIV-1, with the most significant clinical outcomes reported with a pro-
drug of tenofovir that is known as tenofovir alafenamide (TAF) [98]. However, challenges
that are associated with NRTIs such as short plasma half-life, low penetration into viral
reservoir sites, and low membrane permeability due to its hydrophilic nature as well as the
requirement to be activated in the metabolically-active triphosphate form limits the efficacy
of this ART class [99,100]. The ineffective phosphorylation of nucleoside analogs due to
their structural dissimilarities to natural nucleosides, downregulation of key kinases that
are responsible for phosphorylation, and increased activity of cellular phosphatases have
been attributed to decreased pharmacological activity of the NRTIs [98,101–104]. Moreover,
the NRTIs offer a wide range of choices in prodrug development due to the availability of
multiple sterically available functional groups for promoiety conjugation [105].

A key advancement was made in 1992 when McGuigan et al. developed novel aryl
phosphate derivatives of azidothymidine using phosphorochloridate chemistry, thereby de-
veloping ProTide technology [106,107]. A ProTide (pronucleotide) is defined as a nucleoside
aryl phosphate or phosphonate that is conjugated with an amino acid ester promoiety using
a P-N bond linker [108]. Comprehensive reviews of the synthetic schemes for ProTides
have been covered previously by Pradere et al. and Mehellou et al. [98,109]. Didanosine is
a potent NRTI that was the second drug to be approved for treatment against HIV [110,111].
However, didanosine has been limited in application due to poor bioavailability of 20–40%,
pH instability, and poor membrane permeability [111–113]. Yan et al. addressed these
issues by the development of 5′-amino acid ester prodrugs of didanosine to utilize intestinal
PEPT1-mediated transport and increase the acidic stability of didanosine [111]. The most
significant success in the ProTide platform was achieved through the development of teno-
fovir alafenamide. Tenofovir is one of the most widely used drugs for HIV and hepatitis
B treatment and is also approved for HIV pre-exposure prophylaxis (PrEP). Currently
available are two forms of tenofovir; the older tenofovir disoproxil fumarate and the newer
tenofovir alafenamide (TAF). While TDF showed promise in clinical outcomes, certain
drawbacks were related to renal toxicities and reduced bone mineral density in TDF-treated
patients [108,114]. TAF is the isopropylalaninyl monoamidate phenyl monoester prodrug
of tenofovir and SP-diastereoisomer of TAF showed 1000-fold higher anti-HIV activity
than TDF in vitro, thus suggesting the stereoselective nature of the phosphorylation cas-
cade [114]. Phase 3 clinical trials comparing TAF and TDF found TAF to be non-inferior to
TDF with lower incidences of adverse events and higher potency (GS-US-292-0112).

There has been a parallel initiative in the development of NRTI prodrugs beyond the
ProTide platform. The principal focus has been to increase the hydrophobic-lipophilic
character of the hydrophilic NRTIs to increase tissue penetration and apparent plasma half-
life. Skanji et al. developed a glycerolipidic prodrug of didanosine that was incorporated
into an orally administered liposomal delivery system, and showed significant delivery of
the drug to viral reservoirs including testes, gut, and bone marrow [115]. Hillaireau et al.
furthered these findings by developing squalenated didanosine and dideoxycytidine pro-
drug nanoassemblies that were stabilized with PEG and reported significant drug delivery
to viral reservoirs [100]. Jin et al. developed a bolaamphiphilic prodrug by covalently
conjugating zidovudine and didanosine by a deoxycholyl linker to direct this formulation
to form self-assembled monolayer vesicles [116]. A novel development of a macrophage-
targeted, macromolecular prodrug platform that was based on poly(l-lysine succinylated)
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emtricitabine was developed by Stevens et al. and found 7- to 19-fold higher concentrations
in rat lymphatic tissues compared to controls that received parent emtricitabine intra-
venously [117]. Opting for a novel approach, Dalpiaz et al. developed a ursodeoxycholic
acid-conjugated prodrug of zidovudine encased in a chitosan microparticle optimized
for nasal administration [118]. Prodrug research in NRTIs has also led to repurposing of
drugs that were previously thought to be pharmacologically inactive. D- and L-furano-
D-apionucleosides were developed demonstrating antiretroviral activities by optimizing
drug phosphorylation [119].

