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Abstract

Background: Systems biology is an important field for understanding whole biological mechanisms composed of
interactions between biological components. One approach for understanding complex and diverse mechanisms is
to analyze biological pathways. However, because these pathways consist of important interactions and information
on these interactions is disseminated in a large number of biomedical reports, text-mining techniques are essential
for extracting these relationships automatically.

Results: In this study, we applied node2vec, an algorithmic framework for feature learning in networks, for
relationship extraction. To this end, we extracted genes from paper abstracts using pkde4j, a text-mining tool for
detecting entities and relationships. Using the extracted genes, a co-occurrence network was constructed and
node2vec was used with the network to generate a latent representation. To demonstrate the efficacy of node2vec
in extracting relationships between genes, performance was evaluated for gene-gene interactions involved in a
type 2 diabetes pathway. Moreover, we compared the results of node2vec to those of baseline methods such as
co-occurrence and DeepWalk.

Conclusions: Node2vec outperformed existing methods in detecting relationships in the type 2 diabetes pathway,
demonstrating that this method is appropriate for capturing the relatedness between pairs of biological entities
involved in biological pathways. The results demonstrated that node2vec is useful for automatic pathway construction.
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Background
In the field of biology, biological pathway analysis is import-
ant for gaining insight into the underlying phenomenon of
complex interactions between biological components [1–3].
Biological pathways are constructed based on collective in-
terpretations of biomedical knowledge determined in many
different studies, which demands considerable human effort
[4]. Specifically, to construct pathways, biologists must read
and interpret a large number of biomedical reports [5].
However, with the exponential growth in research papers in
biology, it has become increasingly difficult to remain up-
dated on new developments [6, 7], increasing interest in
text mining techniques that can detect and extract

biological entities, such as gene, disease, and cell and rela-
tionships between these entities [8].
Numerous text mining techniques for relationship ex-

traction have been proposed, ranging from a simple but
flexible method such as co-occurrence-based relation-
ship extraction [9, 10] to complex techniques including
rule-based [11–15], unsupervised [16, 17], and super-
vised methods [18–24]. However, most studies of rela-
tionship extraction have used supervised methods which
are feature-based. Feature-based techniques for relation-
ship extraction require a large amount of manually la-
beled data [17, 25], which is costly and time-consuming.
Moreover, feature engineering and extraction are im-
portant tasks because the performance of supervised
learning techniques is largely dependent on the features
[21] and thus requires domain expert knowledge.* Correspondence: min.song@yonsei.ac.kr
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To tackle the training data issue, distantly/weakly super-
vised learning methods have been introduced [26–28]. Spe-
cifically, in the distantly supervised approach, an existing
knowledge base is used to automatically label entities in
the text and annotated data is utilized for training a classi-
fier [29]. Moreover, weakly supervised learning techniques
can work with small, inexact, and inaccurate training data
[30]. However, these supervised learning techniques de-
pend on the knowledge base in a given scientific domain
and labeled data.
Self-supervised learning is a type of supervised learn-

ing used for learning representations entirely from un-
labeled data such as autoencoders [31], Word2Vec [32],
and node2vec [33]. Without training data, we can use
these methods for prediction tasks. To take advantage of
this strength, in the study, we applied node2vec, a
network-embedding algorithm, for relation extraction in
biological pathways. Another reason to use node2vec is
that relationship extraction can be used as a link predic-
tion between two biological entities in the network.
Node2vec can learn the continuous feature representa-
tions of nodes in networks by using a biased random
walk to sample neighborhoods of nodes [33]. As such,
without annotated data, node2vec can learn rich feature
representations for all nodes in a network.
As a result, in this study, we predicted whether two bio-

logical entities can be connected in a network using the
node2vec algorithm. A series of experiments showed that
the network embedding technique is well-suited for rela-
tionship extraction between genes in a biological pathway.

