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prediction of treatment outcomes
in hospitalized tuberculosis patients

Mayidili Nijiati,1,4,* Lin Guo,2,4 Abudouresuli Tuersun,1,4 Maihemitijiang Damola,1

Abudoukeyoumujiang Abulizi,1 Jiake Dong,1 Li Xia,2 Kunlei Hong,2 and Xiaoguang Zou3,5,*

SUMMARY

Three deep learning (DL)-based prediction models (PMs) using longitudinal CT images were developed to
predict tuberculosis (TB) treatment outcomes. The internal dataset consists of 493 bacteriologically
confirmed TB patients who completed the anti-tuberculosis treatment with three-time CT scans, including
a pretreatment CT scan and two follow-up CT scans. PM1 was trained using only pretreatment CT scans,
and PM2 and PM3were developed by adding follow-up scans. An independent testing was performed on
external dataset comprising 86 TB patients. The area under the curve for classifying success and drug-
resistant (DR)-TB was improved on both internal (0.609 vs. 0.625 vs. 0.815) and external (0.627 vs.
0.705 vs. 0.735) dataset by adding follow-up scans. The accuracy and F1-score also showed an increasing
tendency in the external test. Regular follow-up CT scans can aid in the treatment prediction, and special
attention should be given to early intensive phase of treatment to identify high-risk DR-TB patients.

INTRODUCTION

Tuberculosis (TB) is a highly lethal infectious disease caused by the bacteria Mycobacterium tuberculosis that is extremely contagious. It is

particularly frequent in resource-constrained situations, densely populated places, and locations with a high HIV prevalence. Despite the

decline in TB incidence in previous years, the COVID-19 pandemic has reversed years of progress in providing essential TB services and

reducing TB disease.1 Therefore, it is crucial to take immediate action for TB treatment and control. Generally, TB patients who are enrolled

on first-line treatment report a treatment success rate of 85%. However, drug-resistant TB (DR-TB) patients require longer and new treatment

regimens due to their resistance to the first-line drugs.2,3 Closer monitoring to identify early predictors of DR-TB is essential to help prevent

such unsuccessful outcome and inform new treatment strategies. In most cases, the demographics and clinical data such as HIV, diabetes,

alcohol use and adverse drug reactions are involved for DR-TBprediction,4,5 but results vary dependingon the setting andpatient population,

and different strongest predictive performances have been reported.6 Whole-genome sequencing has also been used to characterize com-

mon and rare mutations that predict drug resistance.7 However, this test is slow and expensive, which makes it less feasible for widespread

use. Therefore, there is an urgent need for the development of rapid and affordable diagnostic tools for DR-TB prediction.

Chest CT imaging is a crucial tool in the management and monitoring of patients, and changes in CT images over time are essential in-

dicators for predicting treatment outcomes.8–11 Machine learning and radiomics have been reported to be applied on CT images to detect

DR-TB patients, however, it focused on a single scan for themodel input andmanual labeling was needed each time themodel was applied.12

While artificial intelligence (AI) techniques have shown promise in predicting treatment outcomes for COVID-19 and lung cancer based on CT

images,8,13 very few studies have applied deep learning (DL) networks to predict TB treatment outcomes using serial CT images.

Given that poor treatment outcomes are common in the early phases of therapy,14 we developed three DL models using serial CT scans

(including pretreatment and posttreatment CT scans at the second and the sixth months follow-up) to predict the TB treatment outcomes of

success and DR-TB cases in the study. The first model used only pretreatment CT scans, while the other two included pretreatment scans and

one or two follow-up scans to explore the role of serial CT images and how early DR-TB outcomes could be predicted. The objectives of our

research focus on the identification of TB patients with the potential to progress into DR-TB, and determining the feasibility of predicting early

DR-TB treatment outcomes using CT imaging data. We tested the proposed models in an internal set and validated them independently on

an external set. This study is exceptionally beneficial for patients who are at risk of developing DR-TB and could lead to improved patient

outcomes.
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RESULTS

Clinical characteristics

The main characteristics of patients included in both the internal and external datasets are shown in Table 1. These two cohorts displayed

inherent differences. The internal dataset from Site A was utilized to develop and evaluate the performance of three deep learning-based

prediction models, while the external dataset from Site B was used as an independent validation set to test the proposed models’ general-

ization ability. The internal dataset comprised a total of 493 patients from Site A, with 51.2% of thembeingmale, and amedian age of 58.66G

18.66 years. On the other hand, the external dataset contained 86 patients from Site B, with 40.7% being male, and a median age of 58.85G

17.80 years. Although there was no significant difference in patient age between the two datasets (p > 0.05, Table 1), a significant difference

was observed in patient gender (p < 0.05, Table 1).

