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Quantitative prediction on protein synthesis requires accurate translation initiation and
codon translation rates. Ribosome profiling data, which provide steady-state distribution of
relative ribosome occupancies along a transcript, can be used to extract these rate
parameters. Various methods have been developed in the past few years to measure
translation-initiation and codon translation rates from ribosome profiling data. In the review,
we provide a detailed analysis of the key methods employed to extract the translation rate
parameters from ribosome profiling data. We further discuss how these approaches were
used to decipher the role of various structural and sequence-based features of mRNA
molecules in the regulation of gene expression. The utilization of these accurate rate
parameters in computational modeling of protein synthesis may provide new insights into
the kinetic control of the process of gene expression.
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1 INTRODUCTION

Protein molecules carry out a vast array of biological functions. Indeed, almost every cellular process,
from genome regulation to energy metabolism, requires a unique set of proteins with their precise
concentration in a cell (Berg et al., 2002; Miyazaki and Esser, 2009). Therefore, the abundance of
proteins in a cell is tightly regulated by various mechanisms acting at the level of transcription and
translation (Curtis et al., 1995; Wu and Belasco, 2008). Understanding this regulation of protein
synthesis remains one of the active areas of research from the last few decades (Merrick, 1992; Proud,
2006; Dever et al., 2016; Kummer and Ban, 2021). It was previously believed that cellular protein
levels are primarily determined by mRNA copy number (Greenbaum et al., 2003; Lu et al., 2007).
However, recent studies demonstrated that the translational regulation of protein synthesis also
contributes significantly to in vivo protein abundance (Vogel et al., 2010; Li et al., 2014).
Translational regulation is achieved by various structural and sequence-based features of mRNA
molecules that can kinetically control the rate of protein synthesis (Kudla et al., 2009; Vogel et al.,
2010; Tuller et al., 2010). Therefore, the knowledge of the rates at which different steps of translation
occur and their connection with those mRNA features would provide key information concerning
how the expression of an individual gene is regulated.

Single-molecule experiments provided significant insights into the details of the process of protein
synthesis (Munro et al., 2008; Volkov and Johansson, 2018). However, little was known on how
different mRNA features can control protein synthesis until the Next Generation Sequencing (NGS)
experiments started uncovering various kinetic properties of this process (Ingolia et al., 2019). Several
methods have been developed in the last decade that allows the accurate extraction of translation rate
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parameters using ribosome profiling data (Weinberg et al., 2016;
Duc and Song, 2018; Sharma et al., 2019). The analysis of these
translation rate parameters and their use in protein synthesis
simulations have started unraveling the sophisticated mechanism
that nature has developed to optimize the use of cellular resources
(Tuller et al., 2010; Diament et al., 2018; Lyu et al., 2020).

In this mini-review, we provide the brief overview of a few
recently developed methods that extract translation rate
parameters from ribosome profiling data. We explain the
technical details and assumptions made in these approaches,
and also comment on their accuracy in several different
contexts. We also highlight some of the recent results that use
ribosome profiling data to provide new insights into the kinetic
control of protein synthesis. This mini-review aims to promote
the use of big biological data sets among biophysicists, biophysical
chemists and system biologist to achieve greater accuracy and
reliability in the quantitative modeling of protein synthesis.