Results
Evaluation of gene-gene interactions in the type 2
diabetes pathway
The type 2 diabetes mellitus pathway consists of 25 genes,
14 other biological components, such as disease and mo-
lecular function, and their direct/indirect relationships.
Figure 1 shows the type 2 diabetes pathway provided by
the KEGG PATHWAY database [34]. It is well-known that
type 2 diabetes is strongly associated with insulin resist-
ance [35]. Therefore, we focused on the pathways related
to ‘insulin resistance’ within the type 2 diabetes pathway
of KEGG. Specifically, the pathways linked to ‘insulin re-
sistance’ contained 19 biological entities, including gene,
molecular function and disease, and 26 connections be-
tween these entities, as shown in Fig. 1. These biological
components are listed in Table 1.
Among the 25 relationships, we evaluated 18 gene-gene

interactions in the type 2 diabetes pathway where the rela-
tionships between genes are made up of the most part. The
18 pairs of genes and relationship types (direct/undirect)
are shown in Table 2. The interactions shown in the KEGG
type 2 diabetes pathway fall into 2 categories: direct and in-
direct interactions. The dotted lines in the KEGG pathway

denote an indirect relationship between two biological en-
tities. Two entities in an indirect relationship interact each
other though several other entities. Specifically, as shown in
Table 2, the relationship between ADIPO and GLUT4
is indirect because the two genes are engaged in the
adipocytokine signaling pathway as well as the type 2 dia-
betes pathway, as the biological components can participate
in multiple pathways. Figure 2 shows that these two genes
interact with each other through ADIPOR, AMPKK,
and AMPK.
Accordingly, we expanded indirect interactions involved

in the type 2 diabetes pathway, if two entities in a given
indirect relationship participate in another pathway, to cap-
ture more detailed information on the process of interac-
tions. Among the 18 gene-gene interactions, 9 were found
to be indirect and pathway information in which each pair
of genes participate in the type 2 diabetes pathway is de-
scribed in Table 2.
Therefore, these 9 indirect paths were expanded to

identify direct relationships. Table 3 reports the ex-
tended paths and direct paths in each extended path.
For PI3K and GLUT4 (relationship no. 9), there are
three possible ways to connect from PI3K to
GLUT4: PI3K-PKC-GLUT4, PI3K-PDK1/2-PKC-GLUT4,
and P13K-PDK1/2-AKT-GLUT4. Because PKC, the up-
stream kinase, is responsible for the phosphorylation
and activation of AGC kinase members regulated by PI3K
[36–42], we selected the two expanded paths, P13K-PDK1/
2-AKT-GLUT4 and P13K-PDK1/2-PKC-GLUT4. As a
result, including the 9 direct links in the type 2 dia-
betes pathway (relationship no. 2, 3, 4, 5, 6, 15, 16, 17,
and 18), a total of 30 direct gene-gene interactions were
used for performance evaluation.
Each entity participating in the direct interactions was

selected in sequence as a starting node to discover its
closest terms. With each starting node, the 100 most
similar genes were extracted by calculating cosine simi-
larity between a given starting gene and other gene vec-
tors. Next, the starting gene was paired with each of the
100 extracted genes and the newly generated relation-
ships were ranked by cosine similarity. We evaluated the
performance of node2vec by examining whether a given
path in the type 2 diabetes pathway was ranked high in
the results. For instance, when INS was a starting node,
genes with high similarity to INS were extracted and the
ranking of INSR was examined. If a direct path was not
shown in the 100 newly created relationships, we consid-
ered that node2vec did not capture the path.
The 30 direct links and ranking of each relationship

are described in Table 4. Specifically, among these 30
links, 25 gene-gene interactions were ranked within 100.
Moreover, the 24 direct relationships were ranked within
10 (direct relationship no. 1–11, 13, 16–27). For ex-
ample, IRS1/IRS-PI3K, INSR-SOCS, and SOCS-IRS1/
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IRS (direct relationship no. 3, 4, and 5) directly interact
with each other in the type 2 diabetes pathway, which
is supported by the additional pathway information
shown in Fig. 3.
According to a previous study [43], insulin (INS) binding

to the insulin receptor (INSR) initiates phosphorylation of
the receptor and IRS proteins, which activates PI3K. More-
over, SOCS interacts with the phosphorylated receptor, pre-
venting the binding and activation of IRS proteins.
The results listed in Table 4 show that INS is a close

term to INSR (ranking 10th), INSR to IRS1/IRS (ranking
4th), IRS1/IRS to PI3K (ranking first), INSR to SOCS
(ranking 8th), and SOCS to IRS1/IRS (ranking second).