Performance evaluation of PM1, PM2, and PM3 in internal testing

The objective of our study was to identify patients who would fail TB treatment and develop DR-TB by training deep learning-based predic-

tion models using longitudinal CT scans from Site A. Our findings, presented in Figure 1, demonstrate that PM1, which relied solely on pre-

treatment scans, showed the lowest performance in predicting DR-TB (AUC = 0.609, p = 0.423). However, the addition of follow-up scans

significantly improved the performance of PM2 (AUC = 0.625, p = 0.335) and PM3 (AUC = 0.815, P＜0.001). Over the course of the first

two months, the AUC increased by 0.016 (PM1 vs. PM2), followed by a further increase of 0.19 in the subsequent four months (PM2 vs.

PM3). Optimal thresholds of 0.29, 0.30, and 0.25 were applied to calculate evaluation metrics of accuracy, sensitivity, specificity, and F1 score

for PM1, PM2, and PM3, which were 0.645, 0.750, 0.609, and 0.552 for PM1, 0.581, 0.625, 0.565, and 0.435 for PM2, and 0.742, 0.875, 0.696, and

0.636 for PM3 (Table 2).

Table 1. Patient demographics and treatment outcomes of 2 different datasets

Demographics Site A (n = 493) Site B (n = 86) T/c2 p Value

Age (yr, mean G sd.) 58.66 G 18.66 58.85 G 17.80 0.088 0.93

Sex (n male) 267 (51.2%) 35(40.7%) 5.317 0.021

Outcomes

Success (n (%)) 410 (83.2%) 56 (65.1%) 15.185 <0.001a

Cured (n (%)) 260 (52.7%) 43 (50.0%) 18.423 <0.001b

Treatment completed (n (%)) 150 (30.5%) 13 (15.1%) NA NA

Failed (n (%)) NA NA

Transferred to drug-resistant therapy (n (%)) 83 (16.8%) 30 (34.9%) NA NA

NA, not applicable.
aComparison of outcomes of success and failed.
bComparison of outcomes of cured, treatment completed, transferred to drug-resistant.

Figure 1. The comparison of the ROC curves of PM1, PM2, and PM3 on different datasets

(A) Internal test.

(B) External test.
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Performance evaluation of PM1, PM2, and PM3 in external testing

In order to evaluate the generalizability of our prediction models of the PM1, PM2, and PM3, the independent dataset Site B was involved as

the external testing dataset. Consistent with the results of the internal test, we observed an improvement in the models’ performance with

each additional CT scan used for training (Figure 1). The comprehensive metrics of the AUC, accuracy, and F1 score metrics showed an in-

crease of 0.078 and 0.03, 0.128 and 0.034, 0.07 and 0.038 for PM1 vs. PM2 and PM2 vs. PM3 comparisons, respectively.

The results depicted in Figure 2 demonstrate that the performance of the prediction models improved more prominently during the first

two-month intensive phase of tuberculosis treatment as compared to the subsequent four-month continuation phase. This finding is note-

worthy as it suggests that closemonitoring and intervention during the initial intensive phase of treatment may have amore significant impact

on patient outcomes, particularly in identifying patients who are at a higher risk of developing drug-resistant tuberculosis. It is important to

note, however, that this trend was not consistently observed in the internal test dataset. This discrepancy may be attributed to several factors,

including the smaller sample size in the internal set (31 vs. 86) and the differences in population or characteristics between the two datasets.

Notably, the distribution of success and DR-TB outcomes in the internal dataset was significantly different from that of the external dataset

(Tables 1 and 3) .

