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Abstract

Purpose: Proton beam radiotherapy (PBT) has been used for the definitive treatment of

localized prostate cancer with low rates of high-grade toxicity and excellent patient-

reported quality-of-life metrics. Technological advances such as pencil beam scanning

(PBS), Monte Carlo dose calculations, and polyethylene glycol gel rectal spacers have

optimized prostate proton therapy. Here, we report the early clinical outcomes of patients

treated for localized prostate cancer using modern PBS–PBT with hydrogel rectal

spacing and fiducial tracking without the use of endorectal balloons.

Materials and Methods: This is a single institutional review of consecutive patients

treated with histologically confirmed localized prostate cancer. Prior to treatment, all

patients underwent placement of fiducials into the prostate and insertion of a hydrogel

rectal spacer. Patients were typically given a prescription dose of 7920 cGy at 180 cGy

per fraction using a Monte Carlo dose calculation algorithm. Acute and late toxicity were

evaluated using the Common Terminology Criteria for Adverse Events (CTCAE), version

5. Biochemical failure was defined using the Phoenix definition.

Results: From July 2018 to April 2020, 33 patients were treated (median age, 75 years).

No severe acute toxicities were observed. The most common acute toxicity was urinary

frequency. With a median follow-up of 18 months, there were no high-grade

genitourinary late toxicities; however, one grade 3 gastrointestinal toxicity was observed.

Late erectile dysfunction was common. One treatment failure was observed at 21

months in a patient treated for high-risk prostate cancer.

Conclusion: Early clinical outcomes of patients treated with PBS–PBT using Monte

Carlo–based planning, fiducial placement, and rectal spacers sans endorectal balloons

demonstrate minimal treatment-related toxicity with good oncologic outcomes. Rectal

spacer stabilization without the use of endorectal balloons is feasible for the use of PBS–

PBT.

Keywords: prostate cancer; radiation therapy; proton therapy; rectal spacer; endorectal
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Introduction
Proton beam radiotherapy (PBT) was used for the definitive treatment of localized prostate cancer as early as the 1970s, when

it was employed as a radiation boost [1]. Randomized evidence in the 1990s, with the publication of PROG 95-02, established

PBT as an excellent means of dose escalation to improve biochemical progression-free survival (bPFS) [2]. For many

decades, only a handful of proton facilities existed in the United States, which presented a barrier to the radiation oncology

community for conducting phase III trials exploring the comparative effectiveness of PBT versus x-ray–based therapies. Single

institutions, including the University of Florida, have published their long-term experience treating localized prostate cancer

with PBT and have reported excellent rates of bPFS, low rates of high-grade toxicity, and excellent patient-reported quality of

life [3]. In the modern era, PBT has become more ubiquitous, prompting the development of randomized trials such as the

PARTIQoL, which aims to investigate the relative effectiveness of PBT versus standard x-ray therapy (NCT01617161) [4].

The physical dose superiority achieved with PBT underpins the rationale for its implementation in a variety of cancer sites,

including genitourinary (GU) malignancies. This physical dose superiority has been further augmented by advances in the

proton treatment planning (e.g., Monte Carlo optimization), technical delivery of PBT, and image guidance. Advancements in

the delivery of PBT include the increased use of pencil beam scanning (PBS) technology, which allows for a more conformal

dose distribution to be achieved, particularly along the proximal edge of the target compared with passive scatter PBT [5].

Image-guided radiotherapy (IGRT) enhanced by the placement of fiducial markers has allowed for radiation margin reduction

to decrease surrounding normal tissue exposure to high-dose radiation. Furthermore, recent application of hydrogel rectal

spacers has permitted creation of artificial geometric spacing between the prostate and rectum and ultimately optimizes

dosimetry and minimizes radiation-related toxicity [6–12]. The use of endorectal balloons is commonplace in the delivery of

PBT in an effort to stabilize pelvic anatomy, though there is little data as of yet to determine if rectal spacers alone offer

stabilization and toxicity mitigation when combined with PBS–PBT.

We report the early clinical outcomes of patients treated for localized prostate cancer using modern PBS–PBT and Monte

Carlo planning with hydrogel rectal spacing, sans endorectal balloons, and fiducial tracking at one of the first single-room PBS

centers in the United States.

Materials and Methods

Patient Eligibility

This single institutional review of patients treated with localized prostate cancer was approved by the local Institutional Review

Board. Men with histologically confirmed localized prostate cancer were eligible for analysis. All patients were evaluated by a

multidisciplinary GU oncologic team, which included radiation oncology and urology. The AJCC 8th edition was used for

staging, and patients were stratified into low-, intermediate-, and high-risk groups per the National Comprehensive Cancer

Network risk classification [13, 14]. All patients underwent urological evaluation including prostate-specific antigen (PSA)

levels, pretreatment biopsy, and staging imaging, commonly including computed tomography (CT) of the pelvis and bone

scan, to confirm localized disease. Patients who received androgen-deprivation therapy (ADT) were classified into short-term

administration if receiving up to 6 months of testosterone suppression and long-term administration if receiving over 6 months

of testosterone suppression. Prostate volume was not used to determine candidacy for proton therapy but was taken into

account for the duration of neoadjuvant ADT used, if any. All patients underwent implantation of fiducial markers into the

prostate (Visicoil, IZI Medical Products, Owings Mill, Maryland) and placement of a hydrogel rectal spacer (Augmenix Inc,

Bedford, Massachusetts) between the rectum and prostate by the Department of Urology. Hydrogel spacers were used in lieu

of endorectal balloons for all patients in an effort to reduce radiation exposure to the rectum, mitigate toxicity rates, and

improve reproducibility for proton therapy treatment via pelvic stabilization [7–12, 15]. Posterior extracapsular extension was

considered exclusionary for the placement of rectal spacers. Patients with implanted cardiac devices were excluded from

eligibility for PBT as an institutional standard.

