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Abstract: During the past few years, the Nintendo Wii Balance Board (WBB) has been used
in postural control research as an affordable but less reliable replacement for laboratory grade
force platforms. However, the WBB suffers some limitations, such as a lower accuracy and an
inconsistent sampling rate. In this study, we focus on the latter, namely the non uniform acquisition
frequency. We show that this problem, combined with the poor signal to noise ratio of the WBB, can
drastically decrease the quality of the obtained information if not handled properly. We propose a
new resampling method, Sliding Window Average with Relevance Interval Interpolation (SWARII),
specifically designed with the WBB in mind, for which we provide an open source implementation.
We compare it with several existing methods commonly used in postural control, both on synthetic
and experimental data. The results show that some methods, such as linear and piecewise constant
interpolations should definitely be avoided, particularly when the resulting signal is differentiated,
which is necessary to estimate speed, an important feature in postural control. Other methods, such
as averaging on sliding windows or SWARII, perform significantly better on synthetic dataset, and
produce results more similar to the laboratory-grade AMTI force plate (AFP) during experiments.
Those methods should be preferred when resampling data collected from a WBB.

Keywords: wii balance board; balance; postural sway; resampling; non uniform acquisition frequency

1. Introduction

The Wii Balance Board (WBB) was released in 2007 by Nintendo as an accessory for the Wii
game console. The WBB is a force platform, with one pressure sensor at each of its corners. Its was
designed to measure the displacement of the Center of Pressure (CoP) of a person standing on the
platform. The CoP is defined as the projection on the ground plane of the centroid of the vertical force
distribution, and is often considered as an approximation of the vertical projection of the center of
gravity, although this assumption holds true only when the body is static [1]. Although its intended
application was video games, the WBB quickly gained significant attention as a tool for rehabilitation
(see, e.g., [2]), and later as a device to evaluate balance and quantify of the postural control in humans
in Posturography (see, e.g., [3]).

Maintaining balance is a complex control task, and postural control is a complex process which
involves the integration of much sensory information, such as visual, vestibular, and proprioceptive,
together with the reliance on the passive properties of the musculoskeletal system [4]. The main
consequences of dysfunctions of postural control are falls, which are the second cause of accidental
deaths worldwide [5]. The elderly are particularly vulnerable to falls (see, e.g., [6,7]), regarding both
the prevalence and the gravity of falls. For these reasons, an early detection of the shortcomings of
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postural control is important, as specific actions and preventive health care (see, e.g., [8,9]) can help to
prevent falls and its damages.

One of the most common way to evaluate the postural control in Posturography is through
the record of a statokinesigram, i.e., the trajectory of the CoP, of a patient during a test, using one
or two laboratory grade force-platforms. Those devices are expensive and generally difficult to
transport, and thus are not generally available outside of specialized clinics. Since the WBB can also
record statokinesigrams, and is affordable and portable, it has been proposed as an alternative to the
expensive high-end force platforms (see, e.g., [3] ). Despite the increasing popularity of the WBB in
Posturography, (see, e.g., [10]), many researchers have argued against the use of the WBB for postural
control assessment (see, e.g., [11]). We refer the viewer to [12] for a more in depth review of this debate.

The main shortcomings of the WBB are its sub-par accuracy, its inconsistent sample rate and
its poor signal to noise ratio, which makes the WBB an unreliable out-of-the-box device to measure
postural control. Recently, [12] have proposed a new method for calibrating the WBB which leads to
a significantly improved accuracy. They compared the signals of the WBB and the AMTI using an
inverted pendulum mechanical system, and computed a linear model to retrieve the AMTI signal from
the WBB signal using linear regression. The results of their work are promising and the calibrated
WBB is shown to be much more accurate, and closer to laboratory grade force platforms.

However, to this day, the problem of the inconsistent sampling of the WBB has been neglected.
Combined with the poor signal to noise ratio, this problem can lead to very poor results when not
handled properly. As discussed in Section 2.1, many works in Posturography do not acknowledge
this problem, and by artificially forcing a constant sampling rate, they use, perhaps unknowingly,
a piecewise constant interpolation, which leads to greatly suboptimal results (see Section 3.1).
This problem is magnified when differentiating the signal, which is necessary to compute the speed of
the CoP. Since this indicator is one of the main quantifiers of postural control (see, e.g., [13]), the use of
a correct resampling method is of paramount importance.