In the external test, the three thresholds were set the same as they were in the internal set, and the sensitivity and specificity were 0.733 and

0.411 for the PM1, 0.633 and 0.661 for the PM2, and 0.667 and 0.696 for the PM1. Additionally, we presented representative cases of a false-

positive and a false-negative result detected by both PM2 and PM3 in Figure 3. Our study suggests that follow-up scansmay aid in identifying

unsuccessful outcomes of DR-TB and informs new treatment strategies to improve patient outcomes. Furthermore, the findings indicate that

close attention should be paid to the early anti-tuberculosis therapy, as the imaging from the first twomonths or even earlier in the treatment

process has shown a trend in predicting the treatment outcome. This emphasizes the importance of early detection and intervention to

prevent the progression of DR-TB and improve patient outcomes.

Table 2. Performance of three different prediction models on internal and external datasets

Test AUC (95% CI) p value

Accuracy

(95% CI) p value

Sensitivity

(95% CI) p value

Specificity

(95% CI) p value

F1 Score

(95% CI) p value

Internal test

PM1 0.609

(0.418–0.778)

0.423 0.645

(0.469–0.790)

0.750

(0.401–0.937)

0.609

(0.407–0.779)

0.522

(0.330–0.708)

PM2 0.625

(0.434–0.791)

0.355 0.581

(0.407–0.736)

0.602a 0.625

(0.304–0.865)

0.590a 0.565

(0.368–0.744)

0.765a 0.435

(0.256–0.632)

0.555a

PM3 0.815

(0.635–0.931)

＜0.001 0.742

(0.565–0.865)

0.180b 0.875

(0.508–0.999)

0.248b 0.696b

(0.489–0.846)

0.359b 0.636

(0.429–0.804)

0.175b

External test

PM1 0.627 (0.516–0.729) 0.063 0.523 (0.419–0.625) 0.733 (0.555–0.860) 0.411 (0.292–0.541) 0.489

(0.388–0.591)

PM2 0.705 (0.597–0.799) 0.001 0.651 (0.546–0.744) 0.088a 0.633 (0.455–0.782) 0.405a 0.661 (0.530–0.771) 0.008a 0.559

(0.441–0.671)

0.384a

PM3 0.735 (0.629–0.825) ＜0.001 0.686 (0.582–0.775) 0.627b 0.667 (0.487–0.809) 0.787b 0.696 (0.566–0.802) 0.686b 0.597

(0.477–0.706)

0.653b

aComparison of PM1 and PM2.
bComparison of PM2 and PM3.

Figure 2. The comparison of the AUC of three different prediction models on internal and external datasets
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DISCUSSION

In this study, we aimed to develop three DL models to predict TB treatment outcomes using longitudinal CT images, and both internal and

external testing was conducted to evaluate their performance, and the main advancements of the research are that we found that DR-TB

outcome could be predicted in the early phases of therapy by imaging, and close monitoring and intervention during the initial intensive

phase of treatment may have a more significant impact on patient outcomes.

DR-TBmeans the bacteriumMycobacterium TB that is resistant to routinely used anti-TBmedications. This is one of themajor obstacles in

the global fight against tuberculosis because it may complicate therapy and raise the probability of poor results. Several research studies have

focused on developing tools andmethods to predict drug resistance in TB fromwhole genome sequencing,15 phylogenomic,16 nomorgam17

to clinical implications.18 Conventionally, in the studies related to tuberculosis treatment, clinical and demographic features were used to pre-

dict treatment outcomes, where the number of previous treatments, lack of a job, and alcohol consumption were identified as potential risk

factors for the occurrence of DR-TB,19 and a model based on these features was reported to achieve an AUC of 0.74.20 Clinical and demo-

graphic information, while useful, do not incorporate phenotypic changes, and moreover, various reported studies have identified different

factors as the most effective predictors,21 with the AUC ranging from 0.6 to 0.8.22–26 This lack of consistency in the results among studies,

where different factors have been identified as the strongest predictors, poses a challenge for identifying a universal factor that can be prac-

tically applied in clinical settings.20,27,28 Instead of using the clinical and demographic features, we proposedDLmodels usingCT images, and

the PM3 with the best performance in this study achieved a high performance in predicting success and treatment failure cases, achieving