These results indicate that node2vec can accurately re-
flect the relatedness of two directly related genes, dem-
onstrating the possibility to applying node2vec for
relationship extraction.
However, the ranking of the 5 direct paths is not in-

cluded in the top 100. These results show that node2vec
cannot capture the similarity between two entities be-
longing to these paths because biological entities and re-
lationships among them were not observed in type 2
diabetes–related papers. This issue will be further de-
scribed in the Discussion section.
Moreover, we compared our results with those generated

by the baseline methods, co-occurrence and DeepWalk.

Fig. 1 Type 2 diabetes pathway. Pathway data ©2017 KEGG. Retrieved December 24, 2017, from http://www.genome.jp/kegg-bin/
show_pathway?hsa04930. Screenshot by author

Kim et al. BMC Bioinformatics 2018, 19(Suppl 8):206 Page 77 of 84

http://www.genome.jp/kegg-bin/show_pathway?hsa04930
http://www.genome.jp/kegg-bin/show_pathway?hsa04930


To compare the 3 different techniques, node2vec,
co-occurrence, and DeepWalk, we extracted 100 co-oc-
curring gene pairs as well as DeepWalk-generated pairs
with every starting node of the 30 direct links. First,
co-occurring links were ranked by their co-occurrence
counts. For example, in the case of direct link no. 1,
genes frequently co-occurring with INS were ex-
tracted such as INS-GLP-1(co-occurrence frequency: 3959)
and INS-TNF-alpha (co-occurrence frequency: 3145). The
co-occurrence link, INS-INSR (co-occurrence frequency:
1819), was ranked 9th. Moreover, DeepWalk-generated gene
paths were ranked as paths generated by node2vec.
The results are listed in Table 4. Specifically, 22

co-occurring links and 25 paths generated using node2-
vec were ranked within the top 100. Thus, node2vec

reflects the relatedness of two genes belonging to the 3
paths (direct relationships no. 1, 8, and 12) better than
co-occurrence. These 3 links were not observed in the
co-occurrence results. For the ranking of the 30 direct
relationships, only 4 co-occurring path rankings were
higher than those of the 4 links generated using node2-
vec (direct relationships no. 2, 24, 26, and 27). In con-
trast, 9 node2vec-generated paths (direct relationships
no. 3, 4, 5, 7, 9, 16, 17, 20, and 21) were ranked higher
than the co-occurrence links. The remaining 9 path
rankings were identical.
In addition, 23 DeepWalk-generated paths are ranked

within the top 100, revealing that 2 additional direct paths
(direct relationships no. 1 and 16) were captured by
node2vec. For the ranking of the 30 direct relationships,

Table 2 Eighteen gene-gene interactions and, interaction type, and another participating pathway of each relationship

Relation no. Starting entity Target entity Interaction type Another participating pathway

