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Abstract

Many studies have demonstrated that the pathophysiology and clinical symptoms

of Parkinson’s disease (PD) are inhomogeneous. However, the symptom-specific

intrinsic neural activities underlying the PD subtypes are still not well understood.

Here, 15 tremor-dominant PD patients, 10 non-tremor-dominant PD patients, and

20 matched normal controls (NCs) were recruited and underwent resting-state

functional magnetic resonance imaging (fMRI). Functional brain networks were

constructed based on randomly generated anatomical templates with and without

the cerebellum. The regional network efficiencies (i.e., the local and global

efficiencies) were further measured and used to distinguish subgroups of PD

patients (i.e., with tremor-dominant PD and non-tremor-dominant PD) from the NCs

using linear discriminant analysis. The results demonstrate that the subtype-

specific functional networks were small-world-organized and that the network

regional efficiency could discriminate among the individual PD subgroups and the

NCs. Brain regions involved in distinguishing between the study groups included

the basal ganglia (i.e., the caudate and putamen), limbic regions (i.e., the

hippocampus and thalamus), the cerebellum, and other cerebral regions (e.g., the

insula, cingulum, and calcarine sulcus). In particular, the performances of the

regional local efficiency in the functional network were better than those of the

global efficiency, and the performances of global efficiency were dependent on the

inclusion of the cerebellum in the analysis. These findings provide new evidence for

the neurological basis of differences between PD subtypes and suggest that the

cerebellum may play different roles in the pathologies of different PD subtypes. The

present study demonstrated the power of the combination of graph-based network
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analysis and discrimination analysis in elucidating the neural basis of different PD

subtypes.

Introduction

Parkinson’s disease (PD) is a movement-related neurodegenerative disorder that

has a broad range of clinical symptoms, including resting tremor, slowness of

movements, rigidity, and gait disturbance [1]. The resting tremor (i.e., T-subtype)

and akinesia/rigidity (i.e., AR-subtype) [2], in particular, have been demonstrated

to be the two predominant subtypes of PD. Although the neuropathological

findings associated with these PD subtypes have been shown to differ [3, 4], the

neural substrate underlying these subtypes is still largely unknown.

The pathological changes observed in tremor-dominant PD patients differ from

those observed in non-tremor-dominant PD [5]. PD is traditionally attributed to

a neurodegenerative process in the dopaminergic nigrostriatal system (e.g., the

basal ganglia) [6]. However, striatal dopamine depletion and the consequent

dysfunction of the basal ganglia are of more relevance to akinesia/rigidity than to

resting tremors [7]. Accordingly, the akinesia/rigidity subtype, rather than the

tremor-dominant subtype, is typically responsive to dopamine treatment. In fact,

several studies have indicated that nigrostriatal dopaminergic loss itself might be

insufficient to result in PD tremor [5, 8] and thus that other neural systems (e.g.,

the cerebellum) may be involved in the generation of PD tremor [9]. In particular,

cumulative evidence suggests that the cerebellum may play a substantial role in

generating the clinical symptoms of PD [10]. Alterations in neural activity in the

cerebellum may be induced not only by the pathological changes observed in PD

but may also reflect compensatory effects in PD patients [10]. In particular, neural

compensatory activity in the cerebellum has been observed to be an important

component of the neural mechanism of tremor generation in PD. Neuroimaging

studies have suggested that striatal dopamine depletion in PD cause damage to

broadly distributed neural circuits [11] (e.g., the cortico–striatal–thalamic [6, 12]

and cerebello-thalamo-cortical circuits) [13]. These neural activity circuits may

have different roles in generating the distinct clinical symptoms of PD. For

instance, the cortico–striatal–thalamic circuit may be involved in generating

akinesia/rigidity [6]; however, the integration of the cortico-striatal-thalamic and

the cerebello-thalamo-cortical circuits may be critical for tremor generation in

PD. More importantly, several studies have shown that the neural activities of the

basal ganglia and of the cerebellum are highly associated with each other [10] and

that these circuits may be a component of the larger PD-related brain network.