AUC values of 0.815 and 0.735 on internal and external datasets, respectively. We observed that follow-up CT scans can provide more lesion

characteristics and subtle interval changes, whichmay help to accurately predict TB treatment outcomes. Therefore, compared to the poorest

performance of the PM1 model, the addition of follow-up scans resulted in an improved prediction performance in the PM2 and PM3, which

may help prevent patients from evolving into poor outcomes during treatment. Our findings demonstrate the potential of using DLmodels in

predicting TB treatment outcomes based on longitudinal CT scans andmay have important implications for improving patient care in clinical

settings.

Table 3. WHO definition of treatment outcomes for TB patients

Outcome Definition

Cured TB patients with bacteriologically confirmed TB at the beginning of

treatment which was smear-or-culture-negative in the last month of

treatment and on at least one previous occasion

Treatment completed TB patients who completed treatment without evidence of failure but

with no record to show that sputum smear or cultures results in the

last month of treatment and on at least one previous occasion were negative

Treatment success Composite of cured and treatment completed

DR-TB TB patients who were initially diagnosed with drug-susceptible TB but

later developed drug resistance during the course of treatment (commonly

referred to as acquired drug resistance), including multidrug-resistant

TB and extensively drug-resistant TB

TB, tuberculosis; DR-TB, drug-resistant TB.

Figure 3. Examples of a false-positive case and a false-negative case of the proposed model for predicting DR-TB from CT images

(A) A false-positive case: the proposed model misdiagnosed a success case as DR-TB.

(B) A false-negative case: the proposed model misdiagnosed a DR-TB case as success case. DR-TB, drug-resistant tuberculosis.
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Radiological images have been extensively investigated in DL models in TB, and previous studies have predominantly focused on TB

detection based on chest X-rays or CT images, due to the availability of large public datasets that can be used to train automatic diagnosis

systems. However, most of the public datasets often contain only static images collected at a single time point, so the models developed by

previous studies mainly focused on TB diagnosis,29–31 resulting in limiting the ability of the models to predict treatment outcomes. Effective

diagnosis and prognostic evaluation are critical components of clinical workflows for TB control. Generally, TB can be cured within 6 months if

the patient follows the treatment process.32 However, treatment processes can vary from patient to patient and drug resistance can develop.

To address these limitations, this current research utilizes longitudinal CT scans (collected in-house) to track radiographic changes over time,

which enables the assessment of patient outcomes at an early stage of therapy.

In addition to the observation of model improvement with the use of follow-up scans, we noted that the greatest improvement occurred

during the first two-month intensive phase of anti-tuberculosis treatment, as evidenced by the comprehensive evaluation metrics of AUC,

accuracy, and F1 score in the external test. This finding suggests that monitoring the treatment process during the initial intensive

phase of treatment may be particularly important for TB patients. Therefore, it is crucial to pay special attention to the anti-tuberculosis

therapy effect during this period of time. Though the internal test did not reveal such a trend, which might be caused by the smaller number

of patients in the internal set (31 vs. 86 in the external set) and differences in population characteristics may account for this discrepancy, as a

significant change in the distribution of success andDR-TB outcomeswas observed between the two sites (Figure 4). Our findingmay provide

radiological evidence for the treatment monitoring process with official guidelines that have indicated early identification of treatment failure

is crucial for successful treatment of TB. The WHO recommends frequent monitoring of patient during the intensive phase of treatment to

ensure that they are responding appropriately to therapy and to detect any potential treatment failures.33 This may include regular sputum

microscopy, culture, and drug susceptibility testing, as well as chest radiography or computed tomography if available. Additionally, the

Centers for Disease Control and Prevention (CDC) also recommend close monitoring of TB patients during the initial phase of treatment.