2 QUANTITATIVE MODELING OF PROTEIN
SYNTHESIS

The first mathematical model of protein synthesis was developed
by MacDonald et al. (1968), and since then various similar
models and their extensions were proposed to understand the
different aspects of mRNA translation (Garai et al., 2009; Sharma
and Chowdhury, 2012; Ciandrini et al., 2013; Margaliot and
Tuller, 2013). Among these, the totally asymmetric simple
exclusion process (TASEP) is a model which incorporates key
steps regulating in vivo protein production and is extensively used
to stimulate protein synthesis. In this model, an mRNA is
considered as a one-dimensional lattice where each site in that
lattice represents a single codon. A ribosome in this model is like
an extended particle that covers ten consecutive codon positions
of a transcript where its location is usually identified by the
position of its A-site (Sharma and O’Brien, 2017; Ingolia et al.,
2009). The ribosome A-site is located at the sixth codon from the
5′ end of the ribosome. Therefore, a ribosome at the jth position
covers j − 5 to j + 4 codons (Ahmed et al., 2019). Protein synthesis
in this model is divided into three sub-steps: initiation, elongation
and termination (Merrick, 1992) (Figure 1A). Initiation occurs
when a ribosome assembles at the start codon of the ith transcript
with rate α(i) (Kozak, 1999; Merrick and Pavitt, 2018). A
ribosome initiates protein synthesis with its A-site at the
second codon position of the transcript, therefore the
translation initiation occurs when the first six codons are not
occupied by another ribosome. The limited availability of
ribosomes in a cell makes translation-initiation a rate-limiting
step of the protein synthesis (Shah et al., 2013). The ribosome
then starts taking a series of stochastic steps toward the stop
codon. On the ith transcript, a ribosome slides from codon
position j to j + 1 with rate ω(j, i). In each of such steps, a
ribosome selects cognate aa-tRNA molecule, forms a peptide
bond and then moves to the next codon position (Sharma and
Chowdhury, 2011; Sharma and Chowdhury, 2012) Note that
multiple ribosomes simultaneously move on a single transcript
where each of them synthesizes a separate copy of protein.

Therefore, due to mutual exclusion, a ribosome cannot move
to the next codon if its passage is blocked by another downstream
ribosome. After arriving at the stop codon, the ribosome
terminates the process, and releases a fully synthesize protein
with rate β(i). The termination of protein synthesis also leads to
the disassembly of the ribosome at the stop codon (Hellen, 2018).

The TASEP with an uniform elongation rate, unitary particle
size, and infinite lattice size is exactly solved by Derrida et al.
(1992). Later, Lazarescu and Mallick (2011) extended this work
by solving the TASEP with finite lattice size. Adding to this,
Kolomeisky (1998) provided an analytical solution for TASEP
with local inhomogeneities. For extended particles, Shaw et al.
(2004) solved the TASEPmodel under mean-field approximation
for uniform elongation rate. Recently, Szavits-Nossan et al. (2018)
provided an analytical solution for the TASEP with non-uniform
elongation rate and extended particle size; however, it ignores the
higher-order terms of power series solution of the model.
Therefore, in the absence of any exact analytical solution,
computer simulation of the TASEP model is the best possible
approach for making reliable quantitative predictions on protein
synthesis.

Multiple approaches have been used in the past to simulate
protein synthtesis on TASEP model, including kinetic Monte-
Carlo (Zia et al., 2011), next reaction method (Gibson and Bruck,
2000; Duc and Song, 2018), Gillespie’s method (Gillespie, 1977),
etc. The Gillespie’s method is one of the very efficient approach
for studying stochastic systems and is commonly used to simulate
the TASEP model (Gillespie, 1977). Solving TASEP using this
method requires to calculate the parameter

R � ∑
j�1

Li

T(j) (1)

which is the sum total of rates for all transitions that lead to a new
state from the current state of the translation system. (Note that
every unique arrangement of ribosomes on a transcript is a
separate state.) In Eq. 1, T(1) � α(i), T(j) � ω(j, i)δ(j) for
2≤ j< Li − 1 and T(Li) � β(i)δ(Li); δ(j) is one when a
ribosome occupies the jth codon position of the transcript,
otherwise it is zero, and Li is the total number of codons in
the ith transcript. The TASEP model assumes that all transitions
in translation system are Markovian therefore, the dwell time in a
given state is exponentially distributed with a mean value of 1