Simulation and Contouring

Patients underwent CT-based radiation treatment planning simulation (GE LightSpeed RT16, General Electric, Chicago,

Illinois) with accompanied prostate magnetic resonance imaging (MRI). Patients were counseled to have a comfortably full

bladder and empty rectum prior to simulation. The simulation CT scan was fused with prostate MRI to assist in contouring. The

initial clinical target volume (CTV1) was defined as the prostate capsule, proximal or entire seminal vesicles, and if applicable
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pelvic lymph nodes. A boost clinical target volume (CTV2) was also contoured and included the prostate capsule alone.

Adjustments were made, taking into consideration the prostate biopsy and MRI results. The CTVs were typically expanded 6

mm superiorly and inferiorly and 4 mm in all other dimensions to create a pair of planning target volumes (PTV1 and PTV2). In

addition, a PTV_Eval structure was created with lateral-only expansions of 5 mm, which was used to drive dose coverage

under robustness evaluation. Organs at risk (OAR), including the rectum, bladder, penile bulb, femoral heads, and small

bowel, were contoured using established contouring guidelines as demonstrated in Figure 1A [16].

Treatment Planning and Delivery

Dose calculations and planning optimization were performed on the simulation CT scan. Proton plans were generated using

RayStation (version 6-9A, RaySearch Laboratories, Stockholm, Sweden). Opposed lateral beam angles were created to

optimize target volume coverage and minimize OAR radiation exposure, as demonstrated in Figure 1B and 1C. Robustness

evaluation for 6 directional positional shifts of 5 mm and radiation certainty of 63.5% was used to ensure coverage of CTVs.

The majority of cases were planned, optimized, and delivered using 1 lateral field per day to assist in patient and center day-to-

day logistical ease. Single field optimization was used for all PBT plans. Of note, in certain situations, particularly with

unfavorable seminal vesicle anatomy, cases were planned using SFO but treated with 2 beams daily. As such, each portion of

the seminal vesicles did not require highly weighted spots from the contralateral beam owing to the contribution from the

ipsilateral beam allowing for some additional shaping around the rectum while still using SFO planning. Moreover, each patient

was treated via a 2-stage scheme; ie, to the prostate and seminal vesicles to initial dose (4500 cGy [RBE]) followed by a boost

to the prostate only. Thus, unfavorable seminal vesicle anatomy did not contribute to excess high dose to the rectum. All plans

were optimized with a Monte Carlo dose calculation algorithm. Apertures were created using the Adaptive Aperture multileaf

collimator system (Mevion Medical Systems, Littleton, Massachusetts). Planning overrides were used for rectal gas and

artifact created by fiducial markers. Of note, solid gold markers are generally exclusion criteria for protons because of the

shadowing defect, thus Visicol markers were used in the present study. Each marker was contoured individually, and any CT

artifact was overridden to match prostate density. Subsequently, robust evaluation ensured no shadowing occurred in any of

the positional shift scenarios, and if concern arose, the patient was treated using 2 beams per day. All patients were treated

with standard fractionation to an initial dose of 4500 to 5040 cGyRBE followed by a cone down to a final prescription dose of

7020 to 8100 cGyRBE. Quality-assurance CT scans were obtained regularly during treatment. Proton beam therapy re-plans

were performed, if necessary, to ensure intrinsic anatomical changes during treatment did not significantly alter target

coverage or OAR dose constraints. Patients were set up daily using orthogonal kV imaging with gross setup to bony anatomy

and final adjustment based on fiducial alignment.

Follow-up

Patients were evaluated weekly for on-treatment visits during their radiation course, at which time acute side effects were

identified. Following treatment completion, patients were seen every 3 months for the first year and subsequently at 6-month

intervals thereafter. Posttreatment evaluations included serial PSA levels and clinical examination. In addition, patients were

followed by their primary urologist following completion of treatment. Acute and late toxicity were reported using the Common

Terminology Criteria for Adverse Events (CTCAE, version 5.0; US National Cancer Institute, Bethesda, Maryland). Acute

toxicity was defined as toxicity occurring during radiation treatment and within 90 days of treatment completion. Toxicity was

reported and reviewed by the treating radiation oncologist. Patient-reported sexual function and urologic toxicities were also

assessed using the American Urological Association (AUA) Symptom Index and Sexual Health Inventory for Men (SHIM)

scores at baseline and at each follow-up for the majority of patients. Follow-up was calculated from the date of treatment

completion. Biochemical failure was calculated using the Phoenix definition.

Results

Patient and Tumor Characteristics

From July 2018 to April 2020, a total of 33 patients were treated with a median follow-up of 18 months. Patient, tumor, and

treatment characteristics are delineated in Table 1. The median age of all patients was 75 years, with 85% of patients having

an Eastern Cooperative Oncology Group (ECOG) performance status of 0. The most common prostate grade group was 2.

The percentage of patients with low-, intermediate-, and high-risk localized prostate cancer was 6%, 45%, and 49%,
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Figure 1. (A) Plan for a patient diagnosed with favorable intermediate risk adenocarcinoma of the prostate. Hydrogel spacer demonstrated by the pink

contour creating artificial displacement between anterior aspect of the rectum and posterior aspect of the prostate. (B) Color wash dose distribution of

treatment to a total dose of 7920 cGy (RBE) in 44 fractions (initial field including seminal vesicles to a total dose of 4500 cGy [RBE] in 25 fractions) using

opposed lateral proton beams. (C) Color wash dose distribution of single lateral plan.
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respectively. Overall, pretreatment urologic function was acceptable, with a median pretreatment AUA of 8, with the majority of

patients (79%) having a score less than 15 prior to treatment. Median prostate size was 60.5 cm3. Pretreatment SHIM scores

were indicative of severe baseline erectile dysfunction throughout our cohort, with a median pretreatment score of 5, likely

reflective of the older median patient age. Prior to PBT, 5 patients were treated with alpha-blockers, 2 with alpha-reductase

inhibitors, and 1 patient had undergone a transurethral resection of the prostate (TURP). Androgen-deprivation therapy was

recommended to 27 patients given their diagnosis risk grouping, although 5 patients who were eligible ultimately declined due

to quality-of-life concerns. Of those who received ADT, 6 patients received short-term ADT, and 16 patients received long-term

ADT.

