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Abstract: A defining challenge of the 21st century is meeting the nutritional demands of the growing
human population, under a scenario of limited land and water resources and under the specter of
climate change. The Vavilov seed bank contains numerous landraces collected nearly a hundred
years ago, and thus may contain ‘genetic gems’ with the potential to enhance modern breeding
efforts. Here, we analyze 407 landraces, sampled from major historic centers of chickpea cultivation
and secondary diversification. Genome-Wide Association Studies (GWAS) conducted on both
phenotypic traits and bioclimatic variables at landraces sampling sites as extended phenotypes
resulted in 84 GWAS hits associated to various regions. The novel haploblock-based test identified
haploblocks enriched for single nucleotide polymorphisms (SNPs) associated with phenotypes and
bioclimatic variables. Subsequent bi-clustering of traits sharing enriched haploblocks underscored
both non-random distribution of SNPs among several haploblocks and their association with
multiple traits. We hypothesize that these clusters of pleiotropic SNPs represent co-adapted genetic
complexes to a range of environmental conditions that chickpea experienced during domestication and
subsequent geographic radiation. Linking genetic variation to phenotypic data and a wealth of historic
information preserved in historic seed banks are the keys for genome-based and environment-informed
breeding intensification.

Keywords: bioclimatic analysis; chickpea; GBS; GWAS; haploblock; SNP

1. Introduction

Landraces dominated agriculture for millennia, until the advent of intensive modern breeding in
the mid 20th century, when reduced sets of elite cultivated varieties largely displaced the wider diversity
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of local genotypes [1]. Although the shift away from landraces was neither systematic nor synchronous,
it is generally accepted that the subsequent convergence on a limited set of elite germplasm removed
considerable useful variation [2]. In the early 20th century (1911–1940), N.I. Vavilov led a systematic
effort to collect and preserve crop diversity, now maintained within the Vavilov Institute of Plant
Genetic Resources (VIR) collection in St. Petersburg, Russia [3]. The geographic distribution and
genetic diversity of most crops collected during this time frame are likely to reflect their historic patterns
of cultivation established over the preceding millennia. Exploring these unique genetic resources
provides an opportunity to revisit hypotheses about the radiation and secondary diversification of
crops, not possible using later collections. Moreover, the expanded diversity of these early collections
likely contains ‘genetic gems’ with the potential to enhance modern breeding efforts [4].

Here, we focus on biodiversity of Cicer arietinum, chickpea, which is among the world’s most
widely grown grain legumes and provides a vital source of dietary protein for ~15% of the world’s
population. Chickpea was first domesticated ~10 KYA, initially in southeastern Turkey, and then spread
regionally throughout the Fertile Crescent. Although exact dates are unknown, archeological evidence
suggests chickpea moved to India ~6000 years ago and to Ethiopia and North Africa ~3000 years
ago [5]. Millennia of cultivation in these new areas, largely in isolation from each other, led to the
establishment of new centers of secondary diversity, with accompanying differentiation of regionally
specific landraces. Despite this generally accepted scenario, the relationships among the chickpea
crops at these historic centers of cultivation are not fully resolved.

Chickpea domestication and breeding imposed a severe genetic bottleneck on the crop,
with an estimated >95% of diversity lost between the crop wild progenitor and modern elite varieties [6].
Landraces represent an intermediate step to modern germplasm. An implicit, yet untested assumption
is that chickpea landraces will have increased genetic diversity relative to modern elite germplasm.
Moreover, we posit that geographic patterns of landrace diversity were shaped by post-domestication
selection to adapt the crop to different agro-ecological environments and cultural preferences. Although
Vavilov was unable to quantify the extent of diversity and differentiation, he and his contemporaries
recognized the value of landraces as reserves of agriculturally-relevant traits, which motivated these
early efforts in collection and conservation. Thus, chickpea landraces are expected to contain beneficial
alleles, not segregating among modern elite varieties, which can be accessed and prioritized for crop
improvement using genomics, phenotyping, and computational methods.

Here, we combine genomics, phenotyping, and computational biology to understand chickpea’s
agricultural variation one century ago, and from that analysis to infer the breadth and genetic bases
of trait variation in the pre-modern era. Such knowledge can prioritize landrace haplotypes that
contributed to diversification of chickpea as a crop, particularly haplotypes missing from modern
breeding programs, thereby facilitating their use for crop improvement.