R.
This quantity is calculated by generating an exponentially
distributed random number τ � 1

R ln(r1), where r1 is a random
number that is uniformly distributed between 0 and 1. The next
transition is randomly chosen according to the relative
contributions of all possible transitions in R (Eq. 1). For this,
another random number r2, which is uniformly distributed
between 0 and R, is generated, and the next transition is
identified according to the selection criteria given in Table 1
(A flow-chart explaining the various steps of protein synthesis
simulations is shown in Figure 1B). Repeating this procedure
generates a trajectory of protein synthesis on a given mRNA
transcript, which can be used to calculate various quantities: rate
of protein synthesis, average and codon-specific ribosome
density, in-silico ribosome profiles, etc.
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3 METHODS OF EXTRACTING
TRANSLATION RATE PARAMETERS

Accurate quantitative predictions for protein production
critically depends on having precise estimates of translational
rate parameters. Therefore, in this section, we discuss common
approaches to extract translation rate parameters from
ribosome profiles which provides the access to a plethora of
information about the protein synthesis process. In ribosome
profiling experiment, translation elongation is arrested by
the treatment with drug cycloheximide (Figure 1C). Then,
after the cell lysis, the portions of the mRNA molecule
that are not protected by ribosomes are digested by
nucleases. The remaining ribosome-protected mRNA

fragments are subsequently sequenced and aligned to a
reference genome. The typical length of a ribosome-protected
mRNA fragment is 28–31 nucleotides; therefore, fragments
outside this range are excluded from the analysis (Pop et al.,
2014). Note that a ribosome translates the codon present at
its A-site. Therefore, the position of A-site is identified on
those ribosome-protected mRNA fragments (Ahmed et al.,
2019), referred to as the read aligned to the A-site codon.
Within a transcript, more ribosome-reads aligned to a
codon means a longer translation time for that particular
codon. This steady-state profile of ribosome occupancy can
be used in extracting translation initiation and codon
translation rates. Many computational methods have been
developed in the past to extract these rate parameters from

FIGURE 1 | (A) A pictorial illustration of the steps involved in the process of protein synthesis. Ribosome subunits assemble at the start codon with rate α(i) when
no ribosome occupies the first six codons of the transcript. Then, the ribosome starts moving toward the stop codon by a single codon at a time. It hops from codon j to
j + 1 with rate ω(j, i). Note well, a ribosome cannot move to the next codon if it is occupied by another ribosome. After arriving at the stop codon, the ribosome terminates
protein synthesis and releases fully synthesized protein with rate β(i) (B) The flow-chart describes the computational algorithm of protein synthesis simulations
using the Gillespie’s method. For details, see the main text and table (1) (C) explains various experimental and computational steps involved in preparing ribosome
profiles.

Frontiers in Molecular Biosciences | www.frontiersin.org June 2021 | Volume 8 | Article 6887003

Yadav et al. Quantitative Modeling of Protein Synthesis

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


ribosome profiling data. We categorize these methods into
three different groups.

3.1 Optimization Based Methods
These methods take advantage of some known characteristics of
the translation process and extract codon translation rates by
optimizing or fitting a function of ribosome profiling reads. For
example, Dana and Tuller (2014) proposed a method for
extracting the “typical” translation time of a codon by fitting a
function that characterizes ribosome dwell time distribution. To
do that, Dana and Tuller (2014) first normalize the ribosome
footprint counts by the average reads aligned to the transcript.
That is,

r̂(j, i) � r(j, i)
1

Li−40∑Li−20
j�21 r(j, i) (2)

r(j, i) in Eq. 2 is the number of ribosome profiling reads aligned
to the jth codon of the ith transcript. To minimize any sampling
error, the authors recommend excluding the genes with
median read counts less than one. In addition to that, the
first and the last 20 codons were removed from the analysis as
unusually high ribosome footprint density was found in those
regions (Ingolia et al., 2009). Then, the distribution of
normalized footprint count for a codon type “c”(e.g., CUU,
AUG) is computed using the data collected from the whole
transcriptome. It was found that this distribution is a
superposition of the normal and exponential distributions
(Dana and Tuller 2014; Dana and Tuller , 2015). Authors
rationalize this observation by proposing that the normal
distribution characterizes the typical decoding time for a
codon type (τ1) whereas the exponential distribution reflects
the delay (τ2) caused by rare translation pauses and ribosomal
interference. Therefore, the distribution of codon translation
time (τ), a sum of random variables τ1 and τ2, is the
convolution of the normal and exponential distribution, and
has the following functional form.