Protease inhibitors are drugs that inhibit viral aspartyl protease, a key enzyme that
is required to cleave the HIV-1 Gag and Gag-Pol polyproteins that lead to the assembly
and maturation of new viruses [120]. While protease inhibitors have shown promising
results in terms of potency, their utility as first line therapeutic candidates has been limited
due to poor bioavailability of oral formulations and multiple instances of adverse reac-
tions including hyperlipidemia, insulin resistance, bone density loss, and cardiovascular
disease [121]. A total of nine drugs of this class have been approved by the US FDA for
clinical application for HIV-1 infection [122]. A comprehensive review pertaining to the
utility of protease inhibitors as well as the scope for development of prodrugs [120]. Most
prodrug development has utilized a secondary hydroxy group on the native drug to attach
a promoiety [105]. Prodrug design strategies that were implemented for protease inhibitors
include direct conjugation of promoiety to the native drug, conjugation of the promoiety
to the drug by a cleavable linker, and O-N acyl migration where deprotonation of O-acyl
precursors leads to an acyl group that is transferred from a hydroxyl moiety to the proximal
amine [120]. However, many of these prodrug developments have reported a marked loss
of antiretroviral activity due to the stable chemical modifications conjugated to a critical
component of the pharmacophore [123]. Subbaiah et al. developed a (carbonyl)oxyalkyl
linker-based amino acid prodrug of atazanavir and reported a five-fold higher AUC that
was attained after oral administration in rats than that which was attained by the orally
administered native drug [124]. However, PK assessment concluded at 24 h, thus the
sustainability of antiretroviral activity over a longer time could not be substantiated. Qin
et al. developed an alkyl ester prodrug library of lopinavir, loaded the prodrugs into artifi-
cial emulsions as well as chylomicrons, and delivered the nanoassemblies intravenously
and orally to rats [125]. The group reported 7.2-fold higher drug levels in mesenteric
lymph nodes as well as increased plasma half-lives of the various prodrugs. Despite these
advancements with protease inhibitors, further research in this area is needed.

Pharmacological targets other than the key enzymes such as reverse transcriptase,
integrase, and protease have been explored in depth. Fostemsavir (BMS-663068) is a phos-
phonooxymethyl prodrug of temsavir (BMS-626529), a novel small-molecule attachment
inhibitor that targets HIV-1 spike protein gp120 [126,127]. Fostemsavir showed sustained
antiretroviral activity up to 48 weeks in a clinical trial of 371 patients [128]. Protein kinase
C (PKC) modulators show potent latency reversal activity and have shown promise with
the development of tigliane and ingenane prodrugs of bryostatin 1 [129].

3.2.1. Long-Acting Slow Effective Release Antiretroviral Therapy (LASER ART)

Many studies have previously described the delivery of ART therapeutics to viral
reservoirs by using nanoparticles [130–133]; some attempted co-delivery of drugs in lipid
nanoparticles [132]. However, the sustained antiretroviral efficacy of the drugs could only
be achieved through combinations of the prodrug and nanoparticle technology platforms.
Long-acting slow effective release antiretroviral therapy (LASER ART) is comprised of
aqueous nanosuspensions of hydrophobic-lipophilic prodrug nanocrystals that are coated
by stabilizing water-soluble surfactants [134]. LASER ART provides a two-step pathway
entailing the sequential dissolution of the nanocrystals and the subsequent activation of the
prodrug to provide the native drug. Intramuscular administration of LASER ART forms
a primary depot at the injection site and secondary tissue depots from where the drug is
slowly released to achieve sustained therapeutic active drug levels in systemic circulation
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and tissues [135]. The key parameters that allow for critical control of the pharmacokinetic
and pharmacodynamic outcomes include, but are not limited to, the prodrug partition
coefficient, pH stability of the nanoformulation, extent of perfusion at site of injection, and
the potency of the native drug [135].

Our laboratory has successfully developed libraries of antiviral prodrugs to facilitate
treatment and prevention of HIV and HBV infections. While NRTIs represent some of
the most prescribed ART, their inherent physicochemical properties have limited their
transformation into sustained release formulations. To overcome such limitations, our
laboratory successfully produced ProTide libraries for darunavir [123], abacavir [136],
emtricitabine [137,138], lamivudine [139], and tenofovir [140], all of which exhibit ex-
tended drug half-lives and efficient intracellular active metabolite delivery (Table 2). The
most notable preclinical advancement was demonstrated for integrase inhibitors where a
nanoformulated lipophilic ester prodrug of cabotegravir (NM2CAB) exhibited sustained
plasma active drug levels above the protein-adjusted IC90 for a year in mice and rats
(Figure 2) [135,141,142]. Previous studies with the first generation dolutegravir prodrug
nanoformulation extended the half-life of the parent drug from hours to weeks [143]. The
potential role of combinations of LASER ART and genome editing technologies that fa-
cilitate HIV eradication was evaluated in a chronic humanized mouse model for HIV-1
infection. While prodrug nanoformulations have shown potential for clinical translation, a
total of 15 clinical trials have been conducted to assess the utility of prodrug formulations
in treatment against HIV-1 and only fosamprenavir, tenofovir disoproxil fumarate (TDF),
and tenofovir alafenamide fumarate (TAF) have been approved as daily oral therapies
(Table 2) [17]. This further highlights the need for the development of novel prodrugs that
facilitate less frequent dosing intervals to manage chronic conditions.
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3.2.2. Prodrug Therapies for Human Immunodeficiency Virus (HIV)-Associated
Neurocognitive Disorders (HAND)