2. Results

2.1. Germplasm Resources and Phenotyping

To fully cover the biogeographic range of historic chickpea cultivation, we assembled 407
accessions collected between 1911 and 1940. Text descriptions of sampling locations, which were
often local markets in small towns, were converted to geographic coordinates (Figure 1a). This set of
accessions is enriched for genotypes under cultivation a minimum of one century ago in Turkey, India,
Ethiopia, Uzbekistan, and Morocco, representing the major centers of post-domestication chickpea
diversification and comprising 55% of the 407 analyzed accessions. Beyond the 147 Turkish and
Ethiopian genotypes analyzed in an earlier study [4], we genotyped and/or phenotyped an additional
260 accessions spanning a total of 30 countries, with adjacent countries occasionally representing single
extended historic agricultural systems (for examples, Ethiopia and Eritrea in eastern Africa, and several
countries from the Fertile Crescent) (Table S1). The entire set of accessions was phenotyped under field
conditions, genotyped, and used for further analysis.
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coefficients. ETHI, Ethiopia; IND, India; LEB, Lebanon; MOR, Morocco; TUR, Turkey; C_ASIA, 

Central Asia. 
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groups of correlated variables (Figure 1b; Table S3). Three bioclimatic variables (BIO2, BIO19, DEM) 
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correspond to temperature traits. The second and fourth groups (Table S3) consist of precipitation 

variables. While the first group (Table S3) consists of traits with moderate positive correlation 
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have stronger positive correlations (pairwise Spearman correlation coefficient, r > 0.7, Figure 1b), 
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Figure 1. Sample distribution and correlation of bioclimatic variables. (a) Location of the chickpea
samples around the world that were split into six geographically distinct groups. (b) The correlation
between nineteen bioclimatic variables (bioclimatic variables and their abbreviations are presented in
Table S2). Color intensity and the size of the asterisk are proportional to the correlation coefficients.
ETHI, Ethiopia; IND, India; LEB, Lebanon; MOR, Morocco; TUR, Turkey; C_ASIA, Central Asia.

Correlation analyses of nineteen bioclimatic variables (bioclimatic variables and their abbreviations
are presented in Table S2) from the range of chickpea collection sites revealed five groups of correlated
variables (Figure 1b; Table S3). Three bioclimatic variables (BIO2, BIO19, DEM) were not strongly
correlated to other variables. The first, third, and fifth groups (Table S3) correspond to temperature
traits. The second and fourth groups (Table S3) consist of precipitation variables. While the first
group (Table S3) consists of traits with moderate positive correlation (pairwise Spearman correlation
coefficient, r > 0.4, Figure 1b), traits in the second group (Table S3) have stronger positive correlations
(pairwise Spearman correlation coefficient, r > 0.7, Figure 1b), and traits in the remaining groups
(Table S3) have the strongest positive correlations (pairwise Spearman correlation coefficient, r > 0.9,
Figure 1b).

All 407 landraces accessions were phenotyped for thirty-six traits under field conditions in Kuban,
Russia. The scored phenotypes and their abbreviations are presented in Table S4. Correlation analyses
identified three groups of correlated traits (Figure 2). Phenotypic traits related to the color of plant
organs and tissues were moderately correlated (pairwise Spearman correlation coefficient, r > 0.5,
Figure 2) and form a single group. Quantitative traits characterizing the weights and sizes of whole
plants and pods, as well as leaf size, also had moderate positive correlations (pairwise Spearman
correlation coefficient, r > 0.4, Figure 2) and form two groups. Two phenological traits describing the
duration of flowering and the duration of pod maturation had strong negative correlation (Spearman
correlation coefficient, r = −0.76, Figure 2). Pod shape (PodSH) had moderate negative correlation
with pod length (PDL) (Spearman correlation coefficient, r = −0.53, Figure 2) and pod width (PDW)
(Spearman correlation coefficient, r =−0.55, Figure 2). Pod shape also had moderate negative correlation
with thousand seeds weight (TSW) (Spearman correlation coefficient, r = −0.47, Figure 2). Phenotypic
traits related to organ and tissue coloration had moderate negative correlation with traits describing
the weights and sizes of plant and pods (pairwise Spearman correlation coefficient, r < −0.4, Figure 2).
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polymorphism within the genomes of 407 accessions. SNPs were filtered to retain polymorphisms 

present in at least 90% of genotypes with a minor allele frequency of at least 3%. The resulting 2579 

polymorphisms are distributed among all chromosomes, but with variable density that is especially 

elevated on chromosome 4 (Figure 3a). The elevated polymorphism content of chickpea 

chromosome 4 has been observed in previous studies (e.g., [4]). We hypothesized that selection and 

introgression via inadvertent hybridization between more and less advanced morphotypes might 

have resulted in agricultural improvement genes being aggregated to genomic ‘agro islands’, and in 

genotype-to-phenotype relationships resembling widespread pleiotropy. 