In this study, we discuss the non-uniform sampling limitation of the WBB. We then present
and study several resampling approaches used in the Posturography literature to derive a uniformly
sampled signal. Additionally, we introduce a new resampling method, SWARII, specifically designed
with the WBB in mind, for which we provide an open source implementation. We compare those
different methods by applying them to three different datasets: (1) a synthetic dataset, whose
parameters were chosen to highlight the shortcoming of the most commomly used resampling
approaches; (2) a WBB dataset obtained by recording immobile objects; and (3) a comparison dataset,
where 10 subjects have been recorded using both the WBB and the AMTI force platform.

2. Materials and Methods

In this section we first introduce the non uniform sampling problem of the Wii Board Balance
(Section 2.1), then we discuss the resampling method commonly used in the Posturography literature
(Section 2.2) and their limitation. In Section 2.3, we introduce a new algorithm, Sliding Window
Average with Relevance Interval Interpolation (SWARII), designed to better apprehend the non
constant time frequency acquisition of the WBB. Finally, we describe experiments that we conducted
both on simulated and real dataset ( Sections 2.4 and 2.5) in order to compare the different resampling
algorithms, and we discuss their respective analysis.

2.1. The WBB

In previous studies, the WBB was reported to have different frequencies of acquisition, such as
100 Hz in [14,15], 40 Hz in [3] or 30 Hz in [16]. However, as mentioned in [11], the actual average
sampling frequency of the WBB is around 63 Hz, and this frequency is not constant and varies
significantly throughout an acquisition. As shown in Figure 1, during a 20 s acquisition, the WBB
alternates between three different regimes: a fast paced regime (>100 Hz), a moderate regime (~54 Hz)
and a slow regime (=35 Hz). Some points fall outside of these categories, but since they represent less
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than 0.1% of the total acquisition, they can be considered as outliers and safely ignored. It is important
to note that the relative distribution of those regimes is constant, and is observed regardless of the
actual charge of the WBB, for any sufficiently long record. In our experiments, a duration of 10 s was
sufficient to observe this distribution.
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Figure 1. Repartition of time intervals between two consecutive data points recorded by the Wii Balance
Board (WBB) during a 20 s record. The distribution is concentrated around 1 to 5 ms, 18 ms and 28 ms.

As most of the existing Signal Processing tools only apply to uniformly sampled signals, it
is important to pre-process the WBB signal after the acquisition. There exists several methods to
resample the data, i.e., to interpolate the recorded data in order to obtain a uniformly sampled signal.
Those methods include, but are not limited to, polynomial interpolation, sliding window average or
spline interpolation.

However, in the WBB case, this strong variability of the acquisition frequency is combined with
the poor signal to noise ratio of the WBB (see, e.g., [11]). As seen below, the lack of noise control
mechanism in the resampling method can lead to significant problems during the analysis of the
statokinesigrams, particularly when the signal is differentiated, which is important for computing
the instantaneous speed. This aggravating phenomenon can be offset by the inclusion of a significant
regularization component in the resampling method, which is the case of some of the methods
presented in this section.

In the next subsection, we provide a review of some of the methods commonly used in the
Posturography literature.

2.2. Some Common Processing Methods in Posturography

Notation: Let 7 € N be the number of data points generated by the WBB during the record. We
denote by T = {tl,. .., tn} the set of the times at which the WBB generated those data points and
X = {x,t € T} the set of the values of the data points.

Piecewise Constant Interpolation: (See, e.g., [16]). In this approach the WBB is sub-sampled at a
given frequency. The value of a resampled point correspond to the last recorded value by the WBB.
This is equivalent to doing a Piecewise Constant Interpolation (PCI) as it assumes that the value of the
signal has not changed since the last recorded value. Hence,

Xpci(s) = x;-

where Xpc(s) is the interpolated signal at time s and t~ = max{t € 7, t < s}. This approach presents
a significant drawback as significant information may be lost since all the events and data points
occurring between two sampling times of the WBB are discarded. This method does not include any
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regularisation, thus in order to reduce the noise, a Butterworth low-pass filter with a cutoff frequency
of 12 Hz is used on the resulting signal.

Linear Interpolation: (See, e.g., [17]). In this approach in order to resample the signal, the value
at the desired time s is obtained using a Linear Interpolation (LI) using the closest past and future
points generated by the WBB, i.e.,

tt—t t—t—

— x —
T e

XL[(S) = X- +

where X (s) is the interpolated signal at time s, t~ = max{t € T,t < s} and t" = min{t € T,t > s}.
Like in the previous method, the resampled signal need to be filtered in order to reduce the impact of
the noise.