Life expectancy of HIV-1-infected people has increased significantly due to ART. Nev-
ertheless, end-organ disease persists with almost constant low level infection eliciting, for
instance, HIV-associated neurocognitive disorders (HAND); indeed, up to 50% of ART-
treated HIV-1-infected people develop HAND [142]. The HAND spectrum includes asymp-
tomatic neurocognitive impairment, mild neurocognitive disorder, and HIV-associated
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dementia. The long-term health prognosis of aging with controlled HIV infection and
HIV-associated neurocognitive disorder (HAND) remains unclear.

Zidovudine (AZT) is a nucleoside reverse transcriptase inhibitor (NRTI) that is used
along with other medications to treat HIV infection. Most commonly, zidovudine is given
to HIV-positive pregnant women to reduce the chance of passing the infection to the
baby. It is a substrate of active efflux transporters (AETs) that extrude the drug from the
CNS and macrophages. The prodrug approach in which AZT and ursodeoxycholic acid
(UDCA) were conjugated to create a new prodrug molecule that evades the AET system,
demonstrated the potential of UDCA to behave similar to an AZT carrier to the CNS and
into macrophages. The resulting molecule, UDCA-AZT is indeed, very permeable, and
remains in murine macrophages with an efficacy that is 20-fold higher than parent AZT.
This approach could be potentiated through formulations to allow intranasal administration
aiming to provide faster/easier brain uptake. Intranasal instillation of chitosan chloride-
based microparticles containing UDCA-AZT were able to increase the dissolution rate of
UDCA-AZT, reduce water uptake with respect to its original physical mixture, and produce
better prodrug uptake into the cerebrospinal fluid of rats where the prodrug can then act as
an AZT carrier into the macrophages [118,144].

3.3. Prodrugs Therapies for Hepatitis B and C Infection

Globally, hepatitis B Virus (HBV) and C (HCV) are viral pathogens that are responsible
for 296 million and 58 million cases, respectively. It is commonly experienced as an illness
of the liver, which, in some circumstances, can lead to a chronic infection with the potential
to induce progressive fibrosis, cirrhosis, or even cancer of the liver [145]. There is also an
association between hepatitis B and C virus (HBV and HCV) infections and dementia.

Several therapeutics that are currently in use can slow hepatocellular infection and/or
insult. Derivatives of tenofovir are commonly used for this indication. As mentioned
in the previous section, two tenofovir prodrugs, TDF and TAF, are currently marketed.
TAF was designed to improve plasma stability of the parent drug and to enable more
efficient delivery to hepatocytes compared to its predecessor TDF [146]. Indeed, TAF
proved to be as potent as TDF at much lower doses due to selective uptake of tenofovir
in hepatocytes [146,147]. The benefit of this prodrug is driven by decreased dosages that
allow mitigation of non-specific toxicity, making TAF safer for use in patients than TDF
for long-term treatment [148]. This was observed through the differential effect on the
mean degradation of bone mineral density between patients who were treated with TAF as
opposed to TDF (0.33% to 2.551%, respectively) as well as improvement in renal impairment
during Phase 3 clinical trials [147].

Another prodrug that is currently undergoing clinical trials for hepatitis infection is
pradefovir (adefovir dipivoxil), presented in the Table 2 [149]. Pradefovir, is a cyclodiester
antiviral prodrug that has activity against chronic hepatitis B infection by targeting the
HBV DNA polymerase [150]. It is specifically metabolized in the liver by hepatic enzymes,
mainly CYP 3A4, to its parent drug, adefovir, which is then phosphorylated by cellular
kinases to its activated form, adevofir diphosphate. By competing with the natural substrate
deoxyadenosine triphosphate (dATP), the diphosphate form is incorporated into viral DNA
and blocks the RNA-dependent DNA polymerase, causing DNA chain termination and
consequent inhibition of HBV replication. Much like TAF, pradefovir was found to be
safer than TDF, with similar levels of HBV DNA reduction at much lower doses (30 mg,
45 mg, 60 mg, and 75 mg in comparison to 300mg of TDF) [151]. While not yet approved by
the FDA, it is currently undergoing Phase 3 clinical trials and shows potential for a novel
treatment option for HBV infection [152].

