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Abstract: Erythropoietic porphyrias are caused by enzymatic dysfunctions in the heme biosyn-
thetic pathway, resulting in porphyrins accumulation in red blood cells. The porphyrins deposition
in tissues, including the skin, leads to photosensitivity that is present in all erythropoietic por-
phyrias. In the bone marrow, heme synthesis is mainly controlled by intracellular labile iron by
post-transcriptional regulation: translation of ALAS2 mRNA, the first and rate-limiting enzyme of the
pathway, is inhibited when iron availability is low. Moreover, it has been shown that the expression
of ferrochelatase (FECH, an iron-sulfur cluster enzyme that inserts iron into protoporphyrin IX to
form heme), is regulated by intracellular iron level. Accordingly, there is accumulating evidence
that iron status can mitigate disease expression in patients with erythropoietic porphyrias. This
article will review the available clinical data on how iron status can modify the symptoms of ery-
thropoietic porphyrias. We will then review the modulation of heme biosynthesis pathway by iron
availability in the erythron and its role in erythropoietic porphyrias physiopathology. Finally, we will
summarize what is known of FECH interactions with other proteins involved in iron metabolism in
the mitochondria.

Keywords: erythropoietic protoporphyria; congenital erythropoietic porphyria; ALAS2; ferrochelatase;
iron; iron-sulfur cluster; protoporphyrin IX; hematopoiesis

1. Introduction

Erythropoietic porphyrias are inborn errors of heme biosynthesis resulting from the
altered activity of an enzyme in the pathway and leading to the primary accumulation of
porphyrins in the erythron (Figure 1) [1]. The porphyrins deposition in tissues is responsible
for the cutaneous photosensitivity of patients. Anemia is often present. The erythropoietic
porphyrias mainly encompass two distinct diseases.

Firstly, congenital erythropoietic porphyria (CEP) is most often caused by a deficiency
in uroporphyrinogen III synthase (UROS), the fourth enzyme of the heme biosynthesis
pathway [2]. It results in accumulation of uroporphyrin I and coproporphyrin I in the red
blood cells that cannot be further metabolized. CEP has a broad spectrum of phenotypic
manifestations ranging from hydrops fetalis to late and mild cutaneous involvement [3].
The most frequent hematological finding is a hemolytic anemia that can be transfusion
dependent in severe cases. Of note, few patients were found to harbor mutations in GATA1,
on the X chromosome [4].
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Secondly, erythropoietic protoporphyrias that can be subdivided into two types de-
pending on the gene alteration responsible for the disease. Classical erythropoietic proto-
porphyria (EPP) is characterized by reduced activity of ferrochelatase (FECH), the last 
enzyme of the pathway [1]. It catalyzes the insertion of iron into protoporphyrin IX (PPIX) 
to form heme. In most patients, EPP is caused by a rare loss-of-function mutation in FECH 
associated in trans to a frequent hypomorphic variant which creates an aberrant splice site 
[5]. FECH partial deficiency leads to free PPIX accumulation, responsible for the photo-
toxic reactions experienced by EPP patients. Gain-of-function mutations in ALAS2, the 
first enzyme of erythroid heme synthesis, cause X-linked dominant protoporphyria 
(XLPP) in approximatively 4–10% of the patients with erythropoietic protoporphyria [6,7]. 
XLPP is clinically similar to EPP and is associated with a higher zinc-protoporphyrin frac-
tion than EPP. EPP and XLPP patients are frequently subject to mild hypochromic anemia 
associated with iron deficiency. PPIX is eliminated by the liver. It may cause gallstones 
and cholestatic hepatitis. In approximatively 3% of cases, acute cholestasis progresses to 
liver failure. 

In the bone marrow, heme synthesis is mainly controlled by intracellular labile iron 
by post-transcriptional regulation. Indeed, translation of ALAS2 mRNA, the first and rate-
limiting enzyme of the heme biosynthesis pathway in the erythroid tissue, is inhibited 
when iron availability is low [8,9]. Moreover, it has been shown that the expression of 
FECH, an iron-sulfur cluster enzyme, is regulated by intracellular iron level [10]. 