Treatment and Dosimetric Characteristics

The majority of patients (76%) were treated with conventional fractionation to a total dose of 7920 cGyRBE or higher. At the

time of treatment, there were limited data to support hypofractionated schedules using PBT given radiobiological concerns. A

small number of patients were treated to a lower dose because of anatomical variations, primarily excess small bowel in the

treatment field precluding delivery of a higher radiation dose. Patients treated to this lower dose reflected a concern related to

RBE uncertainties and their effect on bowel as well as a manifestation of our conservative approach early in the opening of our

center. Nearly all cases were treated with 2 parallel opposed proton fields except for 2 patients who received pelvic lymph

node radiation to 4500 cGy using intensity-modulated radiation therapy followed by boost to the prostate and seminal vesicles

using parallel opposed proton fields. Initial institutional practice was to treat with bilateral parallel opposed fields daily (n¼ 8),

which was eventually converted to unilateral daily treatments (n¼ 25) for logistical ease. Proton dosimetric characteristics are

listed in Table 2.

Cohort median target coverage was excellent, with PBS–PBT achieving 100% coverage to the CTV1 and PTV1 with boost

coverage of 100% to the CTV2 and 99% to the PTV2. Cohort median bladder volumetric dose parameters including V80 Gy

(RBE), V75 Gy (RBE), V70 Gy (RBE), and V65 Gy (RBE) were 7%, 14%, 18%, and 23%, respectively. These results met our

institutional dose objective criteria but are nominally higher than other contemporary dosimetric reports owing to our use of

Monte Carlo–based planning [14, 15]. In addition, hydrogel rectal spacing achieved low cohort median rectal dose parameters

including V75 Gy (RBE), V70Gy (RBE), V65 Gy (RBE), and V60 Gy (RBE), which were 1%, 2%, 4%, and 6%, respectively.

Figure 1. Continued.
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Table 1. Patient, tumor, and treatment characteristics.

Patient No. Percentage

Age, y

�70 22 67

.70 11 33

ECOG scale

0 28 85

1 5 15

PSA, ng/mL

,10 16 49

10–20 13 39

.20 4 12

AJCC 8th edition T-stage

T1 22 67

T2 9 27

T3–T4 2 6

Grade group

1 2 6

2 13 40

3 4 12

4 11 33

5 3 9

Perineural invasion

Yes 6 18

No 27 82

Risk group

Low 2 6

Favorable intermediate 4 12

Unfavorable intermediate 11 33

High 13 40

Very high 3 9

Pretreatment AUA

,15 26 79

�15 6 18

Pretreatment SHIM

,15 16 48

�15 13 39

Pretreatment urologic function

Alpha blocker 5 15

Alpha-reductase blocker 2 6

TURP 1 3

ADT

Short-term 6 18

Long-term 16 49

Anticoagulation use

Yes 3 9

No 30 91

Abbreviations: ECOG, Eastern Cooperative Oncology Group; PSA, prostate-

specific antigen; AJCC, American Joint Committee on Cancer; AUA, American

Urological Association; SHIM, Sexual Health Inventory for Men; TURP, transure-

thral resection of the prostate; ADT, androgen-deprivation therapy.
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The organ separation achieved by hydrogel spacers is demonstrated in Figure 2A, which shows both an in-room beam’s eye

view of this anterior posterior separation, ideal for lateral proton beams, and Figure 2B, which demonstrates the organ

separation provided by the hydrogel spacer as viewed on a T2-weighted MRI. Similarly, excellent bilateral femoral head

dosimetry was achieved with a cohort median V35 Gy (RBE) less than 2%. Finally, cohort median mean penile bulb dose was

40 Gy (RBE) and cohort median small bowel dose maximum was 12 Gy (RBE).

Acute Toxicity

High-grade acute toxicities were not observed. As expected, the most common domain of toxicity was GU, with 17 patients

experiencing at least 1 grade 2 toxicity. The most common low-grade GU side effects of any grade included frequency (n¼33),

urgency (n ¼ 23), and urinary retention (n ¼ 19). Gastrointestinal (GI) toxicity was uncommon, with no patients developing

acute grade 2 or higher GI toxicity. The most common rectal toxicity was diarrhea (n ¼ 9). A majority of patients (88%)

experienced grade 1 fatigue during treatment. Unique to PBT, many patients experienced lateral pelvic skin hyperpigmentation

and erythema (n¼ 14) during the course of therapy; however, none of these cases progressed to overt moist desquamation.

Table 3 demonstrates the details of the aforementioned acute toxicity.

Late Toxicity

Late toxicity was analyzed with a median of 18 months of follow-up. Overall, severe toxicity was rare, with only 1 reported

grade 3 GI toxicity event. The most common GI toxicity of any grade was proctitis (n¼ 3). The solitary severe GI toxicity was

Table 2. Dosimetric parameters.