f (τ, μc, σc, λc) � λc
2
e
λc
2 (2μc+λcσ2c−2τ)erf[μc + λcσ2c − τ�

2
√

σc
] (3)

In Eq. 3, μc and σc are the mean and standard deviation of the
normal distribution, respectively. λc is the coefficient for
exponential distribution whose inverse is the average time delay
caused by rare translation pauses and ribosomal interference. The
distribution in Eq. 3 was then fitted with normalized read
distribution of codon “c”, providing μc, the “typical” codon
translation time. Using this analysis, the authors calculate the
‘typical’ decoding time for all 61 sense codons.

Pop et al. (2014) proposed a similar method that calculates
gene-specific and globally averaged translation time of a codon
type “c” (i.e., μic and μc, respectively) by maximizing the following
objective function.

max(μic, μc)⎡⎢⎢⎣log∏
i,j

μ
i(r(j,i)/Ji)
c e− μ

i
c −∑

i,c

wi
c(logμic − logμc)2⎤⎥⎥⎦ (4)

The first term in the objective function represents the
likelihood of observed ribosome profiles for a specific μic
whereas the second term minimizes the difference between the
global and gene-specific average translation time. wi

c in Eq. 4 is a
ratio of the total number of “c” codons in the ith transcript to all
transcripts. Therefore, the genes with more “c” codons will have
greater weightage in the objective function. Ji is the ribosome
flux at transcript i which was fixed to ∑

j ∈ i

r(j,i)
Li
. Then, L-BFGS

algorithm (Byrd et al., 1995) is applied to search the numerical
values of μic and μc that maximizes the objective function in
Eq. 4. The inverse of the μc is the translation rate of codon “c”.

In another optimization based approach, Szavits-Nossan and
Ciandrini (2020) have used the non equilibrium analysis of
ribosome profiling data to infer the ratio of elongation to
initiation rate i.e. k(j, i) � ω(j,i)

α(i) . In this method, k(j, i)s were
calculated by minimizing the difference between
experimentally measured and numerically computed codon-
specific ribosome density of a transcript. For this, an objective
function

S � ∑Li
j�2

(ρana{k(j, i)} − ρ(j, i))2 (5)

is minimised by using the Least-Squared optimization technique.
ρana{k(j, i)} in Eq. 5 is numerically computed by using an
expression derived by Szavits-Nossan et al. (2018) whereas
ρ(j, i)s were calculated by distributing the experimentally
measured polysome density according to the distribution of
ribosome profiling reads along a transcript. Optimizing the
objective function in Eq. 5 yields the numerical values of
k(j, i). Unlike Pop et al. (2014) and Dana and Tuller (2014),
this method does not put any constraint on the variations in the
translation rate of a codon type. Therefore, the normalized rates
obtained from this method can precisely capture the local
variation in codon translation rates along a transcript.

3.2 Simulation Based Methods
Simulation based methods follow an iterative procedure, where in
each iteration, translation rate parameters are altered until the

TABLE 1 | A list of the types of transitions and conditions in simulation algorithm.

Conditions Transitions

r2 < T(1), and the first six codon positions of the transcripts are unoccupied Translation-initiation

∑j
k�1

T(k)≤ r2 < ∑j+1
k�1

T(k), a ribosome is at the jth codon position with no ribosome at (j + 10) Transition of the ribosome from codon position j to j + 1

∑Li−1
k�1

T(k)≤ r2 < ∑Li
k�1

T(k), a ribosome is at the Lthi codon Translation-termination
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simulation output converges to its experimentally measured
counterparts. For example, Gritsenko et al. (2015) compared
the experimentally measured and simulated ribosome
densities on mRNA segments of different lengths. This
comparison on short mRNA segments allows capturing the
local variation in codon translation rates whereas in long
segments it increase the reliability of measured rate
parameters. These mRNA segments were constructed by
dividing the whole transcript into two parts in such a way
that both of them get an equal number of combined ribosome
profiling and RNA-seq reads. The daughter segments were
further divided recursively using the same approach until a
reliable estimate of ribosome density can be made.