They state that patients should have clinical evaluations at least monthly to identify possible adverse effects of the anti-TB medications

and to assess adherence, and it is critical to obtain a sputum specimen at the end of the intensive phase (2 months) to determine if the

continuation phase should be extended.34

In the current study, a relatively small serial CT dataset was involved for the model construction, and to achieve a desirable performance

on limited data, we applied BiSeNetV2-3D to make the most use of imaging information in a fast and accurate way (Figure 5). Only limited

studies using BiSeNetV2 for COVID-19 segmentation,35 and this is the first try to utilize BiSeNetV2 to identify the lesion location and

extract features. Classification or prediction of DR-TB from CT images is considered a difficult and challenging task by the deep learning

network.36 The best accuracy rate for the classification of DR-TB was 0.516 in the Tuberculosis Competition of ImageCLEF 2017,36 and

thereafter improved accuracy of 0.6–0.7 was reported.37,38 Our model achieved a comparable accuracy of 0.651 and 0.686 on the external

dataset for PM2 and PM3, respectively. Recently, a higher accuracy over 0.7 (0.720–0.767) has been reported using both machine learning

(ML) and radiomics, which suggested it might be a good way to incorporate the DL/ML and radiomics to develop a more accurate model

identifying DR-TB.39

Figure 4. Flowchart for study dataset

A total of 2,013 patients were involved in the evaluation, and 579 patients were finally included, of which 493 patients were used as internal dataset and 86 patients

were for the external validation. The solid line indicates data flowchart and the dotted line indicates model development flowchart.
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In this study, we have pioneered the development of DL models for the prediction of TB treatment outcomes based on longitudinal CT

scans. Our findings suggest that regular follow-up CT scans can aid in the prediction of DR-TB, and that special attention should be given to

the early intensive phase of treatment to identify high-risk DR-TB patients, which could have significant clinical benefits.

Limitations of the study

There are several limitations in the study. First, special attention should be paid to the generalizability of the proposed models, especially

when patient population and characteristics differ significantly between datasets. In the study, despite the consistent improvement in

AUC observed for both internal and external testing, there was a difference in the improvement rate in the end. Therefore, further research

employing multiple datasets to develop and validate a more reliable model is necessary. Secondly, although an independent test was con-

ducted, it only involved a single external dataset, and there is a need for validation onmultiple independent datasets fromdifferent centers.40

Hence, for the follow-up works, further validation and exploration in larger datasets are needed, and we plan to incorporate various large-

scale external datasets and compare them to evaluate the prediction system thoroughly.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

Figure 5. The structure of BiSeNetV2-3D and the development of PMs

Stage 1: The dual-channel backbone has a detail branch (gray dataset) and a semantic branch (blue dataset). The last stage of semantic branching is the output of

context embedded block. Meanwhile, the number in the cube is the ratio of the feature mapping size to the input resolution. In the part of polymerization layer,

we adopted bilateral polymerization layer. The sampling operation shows that Up indicates up-sampling operation and Sigmoid function was used, and x means

element-wise output. In addition, some auxiliary segmentation heads were designed to improve the segmentation performance. Stage 2: The serial CT scans

were input into pretrained model in sequence for feature extraction and those feature maps were further input into GRU for classification.
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RESOURCE AVAILABILITY
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Further information and requests should be directed to the lead contact, Xiaoguang Zou (zxgks@163.com).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� All data reported in this paper will be shared by the lead contact upon request.

� All original code has been deposited at github and is publicly available as of the date of publication. DOI is listed in the key resources

table.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Ethical statement

The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of thework are

appropriately investigated and resolved. The study was conducted in accordance with the Declaration of Helsinki (as revised in 2013). This

study was approved by the Institutional Review Board of The First People’s Hospital of Kashi Prefecture ([2021]KDYYIRB(No.99)) and the pa-

tient consent was waived.

METHOD DETAILS

Patient cohorts

This study was conducted in accordance with the Declaration of Helsinki (as revised in 2013), and it was approved by the local hospital Insti-

tutional Review Board with a waiver of informed consent of patients for the retrospective research. Patients with bacteriologically confirmed

TB were collected from two local hospitals in China, named Site A and Site B. With the criteria of data inclusion and exclusion, a total of 579

eligible patients derived from the original 2,013 patients were ultimately included, and divided into internal and external datasets (Figure 4).