Accordingly, there is accumulating evidence that iron status can mitigate disease ex-
pression in patients with erythropoietic porphyrias. In CEP, the induction of an iron defi-
ciency was able to drastically decrease hematological and cutaneous symptoms in some 
patients [11–13] as well as in cellular and mouse models [14]. There are conflicting reports 
on whether or not iron supplementation is beneficial in erythropoietic protoporphyrias 
[6,7,15–26]. 

 
Figure 1. Heme biosynthesis pathway. Enzymes are indicated in blue. Erythropoietic porphyrias 
are indicated in red boxes in front of the corresponding enzyme dysfunction. CEP: congenital eryth-
ropoietic porphyria; EPP: erythropoietic protoporphyria; XLPP: X-linked protoporphyria. 

In the review, we will firstly summarize the clinical data available on the influence 
of iron status on erythropoietic porphyrias symptoms. To illustrate practically how iron 
deficiency can limit the disease symptoms, we will describe data on one EPP and one CEP 
patient. Then, we will describe how iron availability can modulate the heme biosynthetic 

Figure 1. Heme biosynthesis pathway. Enzymes are indicated in blue. Erythropoietic porphyrias
are indicated in red boxes in front of the corresponding enzyme dysfunction. CEP: congenital
erythropoietic porphyria; EPP: erythropoietic protoporphyria; XLPP: X-linked protoporphyria.

Secondly, erythropoietic protoporphyrias that can be subdivided into two types de-
pending on the gene alteration responsible for the disease. Classical erythropoietic pro-
toporphyria (EPP) is characterized by reduced activity of ferrochelatase (FECH), the last
enzyme of the pathway [1]. It catalyzes the insertion of iron into protoporphyrin IX (PPIX)
to form heme. In most patients, EPP is caused by a rare loss-of-function mutation in FECH
associated in trans to a frequent hypomorphic variant which creates an aberrant splice
site [5]. FECH partial deficiency leads to free PPIX accumulation, responsible for the photo-
toxic reactions experienced by EPP patients. Gain-of-function mutations in ALAS2, the first
enzyme of erythroid heme synthesis, cause X-linked dominant protoporphyria (XLPP) in
approximatively 4–10% of the patients with erythropoietic protoporphyria [6,7]. XLPP is
clinically similar to EPP and is associated with a higher zinc-protoporphyrin fraction than
EPP. EPP and XLPP patients are frequently subject to mild hypochromic anemia associated
with iron deficiency. PPIX is eliminated by the liver. It may cause gallstones and cholestatic
hepatitis. In approximatively 3% of cases, acute cholestasis progresses to liver failure.

In the bone marrow, heme synthesis is mainly controlled by intracellular labile iron
by post-transcriptional regulation. Indeed, translation of ALAS2 mRNA, the first and
rate-limiting enzyme of the heme biosynthesis pathway in the erythroid tissue, is inhibited
when iron availability is low [8,9]. Moreover, it has been shown that the expression of
FECH, an iron-sulfur cluster enzyme, is regulated by intracellular iron level [10].

Accordingly, there is accumulating evidence that iron status can mitigate disease
expression in patients with erythropoietic porphyrias. In CEP, the induction of an iron
deficiency was able to drastically decrease hematological and cutaneous symptoms in
some patients [11–13] as well as in cellular and mouse models [14]. There are con-
flicting reports on whether or not iron supplementation is beneficial in erythropoietic
protoporphyrias [6,7,15–26].

In the review, we will firstly summarize the clinical data available on the influence
of iron status on erythropoietic porphyrias symptoms. To illustrate practically how iron
deficiency can limit the disease symptoms, we will describe data on one EPP and one CEP
patient. Then, we will describe how iron availability can modulate the heme biosynthetic
pathway activity, with a focus on ALAS2 and FECH regulation in patients with erythropoi-
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etic porphyrias. Finally, we will review FECH interactions with mitochondrial proteins
involved in iron metabolism.

2. Iron Supplementation in Erythropoietic Porphyrias
2.1. Erythropoietic Protoporphyrias

As stated above, iron deficiency and hypochromic anemia is a frequent finding in
protoporphyria. In a cohort of 226 North American patients (90.3% with EPP and 9.7%
with XLPP), anemia was reported by 95 patients with EPP (46.6%) and by 12 patients with
XLPP (54.5%) [7]. The diminished iron stores in EPP and XLPP seems not to be related
to a lack of iron absorption or an inappropriate hepcidin regulation [27]. Such a finding
may lead to the prescription of oral iron therapy in order to restore the hemoglobin level.
Moreover, it can be hypothesized that iron supplementation could decrease PPIX level in
erythropoietic protoporphyria patients by making FECH substrate more available and thus
reducing the accumulation of PPIX.