Hepatitis C virus (HCV), much like HBV, is a virus that targets the liver, but unlike HBV,
patients who contract this virus have a higher risk of developing cirrhosis and hepatocellular
carcinoma. Although highly effective disease-acting antiviral compounds (DAAC’s) are
available, they are effective for only a subset of patients [153]. This is due to the genetic
heterogeneity of HCV that presents as several different forms, some of which produce
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more serious outcomes than other forms, and in turn, makes drug development even more
challenging [154]. AT-527 is a prodrug with a unique mechanism of action and dual target
effects. Mainly, AT-527 targets RNA-dependent RNA polymerase (RdRp) chain termination
and Nidovirus RdRp associated nucleotidyl transferase (NiRAN) inhibition, which has the
potential to create a high barrier to resistance. This allows for the potential to create a high
barrier to resistance, and has been shown to be very efficacious in clinical trials for HCV
(Table 2) [155]. The benefits of this prodrug compared to other therapies that are available are
prolonged activity, potential avenue for treatment among difficult to treat subsets of patients,
and selective delivery that is facilitated through the metabolized intermediates of prodrugs.

Table 2. Prodrug molecules used for HIV, Hepatitis B, and COVID-19.
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3.4. Prodrug Therapies for COVID-19

In less than two years, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
the etiological agent of coronavirus disease 2019 (COVID-19), has infected over 350 mil-
lion people, killed over 5.5 million people, overwhelmed the global healthcare infras-
tructure, and unprecedentedly paused the world’s workforce and economies. Therefore,
it is imperative to prepare downstream medical opportunities for therapeutic interven-
tions [160]. While there are currently highly efficacious avenues for preventative care
(upstream medicine), drugs that increase health outcomes in patients that are suffering
from severe forms of COVID-19 (downstream medicine) remain undefined [161]. However,
it should be mentioned that, most recently in December 2021, the FDA issued an emergency
use authorization (EUA) for Paxlovid® (nirmatrelvir and ritonavir tablets, co-packaged)
for oral use for the treatment of mild–moderate coronavirus disease (COVID-19) in adults
and pediatric patients with positive SARS-CoV-2 testing, and who are at high risk for
progression to severe COVID-19.

One of the promising prodrugs for COVID-19 treatment is molnupiravir, a prodrug of
N4-hydroxycytidine (Table 2). Its mechanism of action promotes widespread mutations
in the replication of viral RNA by RNA-directed RNA polymerase. The prodrug is me-
tabolized into a ribonucleoside analog, β-D-N4-hydroxycytidine 5′-triphosphate, which
resembles cytidine and is incorporated into newly synthesized RNA in place of cytidine
during replication. In the clinic, molnupiravir was shown to decrease the risk of hospi-
tal admission or lethal outcome by around 30% in non-hospitalized patients with mild
to moderate COVID-19 infection, and a high risk of poor outcome [158]. Most recently,
molnupiravir was approved by UK Medicines and Healthcare products Regulatory Agency
(MHRA) [162].

Remdesivir, is a ProTide which inhibits viral RNA synthesis (Table 2), and was devel-
oped as a medicine for treating other RNA-based viruses, including Ebola virus (EBOV)
and other viruses within the Coronaviridae family [163]. A double-blind, randomized,
placebo-controlled trial of intravenous remdesivir in adults that were hospitalized with
lower respiratory tract COVID-19 infection showed superiority to placebo in shortening
recovery periods in people that were hospitalized with COVID-19. Remdesivir was recently
approved by the FDA for use in SARS-CoV-2 infections [157].

Another promising candidate for the treatment of COVID-19 is AT-527. As described
in the previous section, AT-527 is an orally administered double prodrug of a guanosine
nucleotide analog, that was previously proven to be highly effective against HCV. It
was found to be a highly potent drug against SARS-CoV-2 infection in vitro, yielding
90% inhibition of viral replication in human epithelial airway cells at a concentration of
0.47 µM [156]. Notably, in comparison to remdesivir, AT-527 can be administered orally
and is currently undergoing Phase 3 clinical trials.