1 ADIPO GLUT4 Indirect Adipocytokine signaling pathway

2 INS INSR Direct –

3 INSR IRS1/IRS Direct –

4 IRS1/ IRS PI3K Direct –

5 INSR SOCS Direct –

6 SOCS IRS1/IRS Direct –

7 INSR ERK Indirect Insulin signaling pathway

8 ERK IRS1/IRS Indirect Insulin signaling pathway

9 PI3K GLUT4 Indirect Insulin signaling pathway

10 PI3K mTOR Indirect Insulin signaling pathway

11 PI3K PKC Indirect Insulin signaling pathway

12 TNFA IKK Indirect Adipocytokine signaling pathway

13 TNFA JNK Indirect Adipocytokine signaling pathway

14 TNFA mTOR Indirect Adipocytokine signaling pathway

15 IKK IRS1/IRS Direct –

16 JNK IRS1/IRS Direct –

17 PKCZ IRS1/IRS Direct –

18 PKCD/E IRS1/IRS Direct –

Table 1 Entities belonging to the paths connected to insulin resistance

No. Entity Type No. Entity Type

1 ADIPO Gene 11 IKK Gene

2 GLUT4 Gene 12 JNK Gene

3 INS Gene 13 mTOR Gene

4 INSR Gene 14 PRKCZ Gene

5 IRS1 Gene 15 PKCD/E Gene

6 IRS Gene 16 Obesity Disease

7 PI3K Gene 17 Transient hyperglycemia Disease

8 SOCS Gene 18 Type 2 diabetes mellitus Disease

9 ERK Gene 19 FFA Molecular Function

10 TNF-alpha Gene
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only 1 DeepWalk path (direct relationship no. 4) ranked
higher than the node2vec-generated path. In contrast, the
rankings of 8 paths generated by node2vec were higher
than those by DeepWalk. The remaining 14 paths showed
the same rank. These results demonstrate that node2vec
performs better than co-occurrence and DeepWalk in
capturing the relatedness of two genes in the extended
type 2 diabetes pathway.

Discussion
In the study, we applied the node2vec algorithm to extract
direct paths in a biological pathway. The results revealed
the possibility of its application in automated pathway ex-
traction. We further examined if node2vec can capture the
directions between pairs of biological components in the
pathway. It is essential to extract these directions because
biological reactions in the pathway flow from reactants to
products, in reverse, or both [44, 45].

The directions were expressed from starting nodes to
target nodes, which means that the biological reaction
between a given gene pair flows from the starting entity
to the target entity. To investigate whether node2vec re-
flects the directions in the ranking, we changed the pos-
ition of two entities in the 5 pairs such as INSR-IRS1/
IRS, AMPKK-AMPK, Raf-MEK1/2, MEK1/2-ERK1/2, and
PKCZ-GLUT4. Next, we set the original target genes
(INSR, AMPKK, Raf, MEK1/2, and PKCZ) as starting en-
tities, and the top 100 closest genes were extracted and
ranked by similarity between pairs of entities.
The results are presented in Table 5, which shows that

the ranking of the newly generated paths were much
lower than those of the original links. Specifically, in the
case of the direct relationship no. 2 and 24, the newly
generated paths are not shown in the results. Thus, the
target genes, INSR, AMPKK, Raf, MEK1/2, and PKCZ,
were not extracted as similar genes of the starting nodes,

Table 3 Extended paths and directed links in each expanded path

Relation no. Extended path based on the KEGG pathways Direct relationship no. Direct paths in the expanded path

1 ADIPO-ADIPOR1-AMPK-GLUT4 1 ADIPO-ADIPOR

2 AMPKK- AMPK

7
8

INSR-SHC-GRB2-SOS-Ras-Raf-MEK1/2-ERK1/2
IRS-GRB2-SOS-Ras-Raf-MEK1/2-ERK1/2

3 INSR-SHC

4 SHC-GRB2

5 GRB2-SOS

6 SOS-Ras

7 Ras-Raf

8 Raf-MEK1/2

9 MEK1/2-ERK1/2

10 IRS-GRB2

9
10
11

PI3K-PDK1/2-AKT-GLUT4
PI3K-PDK1/2-PKC-GLUT4
PI3K-PDK1/2-AKT-mTOR
PI3K-PDK1/2-PKC

11 PI3K-PDK1/2

12 PDK1/2-AKT

13 AKT-GLUT4

14 PDK1/2-PKC

15 PKC-GLUT4

16 AKT-mTOR

12
13
14

TNFA-TNFR1-TRADD-TRAF2-IKK
TNFA- TNFR1-TRADD-TRAF2 -JNK
TNFA-TNFR1-TRADD-TRAF2-mTOR

17 TNFA-TNFR1

18 TNFA-TNFR2

19 TNFR1-TRADD

20 TRADD-TNFR2

21 TNFR2-TRAF2

Fig. 2 Interaction between adiponectin and GLUT4 in the adipocytokine signaling pathway. Pathway data ©2017 KEGG. Retrieved December 24,
2017, from http://www.genome.jp/kegg-bin/show_pathway?hsa04920. Screenshot by author
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IRS1/IRS, AMPK, MEK1/2, ERK1/2, and GLUT4. Based
on our results, node2vec can capture the direction of
flow between two genes, although an input network and
co-occurrence network was not directed.
In addition to the flow directions, in a pathway network,