Dose Patient No. Percentage

Radiation, RBE

,79.2 8 24

�79.2 25 76

Fields per day

1 25 76

2 8 24

Dosimetric parameter Median Mean (range)

Target coverage, %

CTV1 V100% 100 100 (100–00)

PTV1 V100% 100 99.9 (98.8–100)

CTV2 V100% 100 100 (99.0–100)

PTV2 V100% 98.7 98.5 (92.1–100)

Rectum, %

V75Gy 0.7 1.2 (0.0–8.1)

V70Gy 2.1 2.7 (0.0–12.1)

V65Gy 4.1 4.8 (0.0–16.4)

V60Gy 6 6.7 (0.1–20.8)

V40Gy 19.4 20.8 (2.0–40.8)

Bladder, %

V80Gy 6.9 6.8 (2.1–17.3)

V75Gy 14 13.3 (4.3–25.7)

V70Gy 18 18.1 (5.9–32.0)

V65Gy 23.4 21.8 (7.4–38.7)

V45Gy 36.6 34.7 (6.5–64.5)

Femoral heads, %

Right V35Gy 0.8 1.4 (0.0–7.0)

Left V35Gy 1.6 3.3 (0.0–18.5)

Penile bulb, Gy

Mean 40.2 39.3 (19.5–53.7)

Small bowel, Gy

Dmax 12.3 22.7 (0.3–63.3)
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categorized as grade 3 radiation proctitis leading to intermittent rectal bleeding, straining, and diarrhea, which began 8.7

months following treatment completion. This led to repeat colonoscopies, which confirmed radiation proctitis at which time

argon plasma coagulation was performed. Despite advanced proton planning, spacer placement, and optimal dosimetry, this

patient still developed rectal toxicity, which in part could be explained by range and RBE uncertainties. It is important to note,

this patient had a longstanding history of cardiovascular disease and was treated prior to radiation therapy with ticagrelor 60

mg by mouth twice daily (Manufacturer, City, State) as well as aspirin. These medications likely contributed to an increased

risk of gastrointestinal toxicity. The remaining late GI toxicities were categorized as low grade.

There were no grade 3 or higher GU toxicities identified, and the most common grade 2 toxicity was urinary frequency (n¼
9) requiring initiation of tamsulosin (Manufacturer, City, State). A clear resolution of acute GU toxicity was observed over time,

and this may be a manifestation of the good pretreatment urinary function of our patient population. Late grade 2 erectile

dysfunction was fairly frequent and manifested in a total of 10 patients, which is reflective of the underlying poor erectile

Figure 2. (A) (left) In-room view of single left lateral proton beam field with associated aperture projection. (right) Beam’s eye view of aperture projection

demonstrating hydrogel spacer displacement, which allows for sparing of rectum and mitigation of radiation dose to this organ at risk. (B) A T2-weighted

MRI of the prostate in the coronal (left) and axial (right) planes demonstrating the separation of the prostate (red arrow) and rectum (blue arrow) provided

by insertion of a hydrogel spacer (purple arrow).
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function of our cohort evident from pretreatment SHIM scores. Finally, acute fatigue and skin hyperpigmentation demonstrated

a resolution with time.

Early Oncologic Outcomes

With a median follow-up of 18 months, the mean and median PSA nadir were 0.73 and 0.40 ng/mL, respectively. One patient

initially diagnosed with high-risk prostate cancer developed a Phoenix definition biochemical failure at 21 months and was

subsequently diagnosed with bone metastases on restaging scans and initiated on enzalutamide. Of note, 1 patient was

immediately lost to follow-up.

Table 3. Acute toxicity (CTCAE, version 5.0).

Grade 1 Grade 2 Grade 3 Grade 4 Grade 5

Genitourinary

Dysuria 7 — — — —

Hematuria 2 2 0 0 0

Urinary frequency 17 16 — —

Urinary incontinence 3 0 0 — —

Urinary urgency 12 11 — — —

Urinary tract infection 0 3 0 0 0

Bladder spasms 0 7 0 —

Urinary retention 15 4 0 0 0

Gastrointestinal

Proctitis 1 0 0 0 0

Diarrhea 9 0 0 0 0

Fecal incontinence 0 0 0 — —

Rectal hemorrhage 0 0 0 0 0

Fatigue 29 1 0 — —

Skin hyperpigmentation 14 0 — — —

Insomnia 7 0 0 — —

Erectile dysfunction 5 4 0 — —

Anxiety 9 0 0 0 —

Note: Dash indicates not applicable.

Table 4. Late toxicity (CTCAE, version 5.0).

Grade 1 Grade 2 Grade 3 Grade 4 Grade 5

Genitourinary

Dysuria 4 — — — —

Hematuria 2 1 0 0 0

Urinary frequency 9 9 — — —

Urinary incontinence 1 1 0 — —

Urinary urgency 7 2 — — —

Urinary tract obstruction 1 2 0 0 0

Urinary tract pain 1 1 0 — —

Bladder spasms 0 3 0 — —

Gastrointestinal

Proctitis 2 0 1 0 0

Diarrhea 1 0 0 0 0

Rectal hemorrhage 1 1 0 0 0

Fatigue 5 0 0 — —

Skin hyperpigmentation 1 0 — — —

Insomnia 1 0 0 — —

Erectile dysfunction 4 10 0 — —

Note: Dash indicates not applicable.
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Discussion
Here we report the clinical outcomes of patients with localized prostate cancer treated with definitive PBS–PBT using Monte

Carlo–based planning, fiducial-based image guidance, and hydrogel rectal spacing without the use of endorectal balloons.

Our early experience demonstrates excellent dosimetry using active scanning proton therapy with Monte Carlo planning

resulting in low dose–volume parameters for the bladder and, particularly, the rectum. In our study population, we

demonstrate low rates of acute GI toxicity, with no patients reporting grade 2 or higher acute GI toxicity, comparing favorably

with other evaluations of proton therapy early toxicity [19, 20]. Similarly, no patient experienced acute grade 3 or higher GU

toxicity. We did identify 1 case of late grade 3 GI toxicity requiring argon plasma coagulation approximately 9 months after

treatment completion in one of the 3 patients on anti-coagulation prior to, during, and fater radiotherapy.

Historically, proton centers primarily used passive scatter delivery systems, which required creation of patient-specific

compensators, apertures, and yielded less conformal proton dose distributions. Pencil-beam scanning systems have

optimized proximal target dose distribution and allowed intensity-modulated proton therapy to be employed. However,

improvements in dose conformality may come at a cost of greater sensitivity to anatomical changes, including variations in

bladder and bowel filling leading to inter- and intrafractional motion. However, observations indicate that these variations may

not have a clinically significant impact on treatment delivery [21, 22]. Moreover, the use of hydrogel rectal spacers may mitigate

any clinically significant changes caused by organ perturbations, from a rectal standpoint, owing to prostate stabilization and

augmentation of distance between the prostate and rectum [23]. Our experience with spacers sans rectal balloons

demonstrates it to be a safe and feasible way to deliver PBS–PBT.