Altogether, the prodrug approach has been shown to be very successful in modifying
nucleoside analogues for numerous infectious diseases, whether it is overcoming resistant
barriers, passing BBB, improving bioavailability following oral administration, or reducing
the side effects that are associated with the parent drug.

4. Discussion

To impact neurodegenerative and neuro-infectious disease outcomes, medicines must
penetrate the BBB and enter the CNS. However, the BBB has considerable structural and
functional complexities and represents a significant obstacle for brain-directed drug de-
livery. This is especially noteworthy at the early stages of disease when the BBB is intact.
Over the years, several approaches were used to improve BBB permeability. This was
done through several approaches including carrier-mediated transport in combination
with endogenous ligands, the use of lipophilic carriers to improve physicochemical drug
properties, the combination of two distinct pharmacophores that were chemically-linked
together to improve the drug delivery properties, and various drug delivery and formula-
tion approaches [65]. Additionally, successful brain targeting can also be achieved through
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a combination of prodrugs and drug delivery systems. Indeed, chemical and enzymatic
protection that is operated by the carrier, joined with the ability of the prodrug to cross
the BBB, has allowed slow and sustained release, thus reducing the plasma fluctuation
for better control of the disease [164]. That, alongside suitable formulation that allows a
particular route of administration, such as inhalation to provide a promising avenue for the
treatment of neurodegenerative and neuro-infectious diseases.

Another obstacle that modern therapeutics face for treating neurodegenerative dis-
eases is that these disorders are often multifactorial. Various pathogenic pathways that
encompass protein misfolding, aggregation, mitochondrial dysfunction, oxidative stress,
free radical formation, and phosphorylation impairment as well as infection, contribute to
disease progression. The need for novel drug entities that can target multiple processes
that are involved in disease development and progression is warranted. The improve-
ment of existing therapeutics strategies, or a combination of several drug entities is crucial
to address several causative aspects of such disorders. The prodrug approach is one of
the most promising avenues for enhancing pharmaceutical, pharmacokinetic, and phar-
macodynamic properties of hydrophilic compounds, such as anti-Parkinson drugs (DA
and LD) [67]. One beneficial approach in such conditions is also the co-drug approach,
where a single chemical moiety is comprised of two separate pharmacophores. In this ap-
proach, a molecule having an antioxidant effect could be coupled with a drug that restores
dopamine levels in the brain, thus permitting compensation of the dopaminergic effect
while simultaneously preventing neuronal depletion by targeting oxidative stress [165].

With the treatment of infectious diseases, great advances have been made in the pro-
drug design. Long-acting formulations of prodrugs for HIV and hepatitis will set the
stage for the development of drugs for other infectious diseases that lack suitable thera-
peutic interventions such as COVID-19. We and others have made significant advances
in extending the apparent half-life of numerous ART as well as improving their safety
of administration and ease of manufacturing. Indeed, the innovative prodrug molecular
design and improved physicochemical properties have been shown to affect pharmacoki-
netic and targeting properties of native drugs and have repeatedly been used to treat a
spectrum of infectious and/or degenerative disorders [139–142,147,151,156]. Thus, contin-
uous research attempts and in-depth knowledge of molecular and cellular mechanisms
underlying pathogen-mediated neuronal damage may establish the way to find new pre-
ventative and therapeutic strategies that are aimed at reducing the advancement of these
devastating pathologies.

5. Conclusions

The prodrug strategy is designed to improve parent drug properties and enhance
drug transport across physiological barriers and/or allow encapsulation for enhanced
delivery systems/formulations. Microbial-induced neuroinflammation, in many cases,
may lead to neurodegenerative pathology. This work provides an overview of the prodrug
approach as a tool for treating infections with consequent prevention of developing neu-
rodegenerative disease pathology, and for preclinical and clinical development of prodrugs
that are associated with the treatment of common neurodegenerative diseases. We deliver
examples of possible uses and advantages of existing prodrugs, such as improving BBB per-
meability, overcoming drug resistance, enhancing drug targeting abilities, decreasing rapid
metabolism, increasing treatment safety, and enabling encapsulation into formulations
and ease of manufacturing. Some drawbacks of the prodrug approach include limitations
that are connected with variant formulation abilities, inconsistent rate/extent of prodrug
hydrolysis, and low selectivity. Nevertheless, the prodrug approach is continuously being
developed and improved, and is a crucial piece in the drug discovery toolbox, which is
likely to grow further in the future.
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