To implement this method, Gritsenko et al. (2015) used an
experimental observation that ribosome density on a mRNA
segment is distributed log-normally among all its replicates.
This means the probability of finding a specific value of
ribosome density in a single observation can be expressed as

P(C,Ni
k

∣∣∣∣rik, σ i
k)∝ 1

Ni
k

���
2π

√ e

lnNi
k
+lnC−ri

k

2(σi
k)2 (6)

rik and σ ik in Eq. 6 are the mean and standard deviation of
ribosome density for the kth segment of transcript i; Ni

k is the
number of ribosomes on the same mRNA segment which was
observed in a single snapshot of protein synthesis simulations.
The experimental ribosome density was calculated by taking the
ratio of the normalized ribosome profiling reads with the RNA-
Seq reads aligned to the same segment. Since this quantity is
measured in arbitrary units, a parameter C was introduced to
scale it to the simulated ribosome density. rik in Eq. 6 was
calculated by taking the mean of ribosome density from the
data collected from all replicates of the same experiment. The
shape parameter σ ik was calculated for a group of segments with
the same length as it was not possible to reliably calculate σ ik from
a very small number of replicates. Then, using Eq. 6, Gritsenko
et al. (2015) define an objective function Ψ that quantifies how
well the simulation model predicts experimentally measured
ribosome densities.

Ψ � ∑
i

∑
k

[ − 1
2σ ik

(lnNi
k − rik + lnC)2 − lnNi

k] (7)

Gritsenko et al. (2015) carry out the transcriptome-wide protein
synthesis simulations by supplying some initial translation rate
parameters to the model. Snapshots taken from protein synthesis
simulations produced Ni

k for each mRNA segment which were used
to compute Ψ in the model evaluation step. Then, using the
numerical value of Ψ, a genetic algorithm (Covariance Matrix
Adaptation Evolutionary Strategy) proposes new initiation and
codon translation rates, which were further used to simulate
protein synthesis on the whole transcriptome. This process is
repeated until Ψ is maximized which produces the translation
initiation and codon translation rates.

In an another simulation based study, Duc and Song (2018)
measured translation rate parameters by comparing the
normalized in vivo ribosome profiling reads (Eq. 2) with those

obtained from simulations. This method also requires initial
translation rate parameters to generate in-silico ribosome
profiles which will be refined in every iteration of the method.
Initial codon translation rates were estimated as follows.

ω(j, i) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

min⎛⎝ωmax,
∑Li

j�1r(j, i)
r(j, i) ⎞⎠, if r(j, i)≠ 0

ωmax, otherwise

(8)

ωmax here is a crude guess of the maximum codon translation rate
in S. cerevisiae. The initial translation initiation rates were
calculated by following a method developed by Ciandrini et al.
(2013). In that method, initiation rate of a transcript is varied
until the simulated average ribosome density matches with what
has been measured in polysome profiling experiments. These
initial translation rate parameters were then used to simulate
protein synthesis and generate in silico ribosome profiles. In each
step, simulated and in vivo ribosome profiles were compared and
error ε is computed for each codon of a transcript.

ε(j) �
∣∣∣∣∣∣∣∣∣ r(j, i)∑jr(j, i) −

rsim(j, i)∑jrsim(j, i)
∣∣∣∣∣∣∣∣∣ (9)

Authors also defined codon positions with significant error where

it was larger than
10∑j

ε(j)
Li

. It is very likely that ribosome profiling
reads at such positions may have been influenced by extensive
ribosome traffic-jams which increases the dwell time of downstream
ribosomes. Therefore, for such cases, translation rate of neighboring
codons were also updated in the next iteration cycle. Authors used
the following updating rules in each iteration of the method.