Several attempts of iron substitution therapies have been reported and are summarized
in Table 1. Interventions aiming to treat acute cholestasis were not recorded here, even so,
some of them could be considered as an iron intake. Indeed, iterative transfusions and blood
exchanges constitute a significant iron intake. However, they are usually prescribed to
decrease PPIX production by reducing the patient’s hematopoiesis (and, for blood exchange,
by removing the patient’s erythrocytes by PPIX-free ones). Repeated transfusions, when
aiming to reduce photosensitivity, are also shown in Table 1 [28,29]. However, symptoms
improvement could rather be related to hematopoiesis slowing than to iron intake.

Table 1. Patients with erythropoietic protoporphyria treated with iron.

Authors Year
Number

of
Patients

Sex Type Molecular
Diagnosis

Biochemical
Diagnosis Intervention Clinical

Outcome
Biochemical

Outcome

Reed et al. 1970 1 F NA no yes oral iron therapy worsening NA
Baker et al. 1971 1 F NA no yes oral iron therapy worsening PPIX increase

Bechtel et al. 1981 1 M NA no yes repeated
transfusions improvement PPIX decrease

Dobozy et al. 1983 5 1 F and 4 M NA no yes repeated
transfusions improvement PPIX decrease

Graham-Brown et al. 1984 1 F NA no yes oral iron therapy worsening
PPIX decrease

after iron therapy
discontinuation

Gordeuk et al. 1986 1 F NA no yes oral iron therapy * NA PPIX decrease
Milligan et al. 1988 2 ** F NA no yes oral iron therapy worsening PPIX increase

McClements et al. 1990 1 F NA no yes oral iron therapy worsening

PPIX decrease
after iron
therapy

discontinuation

Todd et al. 1992 1 M NA no yes repeated
transfusions worsening PPIX increase

Holme et al. 2007 1 M EPP yes yes oral iron therapy improvement stable PPIX
Whatley et al. 2008 1 M XLPP yes yes oral iron therapy improvement PPIX decrease
Whalin et al. 2011 1 F EPP yes yes oral iron therapy worsening stable PPIX
Bentley et al. 2013 1 *** M EPP yes yes IV iron therapy improvement PPIX decrease

Barman-Aksözen et al. 2015 2 F EPP yes yes IV or oral iron
therapy worsening

PPIX increase
(one patient)

stable PPIX (one
patient)

Balwani et al. 2017 8 F XLPP yes yes oral iron therapy improvement
(7/8) NA

* Indication: hepatic dysfunction; ** 4 patients are reported but 2 were already described by [30] and [21]; *** same patient as in [26]; PPIX:
protoporphyrin IX; F: female; M: male; NA: non-available; EPP: erythropoietic protoporphyria; XLPP: X-linked protoporphyria.

Since the description of XLPP [6], several reports described iron therapy to be beneficial
in XLPP [6,7,17]. Indeed, in XLPP, over activated ALAS2 is responsible for the accumulation
of PPIX while FECH activity is conserved. In this case, iron is the limiting substrate and
FECH is utilizing zinc (Zn) to form PP-Zn, biochemically distinguishing EPP from XLPP.
It can be hypothesized that iron supplementation would decrease PPIX accumulation by
rendering FECH substrate more available.
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It cannot be excluded that some of the early reports, before molecular diagnosis could
be obtained, are unknowingly describing XLPP patients instead of EPP, as they account for
up to 10% of the patients in the USA [7].

When considering only cases where oral or intravenous iron were given to patients,
excluding known XLPP patients, there are 11 reports in the literature [15,16,18–23,26,30]. Of
those, eight are describing a worsening of symptoms under treatment [16,18,19,21–23,30]
whereas three reported an improvement [15,20,26]. Of those three, one was not molecularly
diagnosed [20] and iron was prescribed in an attempt to treat liver disease. The two other
cases described the same patient [15,26]. He was diagnosed with EPP, with confirmed FECH
mutations. His photosensitivity and overall well-being improved under oral iron therapy
and, later, under repeated intravenous iron infusions. Curiously, under oral iron, his PPIX
and hemoglobin (Hb) levels remained stable and, under i.v. iron, his PPIX decreased
without a substantial change in Hb level.