Figure 2. Correlation of thirty-one phenotypic traits. The scored phenotypes and their abbreviations are
presented in Table S4. Ascochyta, the degree of damage (AsoDes) trait, was excluded from correlation
analysis because it is the opposite value of Ascochyta resistance (AscoRes) trait. Moreover, we excluded
overlapping time periods traits. Color intensity and the size of the asterisk are proportional to the
correlation coefficients. PodSH, pod shape; SCO, seed color; SSP, number of seeds per plant; SSH,
seed shape; TSW, thousand seeds weight; PDW, pod width; PDL, pod length.

2.2. Marker Polymorphism Analysis

Restriction site associated genotyping by sequencing (RAD-GBS) was used to survey
polymorphism within the genomes of 407 accessions. SNPs were filtered to retain polymorphisms
present in at least 90% of genotypes with a minor allele frequency of at least 3%. The resulting
2579 polymorphisms are distributed among all chromosomes, but with variable density that is
especially elevated on chromosome 4 (Figure 3a). The elevated polymorphism content of chickpea
chromosome 4 has been observed in previous studies (e.g., [4]). We hypothesized that selection and
introgression via inadvertent hybridization between more and less advanced morphotypes might
have resulted in agricultural improvement genes being aggregated to genomic ‘agro islands’, and in
genotype-to-phenotype relationships resembling widespread pleiotropy.
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Figure 3. (a) Density of SNPs across the chickpea genome. Chromosome Ca6 is the longest chromosome
in the chickpea genome (59.46 Mb) and chromosome Ca8 is the shortest (16.48 Mb). (b) Linkage
disequilibrium (LD) (r2) plots of the whole chickpea genome. The horizontal red line indicates the 95th
percentile of the distribution of the unlinked r2, which gives the critical value of r2. (c) Distribution of
SNPs along the eight chromosomes of the chickpea genome.

The sufficiency of this marker set for genetic tests depends in part on the scale of linkage
disequilibrium (LD), because the relationship between physical distance and recombination frequency
determines the precision of genetic association tests. LD is the non-random association between
polymorphisms and can originate from demographic processes (e.g., shared ancestry and drift) or
from selection (i.e., selective sweeps). In smaller populations of predominantly selfing organisms
(including those that are the product of breeding), drift and selection typically have stronger effects
than recombination, and thus LD extends to large genomic regions. Landraces are expected to exhibit
especially extended LD. In line with these expectations, LD in chickpea landraces is very slow to decay
(Figure 3b; Figure S1). Moreover, the marker density is uneven between chromosomes: from 91 SNPs
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on chromosome Ca8 to 792 SNPs on chromosome Ca4 (Figure 3c). Our sample size is comparable with
other recent GWAS crop publications, hopefully resulting in adequate power.

2.3. Geographic Analyses

Patterns of population differentiation were analyzed using principle components (PCA) and
visualized with unrooted trees. Figure 4 depicts the PCA plot for genetic data of the first versus
second components and Figure S2 depicts a summary of variation and covariation attributed to the
first five principle components. Interestingly, the accessions from the center of domestication, Turkey,
are mainly divided into two clusters with light seeded Kabuli and Desi, which are smaller with
dark seeds and purple flowers market classes intermixed with each cluster (Figure 4). The lack of
distinctiveness between Desi and Kabuli adds further support to the same conclusion reached by
Penmetsa et al. [7]. All groups containing Turkish accessions also contain minor representation from
other regions, with the exception of a preponderance of landraces from North Africa in one of the
Turkish groups. Notably, landraces from India and Ethiopia, which represent two of Vavilov’s major
sites of secondary diversification [8], are well resolved, though not exclusive of one another. Turkish
accessions are absent from the group of Ethiopian landraces and constitute only a minor component of
the Indian group, which is instead enriched in landraces from Central Asia. A portion of Central Asian
accessions also occur in a distinct grouping dominated by the ancestral Desi form (Figure 4).
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as triangles.
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These observations are consistent with the deduced pattern of molecular evolution. Maximum
likelihood phylogenetic trees constructed with genome-wide SNP (Figure 5a) support inferences from
the PCA analysis. Central Asian and Turkish accessions are broadly distributed throughout the tree,
but notably absent from groups predominated by India and Ethiopia, consistent with more extensive
diversity (Table S5) at the Turkish center of origin for the species, and with longstanding, but distinct
secondary diversification in India, Central Asia, and Ethiopia. Chromosome 4 is known to have excess
diversity relative to the rest of the genome [9,10], as indeed we observe here. Interestingly, certain of the
relationships observed using genome-wide SNP are obscured in the tree constructed from chromosome
4 SNPs (Figure 5b). In particular, the previously coherent group of Ethiopian genotypes is divided
more broadly within the tree and there is both greater subdivision within the Indian group and less
distinction from the Central Asian landraces.
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2.4. Single Trait Associations

Genetic and phenotypic data were strongly concordant, as described in Table S6, which shows
co-variances between genetic and phenotypic data.