ω(j, i) �
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1ω(j, i) for codon jwhere ε(j) <
10∑jε(j)

Li

λ2ω(j, i), for codons j − 30 to j − 10 when ε(j) >
10∑jε(j)

Li

ω(j, i) otherwise

(10)

λ1 and λ2 are chosen using the golden section search algorithm.
After updating the codon translation rates, a transcriptome-
wide simulations of protein synthesis were carried out and then
the same procedure is repeated until no error sites were
detected. This provides the translation initiation and codon
translation rates that generates in silico ribosome profiles similar
to the in vivo profiles.

3.3 Chemical Kinetic Based Methods
Chemical kinetic-based methods do not require extensive
simulations of protein synthesis. Instead, they rely on analytical
expressions of translation rate parameters that use ribosome
profiling and RNA-Seq data as input variables. A recent
publication used the mean-field and steady-state assumptions,
and derived the following analytical expressions for translation-
initiation and codon translation rates (Sharma et al., 2019).

α(i) � 〈ρ(i)〉(Li − 1)
〈TT(i)〉[1 − ∑11

k�2ρ(k, i)] (11)
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ω(j, i) � ∑Li−1
j�2 ρ(j, i)

ρ(j, i)〈TT(i)〉 (12)

In Eq. 11, Eq. 12 〈TT(i)〉 is the time a ribosome takes to move
from the start to stop codon whereas ρ(i) is the average ribosome
density on the transcript. 〈TT(i)〉 can be calculated by using a scaling
relation between gene translation time and the number of codons in a
transcript (Sharma et al., 2018) if gene-specific reliable estimates of
protein synthesis times are not available. The average ribosomedensity
on a transcript is proportional to the ratio of the number of ribosome
profiling and RNA-Seq reads aligned to that transcript. This
proportionality was used to estimate the average ribosome density
on a transcript (Sharma et al., 2019). ρ(j, i)s were calculated by
distributing the ρ(i)s according to the variations in ribosome profiling
reads across the transcript i. This new analysis method neither relies
on heuristic and ad-hoc approaches nor requires extensive protein
synthesis simulations, and implementing this equation-based method
is much easier than others.

4 STATISTICAL NOISE AND SEQUENCE
BIASES IN MEASURED TRANSLATION
RATE PARAMETERS
Ribosome profiles provide single codon resolution to the protein
synthesis process. However, these data sets are very noisy and are
subjected to numerous biases associated with various steps of the
ribosomeprofiling experiment, including the amplification of ribosome
footprints by RT-PCR, nuclease digestion, cell lysis, etc. (O’Connor
et al., 2016; Mohammad et al., 2019; Xiao et al., 2016; Hussmann et al.,
2015). Such statistical errors and biases will also be reflected in the
measured translation rate parameters. Dana and Tuller (2014)
minimize their impact by ignoring any variation in the translation
rate of a codon type. This approach drastically reduces the total number
of parameters to be extracted from the ribosome profiling data. It
minimizes the statistical uncertainty in the measurement of codon
translation rates and also averages out various sequence biases.
However, a major drawback of this approach is that it does not
account for the context-dependent variations in codon translation
rates. The other extreme approach taken by Szavits-Nossan and
Ciandrini (2020) measures the translation rate for each codon in an
mRNA transcript but such measurements are subjected to a higher
degree of stochastic noise. A few probabilistic and machine learning
models have also been applied to minimize the effect of noise and
biases in the identification of A-site position on ribosome footprints
(Fang et al., 2018; Tunney et al., 2018; Gobet et al., 2020). Thesemodels
have successfully captured the context-dependent variation in codon
translation rates and also performed well in transcripts with low
abundance (Liu et al., 2020; Michel et al., 2016).