hub nodes exist showing the highest degree [46, 47]. Hub
genes are considered important because these genes are
likely essential for organism survival [48]. To identify the
hub genes and determine how well node2vec captures the
relatedness between these hubs, we constructed an extended
type 2 diabetes pathway network using other 2 pathways: in-
sulin signaling pathway and adipocytokine signaling pathway.
This expanded network was visualized using Gephi [49], a
network visualization tool, which is illustrated in Fig. 4.

The extended network consists of 29 genes and 35
edges between these entities. The thickness of the edges
represents directed or undirected links among genes
and 5 edges in the thin lines are undirected links
(mTOR-TRAF2, TRAF2-JNK, TRAF2-IKK, GLUT4-AMPK,
and ADIPOR-AMPKK). Nodes with a high degree of
centrality indicate hub genes in the extended network.
Specifically, IRS1/IRS showed the highest degree cen-
trality (8), demonstrating that IRS1/IRS is a hub gene
in the network. Genes connected directly to IRS1/IRS
are INSR, PI3K, SOCS, IKK, JNK, PKCZ, PKCD/E,
and GRB2. These 8 direct links were ranked within
the top 10 in the node2vec results, showing that
node2vec is an appropriate technique for extracting

Table 4 Thirty direct gene-gene interactions and the ranking of each link

Direct relation no. Starting entity Target entity Ranking (node2vec) Ranking (co-occurrence) Ranking (DeepWalk)

1 INS INSR 10/100 – –

2 INSR IRS1/IRS 4/100 1/100 7/100

3 IRS1/ IRS PI3K 1/100 3/100 1/100

4 INSR SOCS 8/100 10/100 6/100

5 SOCS IRS1/IRS 2/100 3/100 2/100

6 IKK IRS1/IRS 2/100 2/100 2/100

7 JNK IRS1/IRS 4/100 5/100 4/100

8 PKCZ IRS1/IRS 6/100 – 7/100

9 PKCD/E IRS1/IRS 2/100 4/100 2/100

10 ADIPO ADIPOR 1/100 1/100 1/100

11 AMPKK AMPK 1/100 1/100 1/100

12 INSR SHC 38/100 – 67/100

13 SHC GRB2 5/100 5/100 16/100

14 GRB2 SOS – – –

15 SOS Ras – – –

16 Ras Raf 4/100 6/100 –

17 Raf MEK1/2 1/100 5/100 4/100

18 MEK1/2 ERK1/2 1/100 1/100 1/100

19 IRS1/IRS GRB2 4/100 4/100 4/100

20 PI3K PDK1/2 1/100 2/100 6/100

21 PDK1/2 AKT 3/100 4/100 5/100

22 AKT GLUT4 4/100 4/100 4/100

23 PDK1/2 PKCZ 1/100 1/100 1/100

24 PKCZ GLUT4 3/100 2/100 3/100

25 AKT mTOR 1/100 1/100 1/100

26 TNFA TNFR1 6/100 1/100 6/100

27 TNFA TNFR2 4/100 1/100 6/100

28 TNFR1 TRADD – – –

29 TRADD TNFR2 – – –

30 TNFR2 TRAF2 – – –

Total number of links captured by
node2vec, co-occurrence and DeepWalk

25 22 23
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important relationships in the network, which is es-
sential for pathway construction.
Moreover, the node2vec model was generated based

on the adjacency matrix of biological components ex-
tracted from the text. Therefore, if entities and relation-
ships are not extracted from the text and not included
in the adjacency matrix, it is less likely that node2vec
can capture the relatedness of two entities. For direct re-
lationships such as TNFR1-TRADD, TRADD-TNFR2,
TNFR2-TRAF2, GRB2-SOS, and SOS-Ras, similarities
between these gene pairs is not captured by node2vec.
This is because the number of abstracts including each
pair of genes is zero, as shown in Table 6.
Specifically, 5 gene pairs in Table 6 are not shown in the

abstracts but rather are shown in the full-text. As such,
using full-text papers available in PMC would be helpful
for constructing a more precise co-occurrence network,
which can enhance the performance of node2vec.