To account for these effects, GWAS analysis was implemented with the first eight PCA axes
scores used as covariates for all phenotypic and bioclimatic data (Figures S3–S18), revealing multiple
significant associations among 70 SNPs with bioclimatic and phenotypic traits (Figures 6 and 7;
Table S7). Twelve of 70 markers were found to have significant associations with two or more traits.
SNP Ca2: 17161867 is associated with plant weight without pods (WpWp) as well as isothermality
(BIO3) and mean temperature of the warmest quarter (BIO10) (see Table S2 and Table S4 for a full
list of bioclimatic variables and phenotypes abbreviations). These genetic findings are supported by
WpWp weakly negatively correlated with BIO3 and BIO10. SNP Ca3: 20549509 and SNP Ca6: 2908823
are associated with mean diurnal range (BIO2) and BIO3, which are themselves weakly positively
correlated (Figure 1b). Three SNPs, two on the 8th chromosome (SNP Ca8: 9098790 and Ca8: 10314452)
and one on the 4th chromosome (SNP Ca4: 30948593), are associated with two phenotypic variables:
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biological yield (Byld) and plant weight without pods (WpWp), which are very strongly correlated
and appear to derive from common genetic capacities (r = 0.92; Figure 2). Also on chromosome 4, Ca4:
33967674 is associated with the correlated group of phenotypes that includes plant weight traits (weight
of seeds, pods, and the whole plant). SNP Ca6: 57117312 is associated with flower color (FloCol) and
seed shape (SSH), which are themselves moderate negatively correlated (r = −0.45, Figure 2). SNP Ca7:
30930779 is associated with BIO3, number of seeds per plant (SPP), and the group of phenotypes
characterizing plant and organ weights. Three additional SNPs on chromosome 7 (SNP Ca7: 33337524,
Ca7: 33340372, Ca7: 33457287) are associated with three bioclimatic variables, BIO3, BIO6, and BIO11,
which are part of a larger group of correlated variables (Figure 1b).
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To incorporate geography explicitly into the analysis, we repeated the above GWAS, but with the
addition of the first two axes of PCoA, which derive from the analysis of landrace geographic variation
(Figures S19 and S20; Table S7). The results of these analyses were generally consistent with the results
described above and are only introduced briefly here. An additional set of significant associations
was found. Twelve SNPs are associated with pod length (PDL), nine on chromosome 6 and three on
chromosome 7. Ten of these twelve SNPs exhibit significant linkage. Two SNPs on chromosome 7 are
associated with secondary branching (StemBranch2order), but without strong linkage.



Int. J. Mol. Sci. 2020, 21, 3952 9 of 17

Because of extended LD, we cannot identify causal relationships between SNPs and phenotypes.
Nevertheless, we explored the potential nature of the associated genes and found several important
genes that have been reported in previous studies. For example, genes Ca_10410, Ca_10426,
and Ca_10428 are present within haploblock Ca6:2541669 . . . .Ca6:3024335, to which several SNPs
associated with the beginning to flowering to the beginning to maturation phenotype and temperature
related variables map (see Table S7). Ca_10410 (Ca6:2766285 . . . .2768999) is involved in floral
development and encodes flavin-binding kelch repeat F-box protein with high homology to circadian
clock-associated FKF1 gene of soybean. Ca_10426 (Ca6:2881369 . . . .2884463) encodes a XAP5 protein
important for light regulation of the circadian clock that plays a global role in coordinating growth in
response to the light environment. SNP Ca2: 17161867 associated with plant weight without pods
(WpWp) and temperature related bioclimatic variables BIO3 and BIO10, as well as Ca2: 17161884
associated with the duration of flowering (BegFloEndFlo) and BIO3 are all located within intron of gene
Ca_16015. This gene encodes phosphoenolpyruvate carboxylase, enzyme involved in carbon fixation,
and citric acid cycle biosynthesis flux [11]. The first intron of Ca_11533 gene encoding beta-D-xylosidase
contains SNP Ca8: 9098790, which is associated with both WpWp and Byld. beta-D-Xylosidases
are involved in the breakdown of xylan, a major component of plant cell-wall hemicelluloses [12].
SNP Ca1: 2218700, which is associated with WpWp, is located in the intergenic region upstream of gene
Ca_00278 that encodes protein with polyphenol oxidase activity. In Clematis terniflora DC, decreasing
activity of this enzyme elevates the plant photosynthesis by activating the glycolysis process, regulating
Calvin cycle, and providing adenosine triphosphate (ATP) for energy metabolism. Besides, polyphenol
oxidase is involved in the formation of brown melanin pigment in fruits and vegetables, plays a crucial
role in the biosynthesis of secondary metabolites, and has a role in plant defense against biotic and
abiotic stresses [13]. SNP Ca3: 10855323 associated with WpWp is located upstream of Ca_19358
gene encoding beta-N-acetylhexoamidase that catalyzes the hydrolysis of N-acetylglucosamine or
N-acetylgalactosamine from the non-reducing terminal of oligosaccharides, glycoproteins, glycolipids,
and other glycoconjugates. b-N-acetylhexosaminidase is highly active in dry or germinating seeds,
where it participates in the degradation of reserve glycoproteins. Moreover, its activity is induced in
the period of ripening in tomato and peaches [14]. The Ca_11539 (Ca8:9151680. . . . 9159194) intron
contains several SNPs associated with WpWp. This gene encodes an oligopeptidase degrading short
peptides. SNP Ca4: 2145082 associated with flower color (FloCol) is located upstream of Ca_07836
gene, which is homologue of genes in Pisum sativum (protein A) and Medicago truncatula (bHLH-A),
which are flower color associated genes [15].