Sliding Window Average Interpolation: (See, e.g., [12]). In this approach, the value at the desired
time s is obtained using a Sliding Window Average Interpolation (SWAI), i.e., by averaging all the
values generated by the WBB in a temporal window centered around s of length A > 0:

X

teTs(A)

Xswai(s) = |T52A)|

where Xswaj(s) is the interpolated signal at time s and Ts(A) = {t € T,|t —s| < A}. Since this
method relies on averaging multiple points, it includes a smoothing component, controlled by A, the
length of the window.

Smoothing Splines: (See, e.g., [18]). The smoothing splines approach computes the minimizer f
of the following regularized least-square fitting term:

¥ (= f)2+ 4 [

teT

over the class of twice differentiable functions [19]. The solution f is a piecewise polynomial function.
The values at the desired times are then simply obtained by evaluations of f. The parameter A controls
the smoothness of the interpolation. When A = 0, then f is a cubic splines with exact interpolation
of the data. The former suffers from heavy overfitting in the presence of noise. When A = oo, then f
is the solution of a linear least-square problem. Choosing A to enforce the smoothness condition is
challenging in our problem since this leads to flattening the derivatives.

2.3. An Alternative Method for Resampling: SWARII

Although it generally gives satisfying results in practice (see, e.g., Section 3.2), one of the main
limitation of the SWAI approach is that all data points in the windows are considered of equal value,
which can be suboptimal in the WBB case. Indeed, if many data points are produced by the WBB in
a very short interval (say e.g., 5 ms), then it is reasonable to assume that noise accounts for most of
the differences between those values. Hence, by averaging those values, one can obtain a much more
reliable estimate of the position of the CoP at that time. On the other hand, if the points are distant in
time from each other (say e.g., 100 ms), then the movement of CoP during this time lapse is no longer
negligible, and averaging those values will result in a less reliable estimate.

This idea leads to the notion of relevance interval (RI), which we define as follows:
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Definition 1 (Revelance Interval). Let s be a time instant, A be a time duration and
Ts(A) ={t € T,|t—s| < A} be a window centered around s. We denote by ty, ..., t, the ordered times
in Ts(A). Then, for every t € Ts(A) we define I, ) (t) the relevance interval of t in the window:

(tiv1 —tio1), forp<i<gq

(tps1 = 1p) = (s =)

1
I a)(tg) =s+A— E(tq —tg1)

It ) () =

NI = N[ —

Ir,(a) () =

This notion of RI allows us to define the Sliding Window Average with Relevance Interval
Interpolation (SWARII) algorithm.

Sliding Window Average with Relevance Interval Interpolation: In this approach, the value at
the desired time s is obtained using a Sliding Window and averaging all the values generated by the
WBB in a temporal window centered around s of length A > 0, by weighting every point with its RI.

1
Xswarii(s) = X Y xilp ()
teTs(A)

where Xswaryi(s) is the interpolated signal at time s and Ts(A) = {t € T, |t —s| < A}. Note that
Yrety(a) I, (a) () = A. The length A of the window controls the amount of smoothing of the estimation.

The idea of the algorithm is that if some points are very close to each other in time, their individual
RI will be small, but their total RI will be large. Alternatively, if a point is isolated in time, its individual
RI will be large. The result of the SWARII approach is illustrated by Figure 2.

Position
[ ]
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e®e SWAI result
@®e SWARII result

Time

Figure 2. Illustration of the Sliding Window Average Interpolation (SWAI) and Sliding Window
Average with Relevance Interval Interpolation (SWARII) methods. The data points are represented in
blue, the result of SWAI in green, and the result of SWARII in red. Since the SWAI algorithm performs a
uniform average, its result is strongly influenced by the cluster of points to the left and almost oblivious
to the right point, while SWARII attributes an almost equal weight to the cluster to the left and to the
point to the right.