Hydrogel spacers are polyethylene glycol-based gels, which create a geometrical expansion of the potential space between

the posterior aspect of the prostate and the anterior aspect of the rectum. As a result, considerable separation between the

prostate and rectum is achieved resulting in rectal dosimetric improvements across nearly all dose–volume parameters [6, 9].

These dosimetric improvements have translated into particularly low rates of clinical GI toxicity and excellent patient-reported

quality of life for intensity-modulated radiation treatments [6, 7, 11, 24–26]. One proton dosimetric study also demonstrated

excellent radiation dose reductions to the rectum and theoretical reductions in normal tissue complication probability (NTCP)

and predicted toxicity with the use of hydrogel spacers for prostate cancer [27]. Critical to proton therapy, hydrogel spacers

also provide improved anatomical reproducibility, which has been shown to be comparable with the daily use of endorectal

balloons without the patient discomfort and inconvenience of a balloon [8, 12, 28].

Dinh and colleagues [29] published a powerful investigation that retrospectively analyzed GI toxicity in patients treated with

both passive scatter and PBS proton therapy with either rectal balloon immobilization or rectal hydrogel spacer placement. In

this analysis, significantly lower GI toxicity was observed with the use of rectal hydrogel spacers. Similarly, the largest study

with the longest follow-up to date for PBS–PBT with spacer placement combined with rectal balloon immobilization included 51

patients who demonstrated reductions in rectal dosing with hydrogel placement [30]. However, with 9.5 months of follow-up,

there did not appear to be a difference between low-grade rectal toxicity for those with and without spacer placement. In the

present study, at 18 months of follow-up, we demonstrate minimal GI toxicity with the use of hydrogel spacers sans endorectal

balloons with exclusively PBS–PBT, distinct from the aforementioned publications.

In our study population, overall rates of GU toxicity are consistent with previously published studies, despite overall higher

doses delivered to the bladder, which are likely a manifestation of the use of the Monte Carlo dose calculation algorithm.

Several studies have demonstrated that pencil-beam dose calculation algorithms, when compared with Monte Carlo,

consistently underestimate the delivered dose, whereupon renormalization with Monte Carlo results in higher doses delivered

to adjacent normal structures [31, 32]. Monte Carlo–based planning creates more accurate dosimetry, particularly in situations

of tissue heterogeneity, adaptive planning, and target motion. It is likely that Monte Carlo–based proton planning will become

the rule rather than the exception in the future given advantages in dosimetric evaluation. Generally, the risk of acute grade 3

or higher GU toxicities is under 3% following proton therapy treatment [3, 19, 20, 33–35]. Our grade 3 or higher GU toxicity rate

was 0% with early follow-up and limited numbers, which is in line with other published results.

Limitations of this study include the nonrandomized and retrospective nature of the analysis, which may promote patient-

selection biases. Additionally, the follow-up period is relatively short for the disease site and is only capable of evaluating early

toxicities and oncologic outcomes. However, despite these limitations, we feel that the present study provides a unique

addition to the literature in examining the outcomes for patients with prostate cancer treated with PBS–PBT in conjunction with

hydrogel rectal spacers sans endorectal balloon immobilization.

The future of proton therapy for localized prostate cancer will trend toward moderate and extreme hypofractionation, similar

to the movement seen in its x-ray–based counterparts. Grewal et al [36] recently published the 4-year experience of a
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prospective phase II trial exploring acute and late toxicity for moderately hypofractionated proton therapy delivered to a total

dose of 70 Gy (RBE) in 28 fractions. Overall, excellent rates of biochemical relapse-free survival were reported and only 1 late

grade 3 or higher toxicity was observed. Similar impressive outcomes have been reported by other single institutions for

moderately hypofractionated proton therapy in the treatment of localized prostate cancer [37–39]. The results of extreme

proton hypofractionation, in contrast, are limited, and mixed results have been observed. The PCG GU002 demonstrated

similar clinical results between 38 Gy (RBE) in 5 fractions versus 79.2 Gy (RBE) in 44 fractions [40]. Likewise, a study

published by Kubeš et al [41], demonstrated promising early clinical outcomes with low rates of relapse and acute toxicity.

Alternatively, a phase II trial by Ha et al [42], demonstrated potentially inferior biochemical failure free survival in patients

treated with extreme hypofractionation (35 CGE in 5 fractions over 2.5 or 5 weeks). Additional prospective trials and longer-

term follow-up will be required to determine if these hypofractionated schemas are as efficacious and safe as their x-ray

counterparts.

Conclusions
Early clinical outcomes of patients treated for localized prostate cancer using modern PBS–PBT with Monte Carlo planning,

hydrogel rectal spacing sans endorectal balloons, and fiducial tracking demonstrates minimal acute and late toxicity with good

early oncologic outcomes. Future research and longer follow-up will be required to monitor long term cancer outcomes and late

toxicity.