Thus, researchers have gradually realized that a network (e.g., connectome)

perspective may be more appropriate for understanding the neural basis of PD,

and several studies have demonstrated that functional brain networks are

disrupted in PD patients [14–16]. The findings of these studies suggest that
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PD-related neural activity could be sensitively reflected in both the local and

global levels of the functional brain network.

In the present study, we investigated the brain functional network topology

related to two PD patient subtypes (i.e., tremor-dominant PD and non-tremor-

dominant PD) via combining graph-based network analysis and linear

discriminant analysis. We also explored the role of the cerebellum in the PD

functional network. To this end, we collected resting-state functional MRI (R-

fMRI) data from 15 tremor-dominant PD patients, 10 non-tremor-dominant PD

patients, and 20 matched normal controls (NCs). Two types of functional brain

networks for each participant were constructed based on high-resolution,

randomly generated anatomical templates with and without the cerebellum. A

graph-based network efficiency metric was then employed to characterize the

topological organization of each functional brain network. Then, a non-parameter

permutation test and a linear discriminant analysis were combined to determine

whether the regional network efficiency could distinguish the mixed PD patients

and the PD subtypes from the NCs.

Materials and Methods

Participants

Twenty-five right-handed PD patients and 20 matched NCs were recruited for the

present study. The PD patients underwent neurological examinations and were

scored using the Unified Parkinson’s Disease Rating Scale (UPDRS), Hoehn &

Yahr Scale (H-Y stage), and Mini-Mental State Examination (MMSE). All the

patients were diagnosed according to the UK PD Brain Bank Criteria. A total of 15

tremor-dominant PD patients with classical parkinsonian resting tremor with

(n513) or without (n52) action or postural tremor and 10 non-tremor-

dominant patients with bradykinesia (n55) or akinesia (n55) were collected.

Patients in advanced stages of PD (H-Y .54) or with cognitive impairments

(MMSE ,28), secondary parkinsonism, atypical parkinsonian disease or a history

of any substance dependence, head trauma, or claustrophobia were excluded from

the study. In the hours before and during MRI scanning, the patients were not

given any medication, to avoid measuring the effects of the medications on

patients as much as possible. Table 1 lists clinical and demographic information

about the study participants.

All participants gave written, informed consent before participating in the

present study. This study was approved by the Institutional Review Board of the

Guangzhou University of Traditional Chinese Medicine.

Image Acquisition

All participants were scanned using a 1.5T Siemens Avanto MR scanner (Siemens

Magnetom Avanto, Erlangen, Germany) with a 12-channel phased-array head coil

in the Department of Radiology of the Second Affiliated Hospital of Guangzhou
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University of Traditional Chinese Medicine. During data acquisition, the

participants were asked to lie quietly in the MR scanner with their eyes closed.

Resting-state functional images were acquired using a gradient-echo echo-planar

imaging (GE-EPI) sequence. R-fMRI images were collected using an echo-planar

imaging sequence with the following parameters: 30 axial slices; repetition time

52000 ms; echo time 539 ms; gap 51 mm; slice thickness 54 mm; flip angle

590 ;̊ matrix 564664; field of view 52406240 mm2, and 180 volumes. The 3D

structural images were acquired using a T1-weighted MP-RAGE sequence: TR

51160 ms, TE 54.21 ms, TI 5900 ms, flip angle 515 ,̊ FOV 52566256 mm2,

matrix 55126512, slice thickness 51 mm, and 192 sagittal slices.

Data Preprocessing

R-fMRI data preprocessing was performed using the GRETNA toolbox (http://

www.nitrc.org/projects/gretna/) and SPM8 software (http://www.fil.ion.ucl.ac.uk/

spm/software/spm8/). For each participant, the first 5 volumes were discarded to

allow for scanner stabilization. The remaining R-fMRI data were then corrected

for the intra-volume acquisition time delay between slices and geometrical

displacements due to head movement. After checking the head motion

parameters, none of the participants were excluded based on the criterion of a

displacement of .3 mm or an angular rotation of .3˚ in any direction. Notably,

the head-motion profiles (i.e., the summary scalars of both gross and micro head

motion) were matched between the PD patients and NCs (for all, p.0.10). All

realigned functional data were spatially normalized to Montreal Neurological

Institute (MNI) space using an optimal 12-parameter affine transformation and

nonlinear deformations. The normalized R-fMRI data were then resampled to a 3-

mm isotropic resolution and smoothed using a 4-mm isotropic kernel. The

resulting images were temporal bandpass filtered (0.01–0.1 Hz), and linear trends

were removed. Finally, several nuisance signals, including 24-parameter head-

motion profiles [17], mean white matter (WM) and cerebrospinal fluid (CSF),

Table 1. Demographic information for and clinical characteristics of the participants.