Conclusions
In the study, we applied node2vec to extract relation-
ships between biological entities in the extended type 2
diabetes pathway. We showed that node2vec successfully

extracted a high percentage of gene pairs belonging to
the expanded pathway. Moreover, it outperformed exist-
ing techniques such as co-occurrence and DeepWalk. In
addition, we demonstrated that node2vec captured the
direction flow between two genes, which is essential be-
cause reaction flow exists in biological pathways. Ac-
cordingly, it has been shown that node2vec is a suitable
technique for extracting relationships between entity
pairs in pathways.
However, we evaluated our results based on the exist-

ing relationships in the pathway for path prediction and
thus the relationships extracted using node2vec that
have not been verified should be further examined,
which is the main theme of our follow-up study. More-
over, several direct paths detected in our extended path-
way were not captured by node2vec. As described in the
Discussion section, two entity names belonging to the
paths did not appear in abstracts but rather in full-text
articles. Accordingly, if we use full-text articles, it will be
possible to construct a more exquisite co-occurrence
network, which ultimately increases node2vec perform-
ance in extracting relationships of biological pathways.
This is another principal topic of our follow-up study.

Fig. 3 INS-INSR and IRS-PI3K interactions in insulin signaling (a), and the effect of SOCS on insulin signaling (b). Adapted from “Diabetes and
suppressors of cytokine signaling proteins,” by S. G. Rønn, N. Billestrup and T. Mandrup-Poulsen, 2007, Diabetes, 56(2), 541–548, p

Table 5 Ranking reflecting the reverse directions

Direct relation no. Original starting node Original target node Original ranking New starting node New target node New ranking

2 INSR IRS1/IRS 3/100 IRS1/IRS INSR –

11 AMPKK AMPK 1/100 AMPK AMPKK 7/100

17 Raf MEK1/2 1/100 MEK1/2 Raf 6/100

18 MEK1/2 ERK1/2 1/100 ERK1/2 MEK1/2 55/100

24 PKCZ GLUT4 3/100 GLUT4 PKCZ –
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Methods
To demonstrate the efficacy of node2vec for relation ex-
traction, we selected ‘type 2 diabetes’ as a case study.
The methodology used in this study is described below.

Data collection
Type 2 diabetes-related data were collected from PubMed,
which contains over 26 million references to journal arti-
cles in life sciences on biomedicine. We used the keyword
‘type 2 diabetes’ to retrieve all papers indexed with this
search term. Only articles including the term in the titles
and abstracts were collected. PubMed XML records were
retrieved using EFetch API [50]. As a result, the total
number of collected records was 99,689 papers, published
from 1978 to 2018. Finally, PMIDs, titles, and abstracts
were extracted from the XML records and preprocessed
for entity and relationship extraction.

Entity and relation extraction
For entity extraction, PKDE4J [14], a biomedical text min-
ing tool, was utilized. Using the tool, biomedical entities
can be extracted either by dictionary or supervised learn-
ing, or both. In our experiment, a combination approach

was used to extract biological entities. Specifically, candi-
dates of the biological entities were identified using the
Stanford NER model [51] and the candidates were mapped
into the Unified Medical Language System (UMLS) con-
cepts to decrease false-positives. The UMLS is a vocabulary
database of biomedical concepts and relationships among
concepts, developed by the National Library of Medicine.
The biomedical concepts in the UMLS Metathesaurus are
categorized into 143 semantic types [52]. As such, semantic
types can be selected to extract specific types of entities. In
this study, semantic types matching Gene/Protein were
used for gene extraction from biomedical text. These
entity types are Cell component, Gene or Genome, En-
zyme, Receptor, Nucleic acid, Nucleoside, or Nucleotide,
Amino acid, Peptide or Protein, Molecular sequence, Nu-
cleotide sequence, and Amino acid sequence.
For relationship extraction, two biological components