5 MOLECULAR DETERMINANTS OF
TRANSLATION RATE PARAMETERS

A closer look at the measured translation rate parameters
unraveled the molecular determinants of translation-initiation

and codon translation rates (Sharma et al., 2019; Duc et al., 2018).
For example, tRNA pool hypothesis proposed codon translation
rates to be proportional to the availability of cognate tRNA
molecules (Ikemura, 1981; Ikemura, 1985). However, this
hypothesis was never explicitly tested as there was no method
that allowed translation rate measurement for all codons. Codon
translation rates measured by ribosome profiling experiments
supported this hypothesis in S. cerevisiae and E. coli (Dana and
Tuller, 2014; Sharma et al., 2019). However, no such behaviour
was observed in mouse cell lines (Gobet et al., 2020; Ingolia et al.,
2011). Interestingly, a strong correlation between codon usage
and tRNA abundance is observed in mammalian cells (Gobet
et al., 2020; Gobet and Naef, 2017; Neelagandan et al., 2020),
suggesting that tRNA levels are tuned according to their
requirement in a cell.

In addition, an analysis of measured codon translation rate has
shown that mRNA structures downstream to the A-site codon
increase their translation time (Sharma et al., 2019). The reason
for this increase is that the ribosome has to first unfold the
structure to proceed to the next codon (Qu et al., 2011). The
average increase of 6.7% in codon translation time was reported
due to the presence of a structure in mRNA molecule. However,
depending upon the stability of that structure, it may vary from
one codon to another. Similarly, the presence of proline amino
acid on the ribosome P-site increases the median translation time
of a codon by 19% (Sharma et al., 2019) because the
stereochemistry of proline amino acid delays the peptide bond
formation with adjacent amino acid (Pavlov et al., 2009).
Furthermore, Duc and Song (2018) have discovered that the
aqueous environment inside the ribosome exit tunnel leads to a
faster translation of codons when hydrophobic amino acid
residues are present inside the tunnel. Electrostatic charges on
the nascent-protein have been shown to modulate the translation
elongation rate (Duc and Song, 2018; Riba et al., 2019). The
ribosome exit tunnel is negatively charged. Therefore, the
presence of positively charged amino acid into the tunnel
decreases the translation rate of downstream codons
(Figure 2A). The identity of the amino acid at the ribosome
P-site also affects the translation rate of the A-site codon. In S.
cerevisiae, eighty six different pairs of amino acids at the A- and
P-sites speed up the elongation rate whereas it is slowed down in
the case of eighty one other pairs of amino acids (Ahmed et al.,
2020). A similar behaviour was also observed in mouse liver cells
where different codon combinations at A- and P-sites, E- and
P-sites, and E- and A-sites can speed up or slow down the
translation elongation (Gobet et al., 2020). Post-translational
modifications of tRNA molecules also enhances the rate of
translation elongation in S. cerevisiae, N. crassa and C. elegans
(Lyu et al., 2020; Nedialkova and Leidel, 2015). In addition to
these molecular factors, patterns of slow and fast codons can
cause ribosome traffic-jams on a transcript, and can significantly
affect the time a ribosome spends at a given codon position
(Diament et al., 2018; Duc et al., 2018).

Translation initiation is another rate-limiting step (Shah et al.,
2013) and sets an upper bound to the rate at which proteins are
produced from a single transcript (Szavits-Nossan and Ciandrini,
2020). Initiation rates measured from ribosome profiling
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experiments also identified its molecular determinants
(Figure 2B). For example, significant negative correlations of
initiation rate with the free energy of mRNA folding near the start
codon and transcript length were observed in multiple studies
(Weinberg et al., 2016; Duc et al., 2018; Sharma et al., 2019). A
stable structure near the start codon makes this region
inaccessible to a ribosome for initiating the process of protein
synthesis, thus decreasing the translation initiation rate. Indeed,
many mRNA sequence design algorithms minimize folding
energy in this region to enhance the production heterologous
proteins (Salis et al., 2009; Angov, 2011). Similarly, the length of
the coding sequence of a transcript is inversely proportional to the