NC (n520) TPD (n515) NTPD (n510) p-Value

Gender 11 M/9 F 8 M/7 F 6 M/4 F 0.90a

Age (yrs) 42–78 (59.2¡8.7) 37–81 (60.5¡11.8) 46–78 (63.1¡10.11) 0.37b

Edu (yrs) 0–22 (11.4 ¡ 5.0) 0–20 (9.8¡4.2) 0–20 (7.8¡3.2) 0.14b

ID (yrs) - 0.42–6 (2.5¡1.7) 1–7 (2.6¡2.06) -

MMSE - 29.0–30 (29.8¡0.05) 29.1–31 (30¡0.07) -

UPDRS - 4–49 (27.3¡14.3) 9–74 (31.8¡21.2) -

H-Y - 1–3 (2.25¡0.91) 1–3 (2.2¡0.9) -

Data are presented as minimum - maximum (mean ¡ SD). PD, Parkinson’s disease; NC, normal control; TPD, Tremor-dominant PD; NTPD, Non-tremor-
dominant PD; MMSE, Mini-Mental State Examination; UPDRS, Unified Parkinson’s Disease Rating Scale; H-Y, Hoehn & Yahr Scale; Edu, education in
years; ID, illness duration
aThe p-value was obtained using a two-tailed Pearson chi-squared test.
bThe p-values were obtained using two-sample, two-tail t tests.

doi:10.1371/journal.pone.0115131.t001
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were removed from each voxel’s time course via regression analysis. The global

signal was not removed using regression analysis [18–20] due to controversies

surrounding the removal of global signals during preprocessing [21, 22].

Network construction

To uncover the global organization of regions throughout the whole brain, we

constructed functional weighted networks for individual brain regions. The

networks were constructed with the nodes corresponding to brain regions and the

edges to interregional functional connectivity (FC). The network nodes were

defined using a high-resolution, randomly generated anatomical atlas [23]. In the

present study, two automated anatomical labeling (AAL) templates, constructed

using the AAL atlas with and without the cerebellum, were independently applied

to parcellate the cerebral cortex. Both atlases were parcellated into 1024 random

anatomical regions of interest (ROI) to generate the anatomical templates (cere-

AAL1024 and AAL1024; Fig. 1).

The Pearson correlations between the processed time series of any pair of ROIs

were calculated, and the edges were defined as the FC strength between ROIs.

These correlation coefficients were normalized using Fisher’s r-to-z transforma-

tion, as follows:

Zij~0:5 ln
1zrij

1{rij

� �
: ð1Þ

In parallel, two sets of functional networks (N6N, where N51024 is the

number of ROIs) for each participant, corresponding to the two templates, were

constructed. To further remove spurious interregional correlations, only those

correlations whose corresponding p-values were below a threshold of statistical

significance (p,0.05, Bonferroni-corrected) were retained [24] in the weighted

functional networks. The analysis in the present study was restricted to examining

positive connectivity due to the ambiguous interpretation of negative connections

[21, 22].

Network analysis

The constructed functional weighted networks were further fed into graph-based

network efficiency analyses. Here, the global and local efficiencies were calculated

to characterize parallel information flow within the networks of the PD patients

(i.e., in both the tremor-dominant PD patients and the non-tremor-dominant PD

patients) and the NCs.