Site A was collected between January 2020 and September 2021 to develop the AImodels. It contained 493 patients with 51.2% ofmale and a

median age of 58.66G 18.66 years. The training and testing of the models were conducted at an 8:2 ratio. Site B contained 86 patients who

were collected between January 2021 and September 2021 for independent external testing. Among them, 40.7%weremale and themedian

age was 58.85G 17.80 years. The criteria for exclusion were determined as (i) TB patients confirmed by Acid-fast bacilli culture positivity with

presentence of M. tuberculosis; (ii) TB patients completed the anti-tuberculosis treatment in the local hospitals and all the clinical, laboratory,

and imaging information was acquired; (iii) Each patient had three times CT scans, one is the pretreatment CT scan, and the other two were

follow-up CT scans at the second and the sixth months; (iv) Three types of treatment outcomes were included: cured, treatment completed

and DR-TB.

In this study, a total of 579 eligible patients were enrolled and treatedwith a standard 6-month 2HRZ/4HR regimen. The treatment involved

a 2-month intensive phase of daily isoniazid, rifampicin, and pyrazinamide, followed by a 4-month continuation phase of daily isoniazid and

rifampicin. At the end of the second month of treatment, all patients underwent a CT scan and sputum culture examination. If the sputum

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

BiSeNetV2 Yu et al.41 (2021) https://doi.org/10.1007/s11263-021-01515-2

Gated Recurrent Unit (GRU) Chung et al.42 (2014) https://doi.org/10.48550/arXiv.1412.3555

Prediction models (PMs) This study Please request from lead contact (zxgks@163.com) for non-commercial, research purposes

Matplotlib Version 3.3.1 https://matplotlib.org/3.3.1/

Scikit-learn Version 0.23.2 https://scikit-learn.org/stable/whats_new/v0.23

Python Version 3.80 https://www.python.org/downloads/release/python-380/

SPSS Version 20 https://www.ibm.com/support/pages/downloading-ibm-spss-statistics-20
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culture remained positive, drug susceptibility testing was performed to determine if the patient was drug-sensitive or drug-resistant. If

the patient was found to be drug-sensitive, the treatment regimen remained the same, but an additional sputum examination was conducted

at the end of the thirdmonth. However, if the patient was drug-resistant, the regimenwas extended to 12–18months, and second-line anti-TB

drugs were prescribed after the 12-to-18-month regimen. At the end of the original 6-month treatment regimen, all patients underwent

another CT scan. The treatment outcomes were classified as three TB treatment outcomes according to the guideline of WHO (Table 3).41

Three types of treatment outcomeswere included: cured, treatment completed andDR-TB. Cure and treatment completion were considered

successful TB treatment, and the DR-TB who acquired drug resistance during the course of treatment was considered treatment failure in the

study.

CT image acquisition and image preprocessing

The first prediction model (PM1) was developed using only the pretreatment CT scans. Follow-up scans taken at the end of the second and

sixth months were added to the first model in sequence to create the second and third prediction models (PM2 and PM3, respectively).

In the study, CT scans were acquired according to standardized protocols at each hospital. The internal cohort underwent CT scans using

two machines: United Imaging 16-row 32-slice helical CT scan (tube voltage: 120 kV, tube current: 100 mA, pitch: 1.5, slice thickness: 7.0 mm,

field of view: 450 mm) and PHILIPS Brilliance 32-row helical CT scan (tube voltage: 120 kV, tube current: 100 mA, pitch: 1.5, slice thickness:

5.0 mm, field of view: 450 mm). For the external cohort, CT scans were performed using the Siemens 64-row 128-slice helical CT scan

(SOMATOM Definition AS, tube voltage: 100 kV, tube current: 100 mA, pitch: 1.3, slice thickness: 5.0 mm, field of view (FOV): 430 mm). To

ensure patient privacy, all identification information was removed from the imaging data before preprocessing. We first developed a pre-

trained model using all CT scans collected from Site A, and then the patients who had undergone three or more CT scans were involved

for the prediction model construction where they were divided into a training set and an internal testing set (Figure 4). The first prediction

model (PM1) was developed using only the pretreatment CT scans. Follow-up scans taken at the end of the second and sixth months

were added to the first model in sequence to create the second and third prediction models (PM2 and PM3, respectively).