ADDITIONAL INFORMATION AND DECLARATIONS

CRediT: Matthew Forsthoefel, Ryan Hankins, Elizabeth Ballew, Cara Frame, David DeBlois, Dalong Pang, Pranay

Krishnan, Keith Unger, Keith Kowalczyk, John Lynch, Anatoly Dritschilo, Sean P. Collins, Jonathan W. Lischalk:

conceptualization; Matthew Forsthoefel, Elizabeth Ballew, Cara Frame, David DeBlois, Jonathan W. Lischalk: data

creation; Matthew Forsthoefel, Elizabeth Ballew, Cara Frame, David DeBlois, Jonathan W. Lischalk: formal analysis;

Matthew Forsthoefel, Ryan Hankins, Elizabeth Ballew, Cara Frame, David DeBlois, Jonathan W. Lischalk: funding

acquisition; Matthew Forsthoefel, Ryan Hankins, Elizabeth Ballew, Cara Frame, David DeBlois, Dalong Pang, Pranay

Krishnan, Keith Unger, Keith Kowalczyk, John Lynch, Anatoly Dritschilo, Sean P. Collins, Jonathan W. Lischalk:

methodology; Matthew Forsthoefel, Ryan Hankins, Elizabeth Ballew, Cara Frame, David DeBlois, Dalong Pang, Pranay

Krishnan, Keith Unger, Keith Kowalczyk, John Lynch, Anatoly Dritschilo, Sean P. Collins, Jonathan W. Lischalk: project

administration; Matthew Forsthoefel, Ryan Hankins, Elizabeth Ballew, Cara Frame, David DeBlois, Dalong Pang, Pranay

Krishnan, Keith Unger, Keith Kowalczyk, John Lynch, Anatoly Dritschilo, Sean P. Collins, Jonathan W. Lischalk:

supervision; Matthew Forsthoefel, Elizabeth Ballew, Cara Frame, Jonathan W. Lischalk: validation; Matthew Forsthoefel,

Jonathan W. Lischalk: writing.

Conflicts of Interest: Sean P. Collins is a paid speaker for Augmenix. The authors have no additional relevant conflicts of

interest to disclose.

Acknowledgments: Lisa Stephenson contributed to the development of prostate proton plans. Brian T. Collins, MD, provided

general support and guidance for the study.

Funding: The authors have no funding to disclose.

Ethical Approval: The Georgetown Institutional Review Board approved this research under Study No. 00001269. The

patients/participants legal guardian/next of kin provided written informed consent to participate in this study.

References

1. Shipley WU, Tepper JE, Prout GR, Verhey LJ, Mendiondo OA, Goitein M, Koehler AM, Suit HD. Proton radiation as boost

therapy for localized prostatic carcinoma. JAMA. 1979;241:1912–5.

2. Zietman AL, Bae K, Slater JD, Shipley WU, Efstathiou JA, Coen JJ, Bush DA, Lunt M, Spiegel DY, Skowronski R, Jabola

BR, Rossi CJ. Randomized trial comparing conventional-dose with high-dose conformal radiation therapy in early-stage

adenocarcinoma of the prostate: long-term results from proton radiation oncology group/American college of radiology 95-

09. J Clin Oncol. 2010;28:1106–11.

Forsthoefel et al (2022), Int J Particle Ther 38

PT for prostate cancer with rectal spacers sans balloons



3. Bryant C, Smith TL, Henderson RH, Hoppe BS, Mendenhall WM, Nichols RC, Morris CG, Williams CR, Su Z, Li Z, Lee D,

Mendenhall NP. Five-year biochemical results, toxicity, and patient-reported quality of life after delivery of dose-escalated

image guided proton therapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2016;95:422–34.

4. Efstathiou J. Prostate advanced radiation technologies investigating quality of life (PARTIQoL): a phase III randomized

clinical trial of proton therapy vs IMRT for low or intermediate risk prostate cancer. ClinicalTrials.gov.identifier:

NCT01617161. Accessed October 2021. https://clinicaltrials.gov/ct2/show/NCT01617161

5. Kirk ML, Tang S, Zhai H, Vapiwala N, Deville C, James P, Bekelman JE, Christodouleas JP, Tochner Z, Both S.

Comparison of prostate proton treatment planning technique, interfraction robustness, and analysis of single-field treatment

feasibility. Pract Radiat Oncol. 2015;5:99–105.

6. Chao M, Ho H, Chan Y, Tan A, Pham T, Bolton D, Troy A, Temelcos C, Sengupta S, McMillan K, Cham CW, Liu M, Ding W,

Subramanian B, Wasiak J, Joon DL, Spencer S, Lawrentschuk N. Prospective analysis of hydrogel spacer for patients with

prostate cancer undergoing radiotherapy. BJU Int. 2018;122:427–33.

7. Chao M, Lim Joon D, Khoo V, Lawrentschuk N, Ho H, Spencer S, Chan Y, Tan A, Pham T, Sengupta S, McMillan K, Liu M,

Koufogiannis G, Cham CW, Foroudi F, Bolton D. The use of hydrogel spacer in men undergoing high-dose prostate cancer

radiotherapy: results of a prospective phase 2 clinical trial. World J Urol. 2019;37:1111–6.

8. Hedrick SG, Fagundes M, Robison B, Blakey M, Renegar J, Artz M, Schreuder N. A comparison between hydrogel spacer

and endorectal balloon: an analysis of intrafraction prostate motion during proton therapy. J Appl Clin Med Phys. 2017;18:

106–12.

9. Song DY, Herfarth KK, Uhl M, Eble MJ, Pinkawa M, van Triest B, Kalisvaart R, Weber DC, Miralbell R., Deweese TL, Ford

EC. A multi-institutional clinical trial of rectal dose reduction via injected polyethylene-glycol hydrogel during intensity

modulated radiation therapy for prostate cancer: analysis of dosimetric outcomes. Int J Radiat Oncol Biol Phys. 2013;87:

81–7.

10. Susil RC, McNutt TR, DeWeese TL, Song D. Effects of prostate-rectum separation on rectal dose from external beam

radiotherapy. Int J Radiat Oncol Biol Phys. 2010;76:1251–8.

11. Whalley D, Hruby G, Alfieri F, Kneebone A, Eade T. SpaceOAR hydrogel in dose-escalated prostate cancer radiotherapy:

rectal dosimetry and late toxicity. Clin Oncol (R Coll Radiol). 2016;28:e148–54.