The global network efficiency is a measure of a network’s capacity for parallel

information transfer between nodes via multiple series of edges [25]. Briefly, the

global efficiency for a network G is defined as
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Eglob(G)~
1

N(N{1)

X
i=j[G

1
dij

, ð2Þ

where dij is the shortest path length between node i and node j in G and is

calculated as the smallest sum of edge lengths among all of the possible paths from

node i to node j.
The local network efficiency was calculated as the mean of the local efficiencies

across all nodes within a network. The local efficiency of G is defined as

Eloc(G)~
1
N

X
i[G

Eglob(Gi), ð3Þ

where Eglob(Gi) is the global efficiency of Gi, the sub-graph composed of the

neighbors of node i.
The global and local efficiencies were normalized by the corresponding mean

derived from 100 random networks. The topological organization of the weighted

functional network was investigated using the normalized global efficiency (i.e.,

Lambda) and local efficiency (i.e., Gamma). Specifically, a network is thought to

be a small-world network if it has a normalized local efficiency greater than 1 and

a normalized global efficiency approximately equal to 1. The ratio of Gamma to

Lambda (i.e., Sigma 5 Gamma/Lambda) was used to measure the small-world

property of the network.

The nodal efficiency was measured to characterize the nodal properties of these

functional networks. The nodal efficiency measures the mean shortest path length

between a given node i and all of the other nodes in the network. It quantifies the

importance of node ifor information communication within a network, and is

given as

Fig. 1. Templates used in the present study. a, the template with 1024 regions containing the cerebellum; b,
the template with 1024 regions without cerebellum.

doi:10.1371/journal.pone.0115131.g001
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Enod (i)~
1

N{1

XN

j~1
j=i

1
Lij
: ð4Þ

Classification validation

To investigate whether the network nodal properties carry enough discriminative

information to distinguish the PD patients from the NCs, we investigated whether

the network nodal efficiency metrics (the global and local efficiencies) could be

used to determine a pattern that performed well in distinguishing PD patients

from NCs. Here, discrimination analysis was used to identify a distinguishing

pattern that incorporated a feature selection approach.

Before the classification of subjects as PD patients or NCs was validated, feature

selection was performed to reduce the dimensions of the data. For feature

selection, significant between-group differences in network efficiency were

inferred using nonparametric permutation tests [26, 27] (p,0.05, uncorrected).

Briefly, for each network metric, we estimated the t-statistic to determine whether

a between-group difference existed, and we then randomly assigned the parameter

values into two groups to recalculate the t-statistic for the two randomized

groups. We repeated this process for 10,000 permutations and obtained 10,000 t-

statistics; we were thus able to estimate an empirical distribution of the group

difference. The 95% confidence interval for the empirical distribution, generated

using a two-tailed test, was used to determine the significance levels of the

between-group differences. Before these permutation tests, multiple linear

regressions were used to remove the effects of age and gender.

Maximum uncertainty linear discriminate analysis (MLDA) [28] classification

was applied to classify the subjects as a PD patient with tremor-dominant or non-

tremor-dominant PD or as a NC. Leave-one-out cross-validation (LOOCV) was

used to validate the performance of the linear classifier. Specifically, using the

LOOCV approach, the sample data were separated sequentially into the training

data and the testing data; the training data were used to fit parameters of the

classifier, and the testing data were used to test the performance of the classifier.

The data processing framework of the present study is shown in Fig. 2.

Validation analysis

The PD subtype classification findings obtained via analyses of network node

efficiencies together with linear discrimination analysis were further validated

using network property metrics (i.e., the clustering coefficient, Cp, and the path

length, Lp). For a graph G with N nodes and K edges, Cpand Lp are calculated as

Cp(G)~
1
N

X
i[G

2EGi

NGi(NGi{1)
and ð5Þ
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Lp(G)~
1

N(N{1)
P
i[G

P
j=i[G

1
dij

, ð6Þ

where NGi and EGi are the numbers of nodes and edges, respectively, within the

subgraph Gi, which is composed of neighbors of node i, and dij is the minimum

number of edges required to travel from node i to j.

Results

Network topological organization

We constructed two types of functional weighted networks, with and without the

cerebellum, for the PD patients and the NCs, and the topological organizations of

these functional networks were further analyzed using graph-based network

analysis. All functional brain networks were found to be significantly small-world-

organized in the NCs as well as in the PD patients, suggesting the presence of

Fig. 2. The data processing framework of the present study. Normal, normal controls; T-PD, tremor-
dominant PD; NT-PD, non-tremor-dominant PD.

doi:10.1371/journal.pone.0115131.g002
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high-efficiency information translation in the functional networks of PD patients.