2.5. Clustering of Phenotypes and Variables Sharing Enriched Haploblocks

The total number of the Haploview-inferred [16] haploblocks was 224, encompassing 1264 SNPs
(mean per haploblock = 5.6) (Table S8). Filtering for more than six SNPs left 74 haploblocks (33%
of total) as input to find haploblocks enriched for associated SNPs for each trait and variable using
the fast gene set enrichment (FGSEA) method [17] (parameter for permutations = 100,000) (Table S9).
Subsequent to bi-clustering of phenotypes and variables sharing enriched haploblocks, we defined
several visually distinguished groups (Figure 8, Table S10). The first group contained two consecutive
reproductive stages of plant development: the duration of flowering (BegFloEndFlo) and the duration
from the end of flowering until the beginning of maturation (EndFloBegMatu). We hypothesize that
the same genetic mechanisms influence the duration of both stages. The second group contains pod
shattering (PodShat) and pod drop (PodDrop) traits as well as one-third of all bioclimatic factors,
related to both temperature and precipitation, exclusive to a well correlated set from Figure 1b
(BIO6,8,11,12,13,16). Pod-related traits form a subgroup with three temperature-related bioclimatic factors:
mean temperature (BIO1), mean temperature of coldest month (BIO6), and temperature annual range
(BIO7); this subgroup is similar in a set of enriched haploblocks with the group containing two
additional heat-related bioclimatic factors, max temperature of warmest month (BIO5), and mean
temperature of warmest quarter (BIO10). This grouping is consistent with a well-known relationship
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between high temperature and pod shattering/retention. A third group includes color-related traits,
flower color (FloCol), peduncle color (FlowstemColo), seed color (SCO), and stem color (StemColo),
which is expected, because genes in the phenylpropanoid pathway are implicated in the production of
pigments in different plant organs. A fourth group aggregates Ascochyta blight resistance (AscoRes)
and precipitation of the coldest quarter (BIO19), which reflects a well understood relationship between
Ascochyta incidence and rainfall during periods of reduced temperatures. Also of note is a group
containing moisture stress-related covariates (BIO14,17, precipitation of the driest month/quarter) and
plant height (Ptht), which is expected to depend on moisture availability; interestingly, this group
clusters with a group that contains phenotypic traits related to plant size (biological yield and pod size),
which are traits related to the duration of vegetative growth and that are limited by moisture availability.
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The degree of similarity is color coded.

3. Discussion

For many millennia, farmers and breeders have focused on selecting crops with desirable
phenotypes [2]. With the successful domestication of numerous crops came the incremental loss of
genetic and phenotypic variation. Genetic bottlenecks are especially common in selfing species such as
grain legumes (e.g., [18]). Novel sources of variation for biotic and abiotic stress resistance are especially
needed in chickpea, because the crop is often grown by resource-poor farmers, on marginal lands,
and under low-input conditions. Broadening chickpea’s genetic base should facilitate production of
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new varieties to address these needs, while also meeting changing consumer demands, new agricultural
practices, and anticipated shifts in climatic conditions [6].

Chickpea landraces represent an expanded source of genetic and phenotypic variation that
has not been systematically explored and has been used only in an ad hoc manner for modern
breeding. The Vavilov Institute of Plant Genetic Resources is one of the world’s primary libraries
of lost genetic variation in food crops, capturing the genetic and functional diversity of regionally
stratified agriculture typical of one century ago. It contains tens of thousands of legume accessions,
including approximately one thousand chickpea accessions collected prior to intensive international
breeding efforts [3]. The re-introduction of genetic material from the Vavilov Institute’s collection
into modern elite varieties could be a potent force for future agricultural improvement. To this
end, we combine genomics, phenotyping, and computational biology to characterize the chickpea
collection of Nikolay Vavilov and his colleagues, linking traits and environments to genes. Our results
highlight the collection’s currently latent potential of chickpea landraces, and underscore the value of
this resource to meet the enormous challenges of 21st century agriculture. However, the identified
candidate genes are needed in further validation and functional confirmation owing to such factors as
one-year observation of phenotypes and long extend of LD in the germplasm.