12. Cuccia F, Mazzola R, Nicosia L, Figlia V, Giaj-Levra N, Ricchetti F, Rigo M, Vitale C, Mantoan B, De Simone A, Sicignano

G, Ruggieri R, Cavalleri S, Alongi F. Impact of hydrogel peri-rectal spacer insertion on prostate gland intra-fraction motion

during 1.5 T MR-guided stereotactic body radiotherapy. Radiat Oncol. 2020;15:178. https://doi.org/10.1186/s13014-020-

01622-3

13. Roberts MJ, Teloken P, Chambers SK, Williams SG, Yaxley J, Samaratunga H, Frydenberg M, Gardiner RA. Prostate

cancer detection, Table 8, TNM Staging Classifications [per American Joint Committee on Cancer (AJCC) 8th Edition

2016] (198). In: Feingold KR, Anawalt B, Boyce A, Boyce A, Chrousos G, de Herder WW, Dhatariya K, Dungan K,

Hershman JM, Hofland J, Kalra S, Kaltsas G, Koch C, Kopp P, Korbonits M, Kovacs CS, Kuohung W, Laferrère B, Levy M,

McGee EA, McLachlan R, Morley JE, New M, Purnell J, Sahay R, Singer F, Sperling MA, Stratakis CA, Trence DL, Wilson

DP, eds. Endotext; 2000. Accessed February 18, 2022. https://www.ncbi.nlm.nih.gov/books/NBK279042/table/prostate-

cancer-det.primarytum/

14. National Comprehensive Cancer Network. Prostate Cancer. Version 3.2022; 2022. Accessed Month day, year. https://

www.nccn.org/professionals/physician_gls/pdf/prostate.pdf

15. Underwood TSA, Voog JC, Moteabbed M, Tang S, Soffen E, Cahlon O, Lu HM, Zietman AL, Efstathiou JA, Paganetti H.

Hydrogel rectum-prostate spacers mitigate the uncertainties in proton relative biological effectiveness associated with

anterior-oblique beams. Acta Oncol. 2017;56:575–81.

16. Gay HA, Barthold HJ, O’Meara E, Bosch WR, El Naqa I, Al-Lozi R, Rosenthal SA, Lawton C, Lee WR, Sandler H, Zietman

A, Myerson R, Dawson LA, Willett C, Kachnic LA, Jhingran A, Portelance L, Ryu J, Small W, Gaffney D, Viswanathan AN,

Michalski JM. Pelvic normal tissue contouring guidelines for radiation therapy: a Radiation Therapy Oncology Group

consensus panel atlas. Int J Radiat Oncol Biol Phys. 2012;83:e353–62.

17. Scobioala S, Kittel C, Wissmann N, Haverkamp U, Channaoui M, Habibeh O, Elsayad K, Eich HT. A treatment planning

study comparing tomotherapy, volumetric modulated arc therapy, Sliding Window and proton therapy for low-risk prostate

carcinoma. Radiat Oncol. 2016;11:128. https://doi.org/10.1186/s13014-016-0707-6

Forsthoefel et al (2022), Int J Particle Ther 39

PT for prostate cancer with rectal spacers sans balloons

http://ClinicalTrials.gov.identifier
https://clinicaltrials.gov/ct2/show/NCT01617161
https://doi.org/10.1186/s13014-020-01622-3
https://doi.org/10.1186/s13014-020-01622-3
https://www.ncbi.nlm.nih.gov/books/NBK279042/table/prostate-cancer-det.primarytum/
https://www.ncbi.nlm.nih.gov/books/NBK279042/table/prostate-cancer-det.primarytum/
https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf
https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf
https://doi.org/10.1186/s13014-016-0707-6


18. Fang P, Mick R, Deville C, Both S, Bekelman JE, Christodouleas JP, Guzzo TJ, Tochner Z, Hahn SM, Vapiwala N. A

case-matched study of toxicity outcomes after proton therapy and intensity-modulated radiation therapy for prostate

cancer. Cancer. 2015;121:1118–27.

19. Mendenhall NP, Hoppe BS, Nichols RC, Mendenhall WM, Morris CG, Li Z, Su Z, Williams CR, Costa J, Henderson RH.

Five-year outcomes from 3 prospective trials of image-guided proton therapy for prostate cancer. Int J Radiat Oncol Biol

Phys. 2014;88:596–602.

20. Pugh TJ, Munsell MF, Choi S, Nguyen QN, Mathai B, Zhu XR, Sahoo N, Gillin M, Johnson JL, Amos RA, Dong L,

Mahmood U, Kuban DA, Frank SJ, Hoffman KE, McGuire SE, Lee AK. Quality of life and toxicity from passively scattered

and spot-scanning proton beam therapy for localized prostate cancer. Int J Radiat Oncol Biol Phys. 2013;87:946–53.

21. Tang S, Deville C, McDonough J, Tochner Z, Wang KKH, Vapiwala N, Both S. Effect of intrafraction prostate motion on

proton pencil beam scanning delivery: a quantitative assessment. Int J Radiat Oncol Biol Phys. 2013;87:375–82.

22. Tang S, Deville C, Tochner Z, Wang KKH, McDonough J, Vapiwala N, Both S. Impact of intrafraction and residual

interfraction effect on prostate proton pencil beam scanning. Int J Radiat Oncol Biol Phys. 2014;90:1186–94.

23. Sato H, Kato T, Motoyanagi T, Takemasa K, Narita Y, Kato M, Matsumoto T, Oyama S, Yamaguchi H, Wada H, Murakami

M. Preliminary analysis of prostate positional displacement using hydrogel spacer during the course of proton therapy for

prostate cancer. J Radiat Res. 2021;62:294–9.

24. Pinkawa M, Berneking V, Schlenter M, Krenkel B, Eble MJ. Quality of life after radiation therapy for prostate cancer with a

hydrogel spacer: 5-year results. Int J Radiat Oncol Biol Phys. 2017;99:374–7.