2.4. Simulated Data

In order to analyse the respective performances and relative merits of the algorithms presented
in Sections 2.2 and 2.3, we compare them on some simulated dataset (comparisons on real WBB
acquisitions are performed in the next subsection). The signals (piecewise linear and sinusoidal) are
generated as follows: first, the ground truth signal f is defined as:
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flinear() = 10min(t — 6[t/6],6[t/6] —t)
fsine(t) = 10sin(7tt/3)

Then to generate the time intervals J; between any two successive samples t;;; and t;, we
use a mixture of the absolute values of two independent Gaussian distributions, to represent the
multi-regimes distribution of the acquisition frequency of the WBB:

tii1 — b = i ~ pi|N(0.02,0.01)| + (1 — p;)|A/(0.1,0.01)]

where p; ~ B(0.5), i.e., is the realization of 0.5-mean independent Bernoulli random variable.
Finally, the noisy signal is generated by adding to every data point an independent Gaussian
random variable of mean 0 and standard deviation 0.1:

x; ~ f(t) +N(0,0.1)

On each of the linear and sinusoidal datasets, we apply a resampling algorithm (PCI, LI, SWAI,
SWARII or cubic splines) to obtain a uniform signal sampled at 25 Hz. With the PCI and LI methods
the resampled signal is then filtered using a 4th order 12 Hz low pass Butterworth. No filter is applied
to SWAI and SWARII, as doing averages over a window already denoises the signal, or to the cubic
splines, which already includes a regularisation component. Let £1, ..., £y be the resulting values at
the resampled time instants sy, ..., sy. To derive the speed at those time instants, we use the formula:

¥ o iy — %

7(51
dt Si+1 — Si-1

and we compare the different results, using the root mean square error (RMSE) R defined as:

N 5 2
R(d%/dt,df /dt) = % 5 (Z’;(si) _ ’Z(si)>

i=1

In addition to the speed, we also compare the resulting Approximate Entropy (ApEn) of the
different resampling methods. ApEn is a temporal dynamic feature which encode the randomness of
time series [20], and previous works using ApEn have shown promising results (see, e.g., [21-23]). To
compute the ApEn, we used the following formula:

ApEn(£,m,r) = ¢y, (£) — ¢, (%)
where

1 n—m+1 1 n—m+1
e . R
On(2) = = ,; In{ =07 ,; 1(_max (12— i) > 7)

where (£;)"_; is the resampled signal, In is the natural logarithm and 1 is the characteristic function.
Following the recommendation of [23], we used m = 2, r = 0.20, where ¢ is the standard deviation of
the signal. The results are presented in Section 3.1.

2.5. Experimental Data

In order to assess the impact of the proposed methods for real practitioners, the following
empirical experiments were performed.
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Inanimate weight: The first experiment is a simple setup where we place a dead weight of 45 kg
on the WBB. The recorded signal is then only pure noise, and the true speed of the object is known to
be constantly zero. This forms an efficient test to measure the ability of the candidate methods to face
both the noise and the variations in the sampling rate. The analysis is performed as in Section 2.4 and
the results are presented in Section 3.2.

Subject comparisons with the AMTT: The second experiment is a comparison with the laboratory
grade force platform AMTI on real subjects. The statokinesigrams of 10 individuals were repeatedly
recorded in random order on both the AMTI and the WBB, such that each individual were measured
three times on both devices. Those repeated acquisitions on each force platform permit a more
statistically significant analysis: successive statokinesigrams of a single individual may present
differences, and computing statistics on a small sample (here 3 statokinesigrams instead of 1) reduces
this variance. Additionally, and to reduce this variability even further, we restricted this experiment to
healthy subjects.

For the experiment, the individual was asked to remove his/her shoes, and to step on the platform.
The feet were placed in the most comfortable position for the patient without exceeding the shoulder
width. The individual was asked to stand in upright position, arms laying at the side, with open eyes,
and to look at the opposing wall at eye level. The displacement of the CoP was recorded for 30 s.

The statokinesigrams of 10 individuals were repeatedly recorded in random order on both
the AMTI and the WBB, such that each individual were measured three times on both devices.
The random shuffling of the order of the acquisitions permits to reduce the bias in the equilibrium of
the subjects during the recording session. For each statokinesigram, we computed scalar features on
the instantaneous speed such as its mean, standard deviation and quantiles. Computing features based
on derivatives has a crucial role in posturography, and good resampling algorithms should take a lot
of care in this direction, see for example [13,24] for various features based on velocity and acceleration.
We also computed the Approximated Entropy, where the signal from the AMTI was sub-sampled to
25Hz, and m = 2 and r = 0.20 as in the previous section.

The empirical distributions of the features over the 30 recordings on the AMTI are then compared
to the distributions over the 30 recordings on the WBB, with the various resampling strategies. This
experiments permits to quantify the relative performances of the different methods with respect to the
similarity to the AMTI. The results are presented in Section 3.3.