Our observations contribute to an increasing understanding of genetic variation of quantitative
and categorical traits in chickpea [19–21]. The present work adds a new dimension by incorporating
a wider set of historical crop diversity, and by treating bioclimatic data at accession sampling sites
as extended crop traits. In doing so, our GWAS hits highlight associations to genomic regions not
discovered in prior GWAS and quantitative trait locus (QTL) analyses (Table S7). These hits map in the
vicinity of genes involved in floral development, photosynthesis, cell wall or secondary metabolism,
and carbohydrate biosynthesis, and some of them are close to already known QTLs. For example,
SNP Ca4: 33967674, associated with yield, pod weight, plant weight without pods, and seed weight per
plant, is located 752 kb downstream from known QTL (Table S11) governing pod number trait [22] and
SNP Ca3: 28094292, associated with plant weight without pods, localizes 96 kb downstream of QTL
(Table S11) containing cluster of FLOWERING LOCUS T (FT) genes and controlling phenology and
growth habit [23]. SNP Ca4: 30948593 and SNP Ca8: 10314452, associated with yield, are located ~90 kb
upstream from previously detected SNP (Table S11) and ~25 kb downstream from previously detected
SNP, respectively (Table S11), also associated with yield [24]. SNP Ca6: 3024192, associated with
beginning of flowering to the beginning of maturation phenotype, is located in the same haploblock
Ca6_Block_3 (~87 kb upstream) as the previously detected SNP (Table S11), associated with days to
50% flowering [24]. Previously, we [25] published a study in which we were looking for associations
between SNPs and bioclimatic covariates at collection sites. Two covariates, which include temperature
characteristics, were jointly associated with one SNP on chromosome 8 (Ca8: 10314452). This SNP
is associated with two phenotypic variables: biological yield (Byld) and plant weight without pods
(WpWp) in the current study.

To rigorously test for associations, we implement a novel haploblock-based test that, we believe,
will find much use in the crop genomics. The underlying statistics for the test are similar to the
gene set enrichment analysis, where each haploblock represents a set of SNPs associated with a trait
and all SNPs are ranked according to GWAS p-values. This analysis identified eleven haploblocks
(Table S12) intersecting with previously reported GWAS hits. Haploblock Ca1_Block_18 and haploblock
Ca4_Block_18 are enriched for SNPs associated with several phenotypes and bioclimatic variables,
including thousand seeds weight phenotype. These haploblocks covers SNP on chromosome 1 and
SNPs on chromosome 4, respectively, reported by Varshney et al. [24], associated with 100 seed weight
(Table S12). Haploblock Ca3_Block_4, haploblock Ca4_Block_54 and haploblock Ca5_Block_4 are
enriched for SNPs associated with several phenotypes and bioclimatic variables, including seeds
weight per plant phenotype. These haploblocks overlay four SNPs on chromosome 3, three SNPs
on chromosome 4, and eight SNPs on chromosome 5, respectively, reported by Varshney et al. [24],
associated with yield per plant (Table S12). Haploblock Ca3_Block_7 is enriched for SNPs associated
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with the duration of vegetative growth, with seeds weight per plant, and with three bioclimatic
variables (BIO5, BIO13, BIO16). This haploblock covers two SNPs on chromosome 3, reported by
Varshney et al. [24], associated with days to 50% flowering and with yield per plant, respectively
(Table S12). Haploblock Ca3_Block_16 is enriched for SNPs associated with the duration of vegetative
growth, as well as with plant height, plant weight without pods, and temperature-related bioclimatic
variables BIO3 and BIO5. This haploblock intersects with a QTL for days to 50% flowering time
(Table S12) reported from the GWAS analysis of Upadhyaya and colleagues [19]; Upadhyaya et
al. nominated a particular candidate gene, SBP (SQUAMOSA promoter binding protein), though
we advocate a more cautious approach that recognizes limitations of the study design and instead
implicates haplotype intervals. Haploblock Ca4_Block_9 is enriched for SNPs associated with the
duration of vegetative growth, with pod shattering, and with four bioclimatic variables (BIO4, BIO6,
BIO7, BIO12). This haploblock covers SNP on chromosome 4 associated with days to 50% flowering
(Table S12), reported by Varshney et al. [24]. Haploblock Ca7_Block_12 is enriched for SNPs associated
with the duration of vegetative growth, with number of seeds per plant, with stem branchness,
and with temperature-related bioclimatic variable BIO3. This haploblock covers SNP on chromosome
7 associated with days to maturity (Table S12), reported by Varshney et al. [24]. The last haploblock,
Ca8_Block_7, is enriched for traits related for branching and covers SNP on chromosome 8 reported by
Bajaj et al. [20], associated with branch number (Table S12).