The details are shown in Fig. 3.

Distinguishing PD patients from normal individuals

The regional efficiencies (i.e., the local and global efficiencies associated with given

regions) of the functional weighted networks were investigated. We found that

differences in regional efficiencies of the functional weighted networks were able

to classify the PD patients (i.e., both tremor-dominant and non-tremor PD

patients) from the NCs. However, the regional local and global efficiencies in the

functional networks performed differently in distinguishing the PD patients from

the NCs. The regional local efficiency of the two types of functional networks both

performed well in distinguishing the PD patients from the NCs. In contrast, the

regional global efficiencies for the cere-AAL1024 and AAL1024 networks yielded

inconsistent results. The global efficiency of the network corresponding to the

cere-AAL1024 template rather than that of the AAL-1024 template could

effectively distinguish the PD patients from the NCs, suggesting that the

cerebellum may influence the global efficiency of the functional network in PD

patients (Table 2).

Distinguishing PD subtypes from NCs

The regional efficiencies of the functional brain networks for patients with

tremor-dominant and non-tremor-dominant PD, considered separately, were able

Fig. 3. Spatial properties of the whole-brain functional networks. The network properties are depicted in terms of the network efficiency. NC, normal
controls; T-PD, tremor-dominant PD; NT-PD, non-tremor-dominant PD.

doi:10.1371/journal.pone.0115131.g003
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to distinguish these patient groups from the NCs better than the regional

efficiencies for the mixed group of PD patients. However, the regional efficiency

of the functional network was not equally effective in distinguishing the tremor-

dominant PD patients and the non-tremor-dominant PD patients from the NCs.

The local efficiency of the functional brain networks was able to discriminate both

the tremor-dominant and non-tremor-dominant PD patients from the NCs.

Global efficiencies derived from the functional brain network related to the cere-

AAL2014 template were better able to distinguish patients with different PD

subtypes (i.e., tremor-dominant and non-tremor-dominant PD) from the NCs.

However, the global efficiency of the functional brain network generated using the

AAL1024 template distinguished tremor-dominant PD patients from NCs but

failed to distinguish the non-tremor PD patients from the NCs. These results are

shown in Table 2.

Discriminating regions of the functional brain networks

In the present study, we investigated the role of feature selection in distinguishing

the mixed group of PD patients from NCs. We found that the feature selection

approach significantly influenced the performance of the classifier. The accuracy

of the classifier performance without feature selection was almost at a random

level (S1 Table).

By using a feature selection approach, we determined the regions that acquired

distinguishing information that could be used to discriminate between the mixed

Table 2. The performances of brain network parameters in distinguishing PD subtypes from NCs.

Performance LEa GEa LEb GEb

Sensitivity1 1.00 0.85 0.75 0.30

Specificity1 0.80 0.72 0.96 0.48

Accuracy1 0.89 0.77 0.86 0.40

Sensitivity2 0.95 0.85 0.80 0.75

Specificity2 1.00 0.93 0.86 0.86

Accuracy2 0.97 0.88 0.82 0.80

Sensitivity3 0.85 0.75 0.90 0.50

Specificity3 1.00 0.90 1.00 0.60

Accuracy3 0.90 0.80 0.93 0.53

Sensitivity4 0.87 0.86 0.87 1.00

Specificity4 1.00 1.00 1.00 1.00

Accuracy4 0.92 0.92 0.92 1.00

LE, local efficiency; GE, global efficiency;
aAAL1024 template including the cerebellum;
bAAL1024 template without cerebellum;
1mixted PD - NCs;
2tremor-dominant PD - NCs;
3non-tremor-dominant PD - NCs;
4tremor-dominant PD - non-tremor-dominant PD.

doi:10.1371/journal.pone.0115131.t002
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group of PD patients and the NCs. The nodal efficiency of the functional brain

network demonstrated the presence of significant network disruption in many

regions in the mixed group of PD patients, and these regions associated with

network disruptions were predominantly distributed across the limbic system,

cerebellum, brainstem, basal ganglia, and the frontal, temporal and parietal cortex

(Fig. 4).