Method: On both experiments and for all the four considered algorithms, the resampling
frequency was set to 25 Hz. For SWAI and SWARII, the time window was set to 0.5 s. For the
cubic spline, the value of lambda was chosen among a logarithmic grid ranging from 0.01 to 10° with a
10-folds cross validation. The speed was computed as the norm of the 2D-speed vector as derived in
the previous subsection.

3. Results

3.1. Toy Dataset

Figure 3 shows the sinusoidal signal, during a change of direction, both observed and
reconstructed. It is interesting to note that all the methods give reasonable estimates of the position
of the CoP. However, when the reconstruction is differentiated to obtain the speed (Figure 4), their
respective performances greatly differ. The same remarks hold true for the piecewise linear signal.
The Root Mean Square Error (RMSE) of the difference between the real speed of the signal and the
speed derived from the reconstructed signals are presented in Tables 1 and 2. Table 3 shows the ApEn
of the true signal, sampled at 25 Hz, compared to the ApEn of the reconstructed signals.
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Figure 3. Left: comparison between the real sinusoidal signal (plain red) and observed signal
(plain blue) detailed on a change of direction. Right: comparison between the reconstructed signals
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with Piecewise Constant Interpolation (PCI) (green dot), Linear Interpolation (LI) (dashed purple),
SWAI (black triangle), SWARII (plain blue) and Cubic splines (cyan square).
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Figure 4. Comparison between the real sinusoidal speed (plain red) and the speed reconstructed
from the signal with different methods: PCI (green dot), LI (dashed purple), SWAI (black triangle),
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SWARII (plain blue) and Cubic splines (cyan square).

Table 1. Root Mean Square Error resulting from the approximation of the different resampling methods

for the simulated linear signal.

20 25

PCI LI

SWAI SWARRI Cubic Splines

Position  1.13 (£0.06)  0.82 (£0.03)
Speed 1720 (£051) 12.40(£0.47)

0.58 (+0.03) 0.46 (+0.03) 0.
7.79 (£0.15) 453 (£0.17) 5.

57 (40.09)
90 (£2.00)

Table 2. Root Mean Square Error resulting from the approximation of the different resampling methods

for the simulated sinusoidal signal.

PCI LI

SWAI SWARRI  Cubic Splines

Position  1.04 (+£0.04)  0.80 (£0.04)
Speed  16.14 (£0.61) 11.97 (+0.45)

0.46 (+£0.03) 041 (£0.03)  0.47 (+0.06)
471 (£0.14) 3.01 (£0.19)  4.09 (£1.56)
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Table 3. Approximate Entropy of the approximation of the different resampling methods.

Ground Truth PCI LI SWAI SWARRI Cubic Splines

Linear Signal 0.53 0.68 0.65 046 0.44 0.33
Sinusoidal Signal 0.44 075 0.62 035 0.34 0.34
Static Signal 0 175 163 0.35 0.35 1.80

The PCI method gets the worse RMSE, both for speed and position. Since this method only use
one point of the original signal for the interpolation, it reconstruction of the observed signal is heavily
influenced by the noise, despite the low pass filter. Similarly, the LI method which uses two points
of the original signal for the interpolation, is vastly outperformed by the other methods, while being
better than the PCL Those two methods are similar, and their poor performances are the results of
two main drawbacks: first, those methods only use a very small amount of points to construct the
interpolation, and as a consequence, they are much more prone to the noise-related errors, and second,
the denoising part, a Butterworth low pass filter, can only be applied after the resampling. Similarly,
due to the influence of the noise, those two methods largely overestimate the ApEn of the signal.

For speed estimation, SWAI produces average results, with the lowest standard deviation while
SWARII obtains the best results, at the cost of a higher standard deviation, while regarding the Apen,
it is interesting to note that those both methods underestimate the ApEn of the signal. This can be
explained by the strong regularization part of those methods: both are based on the sliding window
model, and in both cases the denoising is done at the same time as the resampling. The fact that
SWARII outperforms SWAI gives credit to the intuition, developed in Section 2.3, that a careful use of
the RI of the data points gives a significant advantage on noisy signal.