Previously, we [4] published a pilot study combining historic phenotypic data with reduced
representation sequencing to establish a proof-of-principle for the results reported here. We employed
a combination of genomics, computational biology, and phenotyping to characterize VIR’s 147 chickpea
accessions from Turkey and Ethiopia, representing chickpea’s center of origin and a major location of
secondary diversification, respectively. The majority of SNPs associated with multiple traits localized to
a single chromosome 4 region. Here, we observe similar patterns with a larger sample of more diverse
landraces and with a more comprehensive phenotypic and environmental dataset. We find multiple
SNPs that are non-randomly distributed among several haploblocks, many of which are associated
with multiple phenotypes (Table S9). The non-random clustering of phenotypes and variables
(Figure 8) exactly arises as a result of such multi-trait associations. Although the grouping of traits and
ancestral bioclimatic variables does not necessarily imply co-selection during domestication (e.g., [26]),
these clusters may represent genetic complexes co-adapted to a range of environmental conditions that
chickpea experienced during domestication and subsequent geographic radiation. Indeed, many of
the trait–environment associations reflect well-known interactions between environmental factors
and the crop’s biology; for example, the relationships between Ascochyta blight occurrence and the
duration of cool-wet periods, as well as the increased incidence of pod abortion and shattering under
conditions of heat stress. Thus, by combining genomics with an explicit biogeographic framework
encompassing climatic and phenotype covariates, we are able to suggest concordance between human
selection, the crop’s known biology, and environmental constraints.

4. Materials and Methods

4.1. Germplasm Resources and Phenotyping

We assembled a collection of VIR’s chickpea germplasm originating from a range of countries
including Ethiopia, Lebanon, Morocco, Turkey, India, and the broader Central Asia and Mediterranean
regions (see Table S1). Phenotyping of the 407 chickpea genotype collection was conducted at the VIR
Kuban experimental station with climatic conditions well suited for chickpea cultivation (see Text
S1). During the vegetative period, thirty-six phenological, morphological, agronomical, and biological
descriptors were measured. The scored phenotypes and their abbreviations are presented in Table S4.
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4.2. Genotyping by Sequencing (GBS) and SNP Calling

The restriction site associated (RAD) GBS protocol from von Wettberg et al. [6] was used to
generate reduced representation sequence data for 407 accessions (see Text S2). All Illumina data
are available from the National Center for Biotechnology database under BioProject PRJNA388691.
SNPs were called using the Genome Analysis Tool Kit (GATK) pipeline [27] and further filtered with
VCFtools [28]. A total of 2579 SNPs accessions passed all filters, with 407 accessions remaining for
further analysis.

4.3. Genetic Data Analyses

Principal component analysis (PCA) was conducted using the “SNPRelate” R library [29]. Custom
scripts in Python [30] and R [31] were used to plot depth and distribution of SNPs on chromosomes.

Linkage disequilibrium (LD) was estimated using the squared correlation coefficient (r2) between
genotypes. VCFtools [28] was used to calculate intra-chromosomal and unlinked r2 values. LD decay
was assessed by plotting intra-chromosomal r2 values against the physical distance (bp) between
markers. The parametric 95th percentile of unlinked r2 values distribution was taken as a critical value.
The threshold beyond which the LD was accepted as real physical linkage was estimated to be r2 = 0.16.
The intersection of the smothering second degree local regression (LOESS) curve of intra-chromosomal
r2 values with this threshold was considered to be an estimate of the range of LD.

Relationships among genotypes were calculated and maximum likelihood phylogenetic trees were
constructed using SNPhylo [32] based on filtered SNPs and drawn using R libraries “phytools” [33]
and “ape” [34].

The nucleotide diversity (pi) was estimated from polymorphic sites and separately for each
chromosome and geographical group using VCFtools [28]. By considering only polymorphic sites,
we overestimate genomic diversity; however, these estimations can be used for between group
comparisons. We applied the Mann–Whitney–Wilcoxon test [35] to make between group comparisons.

The Genome-wide complex trait analysis (GCTA) program [36] was used to estimate the proportion
of variance in phenotypes explained by all genome-wide SNPs. First, phenotypic data were normalized.
Then, the genetic relationships among individuals from genome-wide SNPs were calculated using
GCTA-GRM (genetic relationship matrix) analysis. Finally, GCTA-GREML (genome-based restricted
maximum likelihood) analysis was performed to estimate the proportion of variance in a phenotype
explained by all GWAS SNPs (i.e., the SNP-based heritability).

4.4. Bioclimatic Analysis

Bioclimatic analysis was performed as described in Plekhanova et al. [4]; for details, see Text S3.
Nineteen quantitative bioclimatic variables were used in the analysis (Table S2).