25. Mariados N, Sylvester J, Shah D, Karsh L, Hudes R, Beyer D, Kurtzman S, Bogart J, Hsi RA, Kos M, Ellis R, Logsdon M,

Zimberg S, Forsythe K, Zhang H, Soffen E, Francke P, Mantz C, Rossi P, DeWeese T, Hamstra DA, Bosch W, Gay H,

Michalski J. Hydrogel spacer prospective multicenter randomized controlled pivotal trial: dosimetric and clinical effects of

perirectal spacer application in men undergoing prostate image guided intensity modulated radiation therapy. Int J Radiat

Oncol Biol Phys. 2015;92:971–7.

26. Hamstra DA, Mariados N, Sylvester J, Shah D, Karsh L, Hudes R, Beyer D, Kurtzman S, Bogart J, Hsi RA, Kos M, Ellis R,

Logsdon M, Zimberg S, Forsythe K, Zhang H, Soffen E, Francke P, Mantz C, Rossi P, DeWeese T, Daignault-Newton S,

Fischer-Valuck BW, Chundury A, Gay H, Bosch W, Michalski J. Continued benefit to rectal separation for prostate

radiation therapy: final results of a phase III trial. Int J Radiat Oncol Biol Phys. 2017;97:976–85.

27. Chung H, Polf J, Badiyan S, Biagioli M, Fernandez D, Latifi K, Wilder R, Mehta M, Chuong M. Rectal dose to prostate

cancer patients treated with proton therapy with or without rectal spacer. J Appl Clin Med Phys. 2017;18:32–9.

28. Polamraju P, Bagley AF, Williamson T, Zhu XR, Frank SJ. Hydrogel spacer reduces rectal dose during proton therapy for

prostate cancer: a dosimetric analysis. Int J Part Ther. 2019;5:23–31.

29. Dinh TKT, Lee HJ, Macomber MW, Apisarnthanarax S, Zeng J, Laramore GE, Rengan R, Russell KJ, Chen JJ, Ellis WJ,

Schade GR, Liao JJ. Rectal hydrogel spacer improves late gastrointestinal toxicity compared to rectal balloon

immobilization after proton beam radiation therapy for localized prostate cancer: a retrospective observational study. Int J

Radiat Oncol Biol Phys. 2020;108:635–43.

30. Navaratnam A, Cumsky J, Abdul-Muhsin H, Gagneur J, Shen J, Kosiorek H, Golafshar M, Kawashima A, Wong W,

Ferrigni R, Humphreys MR. Assessment of polyethylene glycol hydrogel spacer and its effect on rectal radiation dose in

prostate cancer patients receiving proton beam radiation therapy. Adv Radiat Oncol. 2019;5:92–100.

31. Sasidharan BK, Aljabab S, Saini J, Wong T, Laramore G, Liao J, Parvathaneni U, Bowen SR. Clinical Monte Carlo versus

pencil beam treatment planning in nasopharyngeal patients receiving IMPT. Int J Part Ther. 2019;5:32–40.

32. Liang X, Li Z, Zheng D, Bradley JA, Rutenberg M, Mendenhall N. A comprehensive dosimetric study of Monte Carlo and

pencil-beam algorithms on intensity-modulated proton therapy for breast cancer. J Appl Clin Med Phys. 2019;20:128–36.

33. Mayahara H, Murakami M, Kagawa K, Kawaguchi A, Oda Y, Miyawaki D, Sasaki R, Sugimura K, Hishikawa Y. Acute

morbidity of proton therapy for prostate cancer: The Hyogo Ion Beam Medical Center experience. Int J Radiat Oncol Biol

Phys. 2007;69:434–43.

34. Lee HJ, Macomber MW, Spraker MB, Bowen SR, Hippe DS, Fung A, Russell KJ, Laramore GE, Rengan R, Liao J,

Apisarnthanarax S, Zeng J. Early toxicity and patient reported quality-of-life in patients receiving proton therapy for

localized prostate cancer: a single institutional review of prospectively recorded outcomes. Radiat Oncol. 2018;13:179.

https://doi.org/10.1186/s13014-018-1127-6

Forsthoefel et al (2022), Int J Particle Ther 40

PT for prostate cancer with rectal spacers sans balloons

https://doi.org/10.1186/s13014-018-1127-6


35. Slater JD, Rossi CJ, Yonemoto LT, Bush DA, Jabola BR, Levy RP, Grove RI, Preston W, Slater JM. Proton therapy for

prostate cancer: the initial Loma Linda University experience. Int J Radiat Oncol Biol Phys. 2004;59:348–52.

36. Grewal AS, Schonewolf C, Min EJ, Chao H-H, Both S, Lam S, Mazzoni S, Bekelman J, Christodouleas J, Vapiwala N.

Four-year outcomes from a prospective phase ii clinical trial of moderately hypofractionated proton therapy for localized

prostate cancer. Int J Radiat Oncol Biol Phys. 2019;105:713–22.

37. Nakajima K, Iwata H, Ogino H, Hattori Y, Hashimoto S, Nakanishi M, Toshito T, Umemoto Y, Iwatsuki S, Shibamoto Y,

Mizoe JE. Acute toxicity of image-guided hypofractionated proton therapy for localized prostate cancer. Int J Clin Oncol.

2018;23:353–60.

38. Henderson RH, Bryant C, Hoppe BS, Nichols RC, Mendenhall WM, Flampouri S, Su Z, Li Z, Morris CG, Mendenhall NP.

Five-year outcomes from a prospective trial of image-guided accelerated hypofractionated proton therapy for prostate

cancer. Acta Oncol. 2017;56:963–70.

39. Slater JM, Slater JD, Kang JI, Namihas IC, Jabola BR, Brown K, Grove R, Watt C, Bush DA. Hypofractionated proton

therapy in early prostate cancer: results of a phase I/II trial at Loma Linda University. Int J Part Ther. 2019;6:1–9.

40. Vargas CE, Hartsell WF, Dunn M, Keole SR, Doh L, Eisenbeisz E, Larson GL. Hypofractionated versus standard

fractionated proton-beam therapy for low-risk prostate cancer: interim results of a randomized trial PCG GU 002. Am J Clin

Oncol. 2018;41:115–20.
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