There are a few important facts to note about the Cubic Spline approach. First and foremost,
the parameter A, is difficult to choose and the performances of the algorithm varies greatly with it.
A careful cross validation can select a nearly optimal lambda, at the cost of a significant increase of the
run time of the algorithm and a greatly increased algorithmic complexity (for those experiments, the A
obtained by cross validation was 316.23). Second, while this method produces satisfying results, it is
still outperformed by simpler and faster methods (like SWAI) while underestimating the ApEn of the
signal (also like SWAI). In this experiment, this variability can be explained as follows: if a significant
number of points is available in every interval, the cubic splines interpolation produces a nearly
optimal interpolation; but in the case where few points are available, the performances greatly suffer.

3.2. Static Signal

In this setting, an inanimate object was recorded during 20 s with the WBB. Hence, the speed
and the ApEn are known to be zero, as the signal is constant. This allow for an easy evaluation of the
different methods. Figure 5 shows the speed obtained by differentiating the signal reconstructed with
the use of the different methods. The Root Mean Square Error (RMSE) of the difference between the
real speed of the signal and the speed derived from the reconstructed signal are presented in Table 4,
and the ApEn of the respective signals can be found in Table 3.

Table 4. Root Mean Square Error of the speed approximation of the different methods.

PCI LI SWAI SWARII Cubic Splines
Static Signal 275 2.6  0.69 0.50 3.19
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Figure 5. Comparison between the real speed of the inanimate object (plain red) and the speed
reconstructed from the signal with different methods: PCI (green dot), LI (dashed purple), SWAI (black
triangle) and SWARII (plain blue).

The performances of the respective algorithms confirm the result of the experiment—PCI and
LI vastly overestimate the speed and the ApEn of the signal—on the toy dataset, expect for the cubic
splines. Its clearly suboptimal results for speed estimation, and its poor estimation of the ApEn, are
directly related to a poor choice of lambda (here A = 2.19). It is important to remember that A is chosen
by cross validation while trying to reconstruct the signal, not the speed. Thus, in this case, the lambda
selected was clearly suboptimal. This highlights the main drawback of this method, namely the choice
of A.

3.3. WBB and AMTI Comparison

In this setting 30 statokinesigrams from 10 individuals were recorded on both the AMTI and the
WBB. The signals from the AMTI were filtered using a Butterworth filter of order 4 and low pass cutoff
at 12 Hz, and four scalar features of the instantaneous speed were computed on each signal: average,
standard deviation, first decile and ninth decile. We then compared the distributions of the four scalar
features obtained from the AMTI and the WBB processed by the five resampling methods: PCI, LI,
SWALI, SWARII and Cubic splines. Figure 6 shows the empirical distributions of the four scalar features
for the three cases : Cubic Splines, SWARII and AMTI. The distance between distributions obtained
by the WBB using the different methods and the AMTI are quantified in Tables 5 and 6 for the four
resampling methods. The tables show the two-samples Kolmogorov-Smirnov test and the two-sided
Wilcoxon rank sum test, which test if two empirical distributions are respectively drawn from the same
distribution and from distributions with equal medians.

Those results confirm the previous conclusions. The SWAI and SWARII methods do perform
significantly better than the others by giving distributions which are more similar to the AMTI.
Indeed, the sliding window methods improve the results from each statistical test by several order of
magnitudes against the PCI and LI methods. Note that the SWARII method improves only marginally
the results over SWAI, but is mostly similar to the SWAI method in this experiment. Finally, the
result of the the Cubic splines approach, while not being as good as the sliding windows methods,
significantly outperforms the LI and PCI methods.

We then computed the ApEn with same parameters as before, and the signal from the AMTI
sub-sampled to 25 Hz, which corresponds to ApEn windows of 80 ms for m = 2. The empirical
distributions of the ApEn using the AMTI or the WBB with various methods are reported in Figure 7.
The results using the WBB with cubic splines interpolation are not depicted on the figure, since cubic
splines interpolation leads to a strongly underestimated ApEn due to the regularity of the interpolation
with cross-validated parameter. This experiment with real subjects confirms the previous results with
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the synthetic signals, that is the ApEn is underestimated using SWAI or SWARII with a time window
of 0.5 s, and overestimated using PCI or LI. Direction aside, the distances between the real ApEn and
the reconstructed ApEn are similar for all the methods.