During the labeling process, two radiologists who had more than 10 years of experience in interpreting CT images marked the TB lesions

on each slice of CT scans to produce a Dice coefficient value independently, which is a measure of the similarity between two sets of data. If

the twoDice valueswere bothR 0.95, the averaged value would be used as the ground truth of the image. Otherwise, a senior radiologist with

more than 30 years of experience would be involved to make the final determination. To improve the performance of the model, we used

image augmentation techniques including flipping, translation, rotation, and deformation on the internal dataset. Image augmentation is

a method of increasing the size and diversity of a dataset by creating modified versions of the original images while preserving their

underlying characteristics.40

Development of the PM1, PM2 and PM3

A pretrained model was developed first to predict the areas suspected of tuberculosis by extracting and learning features from manual

lesions. Then the Gated Recurrent Unit (GRU) was used to classify the predicted feature map. To balance the speed and accuracy of the pre-

trained model, a bilateral segmentation network (BiSeNetV2-3D)42 was proposed, and the architecture of the network is shown in Figure 5. It

includes three main components: (1) A detail branch where wide channels and shallow layers were involved was used to capture low-level

details and generate high-resolution feature representations; (2) A lightweight semantic branch characterized narrow channels and deep

layers was used to obtain high-level semantic context. (3) A guiding aggregation layer was designed to enhance the two types of feature rep-

resentation: interconnection and fusion. BiSeNetV2-3D achieves this balance by dividing the image into two parts, a low-resolution sub-image

and a high-resolution sub-image, and processing them separately in parallel. The low-resolution sub-image is processed by the lightweight

semantic branch to capture the high-level semantic context, while the high-resolution sub-image is processed by the detail branch to capture

the low-level details and generate high-resolution feature representations. The output features from the two branches are then aggregated

using the guiding aggregation layer, which enhances both interconnection and fusion between the features. This approach allows the model

to balance the trade-off between accuracy and speed, as the lightweight semantic branch is faster but less accurate, while the detail branch is

more accurate but slower. By processing the image in parallel using both branches and then aggregating the features, the BiSeNetV2-3D can

achieve a high level of accuracy while still maintaining a fast-processing speed. This makes it a suitable architecture for our prediction task,

where only small and limited dataset were involved and both accuracy and speed are crucial for the model.

In detail, the detail branch was a shallow structure with a small span whose key point was to use wide channels and shallow layers to deal

with spatial details. The instantiation of detail branch included three stages, each layer is convolution layer, followed by batch normalization

and activation function. The first layer of each stage had a stride of 2, while other layers of the same stage had the same number of convolution

layers and the same output feature map sizes. Therefore, the output feature map extracted by this branch was 1/8 of the original input.

Semantic branch paralleledwith detail branchwas used to capture advanced semantics and it includes StemBlock, Context Embedding Block

and Gather-and-Expansion Layer. Two different down-sampling methods were used in the Stem Block to reduce the feature representation,

and the output characteristics of the two branches were connected in series as the output. The Context Embedding Block was designed to

expand the acceptance domain by applying global average pool and residual connection. For the Gather-and-Expansion Layer, a 3 3 333

convolution was involved to aggregate the characteristic responses and extend them to high-dimensional space; then 33 333 depth convo-

lution is independently performed on each individual output channel of the expansion layer; finally, we used the 1 3 131 convolution as

the projection layer, and the output of the deep convolution was projected into the low channel capacity space. Given that the feature
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representations of detail branch and semantic branch are complementary, we designed a bilateral-guided aggregation layer to fuse these

two types of feature representations. After identifying the region of interest (ROI), the GRU consisted of 2-layer recurrent neural network units

and one fully layer was applied to make the predictions, during which ROI features extracted at a different time of the treatment period

needed to input to GRU in sequence.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using Python 3.80 and SPSS 20. The performance of the proposed prediction models of PM1, PM2 and

PM3 to predict treatment outcomes on the internal and external dataset were assessed by the receiver operating characteristic curve (ROC)

plotted by matplotlib and Scikit-learn. Besides, the AUC, accuracy, sensitivity, specificity and F1 score were also calculated.
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