Shapiro–Wilk test for normality [37] was implemented to quantitative phenotypic traits and
quantitative bioclimatic variables. Spearman correlation coefficients were calculated using the “rcorr”
function from the “Hmisc” R library [38].

4.5. Mapping Approaches

GWAS analysis was performed using a single-locus linear mixed model, implemented in
FaST-LMM toolset (factored spectrally transformed linear mixed models) [39]. Principal component
analysis (PCA) of 2579 SNPs revealed that the first eight significant principal components (PCs)
explained 48% of the variance of all markers. The LMM model was implemented with the first eight
PCA axes scores used as covariates for all phenotypic and bioclimatic data. Principal coordinate
analysis (PCoA), based on geographical distances between the accessions, was performed using the
“pco” function from the “labdsv” library [40] in R, and revealed that the first two significant PCs
explained 59% of the variance. We repeated the GWAS analysis including the first eight PCA axes
scores and the first two PCoA axes scores as covariates for all traits. In both cases, we used genomic
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control parameter (λGC) and a false discovery rate (FDR) [41] of 0.05 to determine significant trait
associated loci separately for each trait. Manhattan plots were performed using “CMplot” library [42]
in R.

Annotation of significant associated markers was performed using the SNPEff program [43],
as well as the legume information system (LIS) [44] and the LegumeIP [45] databases.

4.6. Biogeographic Analyses

In total, 407 accessions were split into six distinct groups reflecting geographic locations (Table S1):
Ethiopia (“ETHI”), India (“IND”), Lebanon (“LEB”), Morocco (“MOR”), Turkey (“TUR”), and Central
Asia (“C_ASIA”). The Mann–Whitney–Wilcoxon test [35] was used to identify differences among
groups for each bioclimatic variable.

4.7. Haploblock Enrichment Analysis and Clustering of Enriched Haploblocks

To divide the genome into haplotype blocks (haploblocks) based on linkage disequilibrium,
Haploview tools [16] were applied to the set of 2579 SNPs. Chromosomal regions with strong
linkage were identified using default Haploview parameters (confidence interval for LD [0.7, 0.98]).
Each haploblock was considered as the set of SNPs located within a given haploblock. We analysed
haploblock enrichment for SNPs associated with trait or variable by applying the logic of gene-set
enrichment analysis implemented in the FGSEA method [17], which takes as input data the list of
all SNPs ranked by increasing GWAS p-values and the list of haploblocks. The method returns an
enrichment score and FDR corrected p-value [41] for each haploblock. We performed FGSEA analysis
for each trait (phenotype and bioclimatic variable), and haploblocks significantly enriched for associated
SNPs were defined as those having positive enrichment scores and significantly low FDR corrected
p-values (<0.05). The outcome of this analysis was that each phenotype or bioclimatic variable was
characterized by a set of haploblocks significantly enriched with associated SNPs. To obtain groups of
phenotypes and variables sharing sets of enriched haploblocks, we applied bi-clustering on the matrix
of pairwise similarities between traits. To estimate the degree of overlap between haploblocks enriched
for SNPs associated with different traits, we calculated the haploblock simalarity score as a sum of
common haploblocks (i.e., haploblocks enriched for SNPs associated with both traits) divided by the
sum of all haploblocks significantly enriched for SNPs associated with these two traits.

5. Conclusions

The Vavilov seed bank contains numerous landraces collected nearly one hundred years ago,
and thus may contain ‘genetic gems’ with the potential to enhance modern breeding efforts. Here,
we analyze 407 landraces, sampled from major historic centers of chickpea cultivation and secondary
diversification. The collection was grown in the southern European part of Russia in 2016 with climatic
conditions well suited for chickpea cultivation. GWAS conducted on both phenotypic traits and
bioclimatic variables at landraces sampling sites as extended phenotypes resulted in 84 GWAS hits
associated to various regions, most of which were not discovered in prior GWAS and QTL analyses.
The novel haploblock-based test identified haploblocks enriched for SNPs associated with phenotypes
and bioclimatic variables, of which eleven haploblocks intersect with previously reported GWAS hits
on chromosomes Ca1, Ca3, Ca4, Ca5, Ca6, Ca7, and Ca8. Subsequent bi-clustering of traits sharing
enriched haploblocks underscored both non-random distribution of SNPs among several haploblocks
and their association with multiple traits. We suggest that these clusters of pleiotropic SNPs represent
co-adapted genetic complexes to a range of environmental conditions that chickpea experienced during
domestication and subsequent geographic radiation. We observed significant genomic diversity in
Central Asia, which may have been a bridge for subsequent radiation in India and nearby areas.
Linking genetic variation to phenotypic data and a wealth of historic information preserved in historic
seed banks are the keys for genome-based and environment-informed breeding intensification.
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