were linked when the entities were mentioned together in
the same sentence. The assumption behind this approach
is that frequently co-occurring entities in the same sen-
tence are more likely to be related than those occurring
together in the same abstract. A co-occurrence network in
which nodes and edges represent biological entities and
co-occurrence relationships, respectively, was constructed
and used as an input for node2vec.

Node2vec for latent path prediction
Node2vec is “an algorithmic framework for learning con-
tinuous feature representations for nodes in the networks”
[33]. It can be used for path prediction in the network by
maximizing the probability of preserving network neighbor-
hoods of nodes via second order random walk [33]. In the

Fig. 4 Extended type 2 diabetes pathway network

Table 6 Number of abstracts including direct gene pairs

Entity pair Number of abstracts

TNFR1-TRADD 0

TRADD-TNFR2 0

TNFR2-TRAF2 0

GRB2-SOS 0

SOS-Ras 0
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networks, nodes exhibit homophily, structural equivalence,
or both. Thus, node2vec employs biased random walks in
which return parameter p and in-out parameter q adjust
the walks to sample neighborhood of nodes that lead to
embeddings corresponding to the structural, homophily
equivalence, or both. Node2vec improves the random walk
phase of DeepWalk [53], another feature learning technique
for networks, by introducing hyperparameters that control
the depth and breadth of random walks. Many studies have
shown that node2vec outperforms DeepWalk [54–56].
Specifically, in the random walks process, if the return

parameter is high (>max(q, 1)), the walk is less inclined
to visit already visited nodes. In contrast, if p is low
(<min(q,1)), the search is restricted to nearby nodes,
which is essential for ascertaining structure equivalence
[33]. For the in-out parameter q, if q is less than 1 (q < 1),
we are more likely to sample nodes that are further away
from a source node. Thus, “the sampled nodes more
accurately reflect a micro-view of the neighborhood [33]”,
which is crucial for discovering communities/clusters on
homophily. The goal of our study was to identify nodes
that are closely interconnected and belong to the same
communities (homophily equivalence [33, 57]), and we set
p = 1 and q = 0.5.
In addition to the p and q parameters, we set other pa-

rameters involved in node2vec as d = 128, r = l = 10, and
k = 10 where d, r, l, and k denote embedding dimensions,
walk per node, walk length, and context size, respect-
ively. Parameter values were selected based on the
parameter-sensitive part of the original paper [33] for
the best performance. Moreover, to accurately compare
node2vec with DeepWalk, we used the same parameters
for both methods.
The constructed co-occurrence network was used as in-

put for node2vec and DeepWalk to learn rich feature repre-
sentation for every node in the network. Node2vec extends
the Skip-gram architecture [58] to networks, learns node
embeddings by generating random walks and optimizes the
network-based objective function using SGD.
With the embedding matrix, the relatedness between

each pair of biological entities (e1, e2) shown in the bio-
logical pathway, was identified by computing the cosine
similarity of their corresponding transformed vectors
(ve1, ve2).

Performance evaluation
To evaluate node2vec performance for predicting relation-
ships between biological components, pathway-based ana-
lysis was conducted. Specifically, the type 2 diabetes
mellitus pathway sourced from the KEGG PATHWAY
database was used for the evaluation task. The pathway
map in the KEGG PATHWAY provides knowledge regard-
ing diverse molecular networks composed of nodes such
as orthologs, genes, small molecules, and their reactions

and interactions [34]. As such, node2vec performance was
evaluated based on the entity-entity relationships shown in
the KEGG pathway map. Moreover, we compared node2-
vec results with those generated by other baseline methods
such as co-occurrence and DeepWalk.

Abbreviation
UMLS: Unified Medical Language System
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