[ =
wee- swami wee- swas
WS - SPLINES. ol I ES - SPLINES |

il |

Spesdarerage (minis) Speed st (mrnis)

AT AT
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Speed firstdecile (mrms) Speed ninth decile (mmis)

Figure 6. Comparison of the empirical distributions of scalar features using the AMTI platform (blue),
using the WBB with Cubic Splines (red), and using the WBB with SWARII (green), for the average
speed (top left), standard deviation (top right), first decile (bottom left), ninth decile (bottom right).
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Figure 7. Comparison of the empirical distributions of Approximate Entropy using the AMTI platform
(blue), using the WBB with SWARII (light green), with SWAI (dark green), with PCI (red) and with
LI (orange).
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Table 5. p-Values of two-samples Kolmogorov-Smirnov test comparing the distributions of the scalar
features using the WBB against the AMTI with respect to the resampling method.

PCI LI SWAI SWARRI Cubic Splines

Average speed 10712 107 034 0.53 1073
Speed standard deviation 1078 1078 0.2 0.2 107°
Speed first decile 10718 10719 0.02 0.02 0.20
Speed ninth decile 10-11 107 034 0.34 104

Table 6. p-Values of two-sided Wilcoxon rank sum test comparing the distributions of the scalar
features using the WBB against the AMTI with respect to the resampling method.

PCI LI SWAI SWARRI Cubic Splines

Average speed 10719 107 046 0.47 1073
Speed standard deviation 107 107%  0.36 0.44 10-°
Speed first decile 1071 10719 0.03 0.04 0.48
Speed ninth decile 1071 107% 076 0.77 104

4. Discussion and Conclusions

As discussed in [12], the non uniform sampling frequency of the WBB puts significant restrictions
when recording and studying signals such as the statokinesigrams. From our analysis, it is important
to carefully chose the resampling algorithm, as while most methods give satisfying accuracy regarding
the position of the CoP, and are comparable in terms of ApEn approximation, their performances
greatly differ when the signal is differentiated. This is of paramount importance for the WBB, since
the differentiation of the statokinesigrams is necessary to obtain speed or acceleration, which are key
elements of the analysis in posturography (see, e.g., [13]).

To the extent of our knowledge, the CPI and LI methods are frequently used for resampling
the WBB signal (see, e.g., [16,17]). As seen in Section 3, those methods lead to significant error
when deriving the mean, standard deviation and quantiles of the speed, and are very inaccurate
for computing the instantaneous speed. The use of a sliding window, as in SWAI or SWARII, gives
significantly better results. Since SWALI is widely available in most data analysis software, it should
always be preferred to CPI and LI when resampling data from the WBB.

The cubic splines approach, while providing solid theoretical guarantees, produces disappointing
results in practice. This is largely due to the difficulty of choosing the parameter A, and the fact that
the quality of the signal of the WBB varies greatly during a record (e.g., different sampling rate).

It is worth noting that SWARII outperforms SWAI by a careful use of the relevance intervals
of the data points. To achieve a better accuracy when acquiring a signal from the WBB, we highly
recommend to use SWARII (An implementation of SWARII for Python 2.7 is available for download
at: https:/ /reine.cmla.ens-cachan.fr/j.audiffren /SWARIIL.git) or SWAI whenever possible as those
methods require only one parameter, the length of the window.

It is the authors belief that more recent and state-of-the-art approaches to resampling can lead to
better performances. However the complexity of those models, and the number of required parameters
that need to be carefully tuned to prevent overfitting or flattening of the derivatives, make them
difficult to use for non experts. Hence we have promoted in this paper the use of sliding window
methods for their robustness as they rely on the proper calibration of only one simple parameter.

As for the calibration of the WBB using the method described by [12], the careful resampling of
the data using an efficient method produces results which are significantly closer to the data obtained
using the laboratory grade force platform AMTL

However, and even if those methods improve the results, the WBB still lacks the accuracy,
both temporal and spatial, recommended for Posturography. As [11] stated, the low signal to
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noise ratio—which is largely induced by the unshielded cables and electronics incapable of noise
minimization—currently restricts the utilization of the WBB for clinical or research purposes. Hence,
it should only be used for measuring statokinesigrams when laboratory grade force-platforms are
unavailable and lower accuracy is acceptable.
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Abbreviations

The following abbreviations are used in this manuscript:

WBB Wii Balance Board

CoP Center of Pressure

RI Relevance interval

PCI Piecewise Constant Interpolation
LI Linear Interpolation

SWAI Sliding Windows Average Interpolation
SWARII = Sliding Windows Average with Relevance Interval Interpolation
ApEn Approximate Entropy
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