We further explored the discriminating regions that performed well in

distinguishing the individual PD subtypes from the NCs. We found that the

information required to distinguish the PD subtype from the NCs was

predominantly obtained from observations of the limbic system (e.g., bilateral

hippocampus and thalamus), basal ganglia (e.g., bilateral caudate and left

putamen), cerebellum, insula and cingular cortex regions. These results are shown

in Fig. 5.

Distinguishing PD subtypes

The network nodal efficiency (i.e., the local and global efficiencies) was also used

to distinguish between the PD patient subtypes and NCs. The results suggested

that the network nodal efficiency could also effectively discriminate the different

subtypes of PD from each other. The network nodal efficiency patterns derived

from the networks generated using the cere-AAL1024 and the AAL1024 templates

were both able to perform well in the classification of PD subtypes (Table 2). We

further explored the regions for which network data for the two types of networks

used were able to distinguish between groups of subjects. These regions, with

variations in the local efficiency pattern, were predominantly distributed across

the bilateral cerebellum, cortical regions such as the middle/superior temporal

cortex, the precuneus, and the left postcentral gyrus. When examining global

efficiency data across regions of the brain, the distinguishing regions included the

right cerebellum, insula, and posterior cingular cortex, and the left fusiform,

superior/middle temporal gyrus, and supplementary motor area.

Validation of the findings

The findings of the present study were validated using the Cpand Lp metrics. The

brain networks of the PD patients and the NCs were all small-world organized (S1

Fig.). When study subjects were classified, we found that the Cprather than the

Lpperformed well in distinguishing PD patients from NCs. More importantly,

these findings were robust for both networks generated using the cere-AAL1024

and AAL1024 templates. These results are shown in S2 Table.

Discussion

In the present study, we measured the topological organization of the functional

brain networks of PD patients and analyzed regional network efficiency to

distinguish the mixed PD group and PD subtype groups from the NCs. The main

Subtype Parkinson’s Disease Classification Based on Network Properties
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findings demonstrated that analysis of the regional network efficiency (i.e., the

local and global efficiencies) could effectively distinguish the tremor-dominant

PD patients and the non-tremor-dominant PD patients from the NCs and that

this ability to distinguish among the groups was influenced by the cerebellum.

The present study demonstrated that brain functional network efficiency could

distinguish the PD patients from the NCs. PD is commonly attributed to

dysfunction of basal ganglia circuits (i.e., cortico-striatal-thalamic loop), triggered

by insufficient numbers of dopaminergic nigrostriatal neurons [6]. Because PD is

a neurodegenerative disorder, even a focal lesion in PD may affect widely

distributed neural systems [11, 29]. Autopsy studies have indicated that the

pathophysiology of PD goes beyond neuronal degeneration within the

nigrostriatal pathway and that pathological findings are found extensively

throughout the brainstem, basal ganglia, and frontal and parietal cortex [30].

Thus, exploring brain activity from a network perspective is necessary to

investigate the pathophysiology of PD [31]. Using graph theoretical measures, the

spatial topological organization of the functional brain networks related to PD has

been investigated previously in both local networks (e.g., the motor network [32])

Fig. 4. Regions capable of identifying the mixed PD patients from the NCs. a, the local efficiency related to cere-AAL1024; b, the global efficiency
associated with cere-AAL1024; c, the local efficiency for AAL1024; d, the global efficiency for AAL1024.

doi:10.1371/journal.pone.0115131.g004
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and in whole-brain networks [15]. These studies suggest that the functional

network in PD patients is altered on multiple levels (e.g., both the global and local

levels). Given that network properties were significantly altered in the PD patients

relative to the NCs, the network properties should convey information that can be

used to distinguish the PD patients from the NCs. This hypothesis was directly

verified in the present study; we found that alterations in network efficiency were

able to discriminate the PD patients from the NCs.