translation initiation rate (Duc and Song, 2018; Sharma et al.,
2019). It is because the ribosomes completing protein synthesis at
the termination end can easily diffuse to the start codon in shorter
mRNA transcripts (Fernandes et al., 2017). These faster initiation
rates in shorter transcripts help them in producing more proteins.
Moreover, the presence of AUG codons upstream to the start
codon can interfere in the recruitment of ribosomes for
translation initiation, thus resulting in a decrease in the
translation initiation rate (Sharma et al., 2019). Furthermore,
the presence of KOZAK sequence in S. cerevisiae transcripts leads
to a faster initiation as it serves as a stable binding site for the
small ribosome subunit (Sharma et al., 2019). These new findings

FIGURE 2 | (A)mRNA structure, low tRNA abundance, and the presence of proline and positively charged amino acids in ribosome exit tunnel increase ribosome
dwell time, resulting in higher ribosome profiling reads for those codon positions (B) Presence of mRNA structure at the 5′ end and length of the coding sequence in a
transcript anti-correlate with initiation rate.
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have demonstrated that a combination of several molecular
factors work in tandem to finely modulate the translation-
intiation and codon translation rates.

6 CONCLUDING REMARKS AND FUTURE
DIRECTIONS

The development of ribosome profiling has allowed access to
relative ribosome occupancy at single codon resolution (Ingolia
et al., 2009; Ingolia et al., 2019). Many computational tools can
convert this time-independent steady-state information into the
kinetic rate parameters of protein synthesis (Dana and Tuller
2014; Pop et al., 2014; Szavits-Nossan and Ciandrini, 2020).
Analysis of these rate parameters and their use in protein
synthesis simulations give significant insight into the
translational regulation of an individual gene (Shah et al.,
2013; Lyu et al., 2020). These rate parameters also help
identify various structural and sequence-based mRNA features
that control the rate of protein synthesis (Weinberg et al., 2016;
Duc et al., 2018; Sharma et al., 2019). Furthermore, the knowledge
of these rates offers an unprecedented opportunity to explore and
model other parallel and downstream processes influenced by
translation-elongation kinetics, including co-translational protein
folding, mRNA degradation, protein translocation through a
membrane, chaperone binding, post-translational modifications,
etc (Sharma and O’Brien, 2018; Radhakrishnan et al., 2016).

Analysis of measured translation rate parameters
demonstrated that a combination of multiple molecular factors
determines the translation-initiation and codon translation rates
(Sharma et al., 2019). The strength with which these molecular
factors act on translation rate parameters can vary from one place

to another. Therefore, the same codon at two different locations
can be translated at different rates. Current approaches can
capture this context-dependent variation in codon translation
rates (Sharma et al., 2019; Szavits-Nossan et al., 2018). However,
none of them can quantify the impact of each molecular factor on
translation-initiation and codon translation rates. Decoupling
their effects would enable the scientists to make reliable
predictions on translation rate parameters by only looking at
mRNA sequence features, thus providing deeper insights into the
context-dependent variation in codon translation rates.

Reliable predictions on protein synthesis, from a single
transcript to the whole-cell level, are required for numerous
synthetic biology applications (Purcell et al., 2013; Burke
et al., 2020). For example, carefully placing the molecular
determinants of translation rate parameters may help in
designing heterologous genes and synthetic biological
circuits. Moreover, in the absence of reliable gene
expression models, synthetic biology relies heavily on the
trial and error approach (Purcell et al., 2013; El Karoui
et al., 2019). Therefore, the accurate predictions made by
the quantitative models of protein synthesis will speed up the
whole process of designing synthetic biology products with
potential applications in areas such as drug delivery, cellular
engineering, next-generation drugs, deployable medical
devices, etc (Salis et al., 2009; Goldberg et al., 2018;
Macklin et al., 2014).
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