The local and global efficiencies of the functional brain networks performed

differently in differentiating the mixed PD group from the NCs. Specifically, we

found that the local network efficiency, rather than the global efficiency,

consistently performed well in identifying PD. The local efficiency is indicative of

the ease of information transfer in the immediate neighborhood of each node

within a network. Thus, the finding that local efficiency provides information that

is useful for PD discrimination might suggest that obvious changes have occurred

in connections between individual regions and adjacent regions in PD patients

within functional brain networks. We also found that the performance of the

global efficiency in identifying PD patients was dependent on the type of

functional network that was examined (i.e., networks with or without the

cerebellum). Further analysis showed that the global network efficiency performed

differently in distinguishing between individual subtypes of PD. The network

types influenced the performance of global efficiency data in distinguishing the

Fig. 5. Distinguishing regions for distinguishing PD patients from the NCs. a-d are related to the local
efficiency, and e-f is related to the global efficiency. a, c, and e correspod to the tremor-dominant PD
classificantion compared with the NCs, and b, d, and f correspond to the classification of non-tremor-dominant
PD compared with the NCs.

doi:10.1371/journal.pone.0115131.g005
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non-tremor-dominant PD patients from the NCs. However, the ability to identify

tremor-dominant PD was independent of the network type examined. These

findings suggest that the physiological basis of tremor-dominant and non-tremor-

dominant PD differ and that the cerebellum may play an important role in global

network information translation.

Many studies have indicated that the patterns of dopaminergic neurodegen-

eration [33], the neural activity circuits [34, 35], and the response to

dopaminergic treatment [36] observed in tremor-dominant PD patients are

different from those observed in patients with akinetic-rigid symptoms.

Accordingly, previous studies have shown that the neural substrates of tremor-

dominant and non-tremor-dominant PD are quite different [7]. In the present

study, we distinguished tremor-dominant and non-tremor-dominant PD

patients, separately, from NCs. We found that local efficiency data still performed

well in identifying tremor-dominant PD and non-tremor-dominant PD.

However, the global efficiency of the network is not able to identify tremor-

dominant PD and non-tremor-dominant PD equally well. Specifically, the global

efficiency performed well in distinguishing the tremor-dominant PD patients

from the NCs but the ability of the global efficiency to identify non-tremor-

dominant PD was significantly dependent on the cerebellum. Thus, in functional

networks that include the cerebellum, the global efficiency is able to distinguish

the non-tremor-dominant PD patients from the NCs. These findings can also be

used to understand why the global efficiency was not able to distinguish the mixed

group of PD patients from the NCs. One important reason for this inability is that

the effects of the global efficiency are restricted to the identification of non-

tremor-dominant PD.

The cerebellum may play different roles in the functional networks observed in

tremor-dominant and non-tremor-dominant PD. We found that the cerebellum

significantly influenced network properties, which in turn influenced the ability to

distinguish between non-tremor PD patients and NCs. Previous studies have

shown that the cerebellum plays important roles in the pathology of PD [10]. The

cerebellum is anatomically connected with other brain regions, such as the basal

ganglia; such anatomical connections could provide a structural basis for the

functional integration of regions linked to the cerebellum with other brain regions

in PD patients [10]. For instance, a previous study showed that deep brain

stimulation of the subthalamic nucleus was able to reduce blood flow in the

cerebellum [37]. In the present study, we found that the cerebellum significantly

influences the global efficiency of the brain network. Because the global efficiency

is a measure of the capacity for parallel information transfer within a network

[38], the cerebellum may play an important role in this process.

In the present study, certain regions, such as the basal ganglia, limbic regions

(e.g., thalamus), cerebellum, and several cerebral regions (e.g., the insula,

cingulum, and calcarine sulcus), were observed to be able to distinguish individual

PD subtypes from the NCs. Previous studies have demonstrated that neural

circuits (e.g., the cortico–striatal–thalamic and cerebello-thalamo-cortical cir-

cuits) play important roles in the pathophysiology of PD [7, 9]. As mentioned
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above, previous studies have shown that the cerebellum and basal ganglia are

anatomically connected and form an integrated functional network of relevance to

PD [10]. In this functional network, cortical regions such as the motor cortex may

be critical for integrating these subcortical neural circuits [7]. In agreement with

previous findings, the present study also showed that the neural activity in these

regions in PD patients could be mapped onto the brain’s intrinsic neural network

and that it could be reflected in the network efficiency metric and examined

further to improve the ability to discriminate between PD patients and NCs. It

should be noted that the network efficiency (i.e., the global efficiency and local

efficiency) and the harmonic metric (Cp and Lp) of the nodes of the brain

network performed differently in their ability to identify PD subtypes, although

these metrics could effectively reflect the network topology in the PD patients. We

found that the harmonic metric was not sensitive to differences in nodal

properties in the brain network between PD patients and the NCs in classification

analyses. Our results suggest that the Cp performed well in terms of both

distinguishing the mixed PD patient group (subtype PD) from the NCs and

classifying the PD subtypes, while the Lp metric did not work well (S2 Table).

These observations collectively suggest that the abilities of local variables (i.e., the

local efficiency and Cp), rather than global variables (i.e., the global efficiency and

Lp) to translate information about the nodes in the functional network played

important roles in distinguishing PD patients from NCs. In addition, we also

found that the performance of the harmonic metric in distinguishing among the

study participants was also not sensitive to the influence of the cerebellum on

network topological properties. Thus, our findings demonstrate that network

topology metrics played different roles in distinguishing PD patients from NCs.

Compared with the harmonic metric, the network efficiency performed well in

discriminating individual PD subtypes from NCs. Further, the present study

directly demonstrated that the network nodal efficiency metric could also be

effective at discriminate between PD subtypes. More importantly, we could obtain

the network nodal efficiency pattern with power discrimination information for

the networks related to both the cere-AAL1024 and the AAL1024 templates. These

findings suggest that multiple regions besides the cerebellum had altered network

efficiencies, which could form a pattern that could be used to effectively

discriminate between different PD subtypes. These observations differed from the

results obtained when attempting to distinguish mixed PD patients from the NCs.

The pattern that was used to distinguish the mixed PD patients (subtype PD)

from the NCs was characterized by the involvement of cortical regions (e.g., the

insula, cingulum, and calcarine), the cerebellum and the subcortical regions (e.g.,

the basal gangli), while the pattern that included only cortical regions (e.g., the

bilateral middle/superior temporal cortex and precuneus, and the left posterior

central gyrus) was observed to distinguish patients with different PD subtypes

from each other. Previous findings [7] suggest that neural activity in cortical

regions, rather than pathological changes in subcortical regions, may play

important roles in discriminating PD subtypes from each other. Overall, the
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present study may provide a new perspective with which to explore the neural

basis of the pathology of individual PD subtypes.

Several issues should be addressed in future work. First, the sample size in this

study was small, which may affect the conclusions of this study. Second, the

present study revealed the regions in PD patients with altered regional efficiency;

whether these regions could construct a sub-network should be further

investigated. Third, although the network efficiency has been shown to effectively

reflect the spatial topological organization of a network, other metrics of

functional brain networks should also be used to identify PD subtypes in the

framework of the present study.

Conclusions

The present study measured the spatial organization of the functional brain

network of PD patients and examined regional network efficiency to discriminate

PD patients from NCs. We found that regional efficiency data carry enough

information to identify PD patients; however, the local efficiency and the global

efficiency performed differently. The local efficiency effectively distinguished the

PD patients from the NCs; the global efficiency was able to distinguish the tremor-

dominant PD patients from NCs but was dependent on the cerebellum to

distinguish non-tremor-dominant PD patients from the NCs. The present study

suggests that functional network efficiency is altered in PD patients and

demonstrates the importance of the cerebellum in functional brain networks. This

study also showed the different neural substrates of tremor-dominant and non-

tremor-dominant PD.

Supporting Information

S1 Fig. Spatial properties of the whole-brain functional networks. The network

category is the same with that of Fig. 3, except for that the network properties are

depicted in terms of the cpand Lp.

doi:10.1371/journal.pone.0115131.s001 (TIF)

S1 Table. Classifier performances of the mixed PD from NCs without feature

selection. LE, local efficiency; GE, global efficiency; aAAL1024 template with

cerebellum; bAAL1024 template without cerebellum.

doi:10.1371/journal.pone.0115131.s002 (DOC)

S2 Table. Classifier performance based on the network nodal properties.
aAAL1024 template with cerebellum; bAAL1024 template without cerebellum; NC,

normal control; T, tremor PD; NT, non-tremor PD; the content of the check

indicates the sensitivity/specificity/accuracy of the classifier performance,

respectively.

doi:10.1371/journal.pone.0115131.s003 (DOC)
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