Even if all of those 10 patients were EPP patients, the vast majority (80%) had a
worsening of photosensitivity under iron treatment. This pleads for careful use of those
medications. As already proposed by several authors, microcytic anemia in EPP patients
should only be treated in case of a significant impact in patient quality of life and under
close surveillance of patient’s PPIX, liver enzymes, Hb and ferritin level [16]. This rec-
ommendation is based on a small number of case reports, a significant fraction of which
has not been characterized at the molecular level. In addition, patients were treated with
different amounts of oral or i.v. iron. A definitive answer regarding the role of iron in
erythropoietic protoporphyrias can only be provided by a randomized clinical trial.

Considering that iron therapy could increase PPIX concentration in EPP, and the fact
that ALAS2 mRNA translation is regulated by iron availability (see below), it could be
hypothesized that inducing iron deficiency in EPP patients might decreaseALAS2 activity
and thus, PPIX accumulation. In Figure 2, data on PPIX level and iron status of an EPP
patient treated repeatedly with phlebotomies is presented. As frequently described, she
had an Hb level close to the lower limit of normal (Hb 11.7 g/dL; N: 11.5–14.9), with
a ferritin level of 10 µg/L (N: 8–252 µg/L). Her baseline total erythrocytes porphyrins
was 84.1 µmol/L erythrocytes. Since spring 2018, at the age of 42, she was treated with
iterative phlebotomies in small volumes (approximatively 3 mL/kg) to induce iron de-
ficiency without too great a decrease in Hb level and to avoid an intense stimulation of
hematopoiesis. Treatment frequency was adapted to patient tolerance and Hb level, which
never fell below 8.5 g/dL. This procedure was repeated every spring from 2018 to 2021.
Median total erythrocytes porphyrins decrease was 46.4% (min 44%, max 51%). More than
the ferritin level, we observed that transferrin saturation correlated better with erythrocytes
porphyrins level (panel a). When it decreased, we concomitantly observed an increase in
PP-Zn fraction (panel b). This treatment succeeded in lessening the patient photosensitivity
but it failed to fully normalize the PPIX accumulation.

2.2. Iron Deficiency in CEP

On the contrary, the influence of iron status on CEP pathology is much more clear-
cut. Egan et al. reported the first case of dramatic improvement in photosensitivity and
hemolysis in a CEP patient with iron deficiency caused by gastrointestinal bleeding [11].
Her symptoms worsened concomitantly with the gastrointestinal bleeding resolution. This
was accompanied by a rise in ferritin, porphyrins in urines and in lactate dehydrogenase
(LDH) levels. She was then treated with iron chelators, which induced a novel improvement
in symptoms as well as a massive reduction of porphyrins levels and LDH normalization.

Based on this report, we and others [12,13] decided to treat patients with CEP without
transfusion-dependent anemia by iterative phlebotomies. Phlebotomies were preferred
to an iron chelator because of the important toxicity associated with the latter. More-
over, phlebotomy is accessible worldwide and is a simple and non-expensive procedure.
This procedure resulted in a massive decrease (≈90%) in plasma and urines porphyrins.
Porphyrins levels of patients treated by phlebotomies were similar to the residual concen-
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trations seen in patients after hematopoietic stem cell transplantation. The rapid decrease in
porphyrins occurred once patients were deeply iron deficient. Initially, a rise in porphyrins
can be observed as patients’ hematopoiesis is stimulated in a context of still-available iron.
A patient’s biological follow-up is presented in Figure 3. He was diagnosed at age 22 with a
moderate form of CEP. He had a mild, asymptomatic, non-transfusion dependent, anemia
(Hb = 13.1 g/dL; N: 13.4–16.7). He presented with moderate scarring and hypertrichosis of
photoexposed areas. A homozygous mutation in UROS was present (c.660+4delA, already
described in a CEP patient [31]) resulting in decreased UROS activity (2.5 U/mg Hb/h,
N > 6). His baseline urinary porphyrins was 1523 mmol/mmol of creatinine (N < 30). One
phlebotomy of 200–300 mL was performed every month or every 2 months. At first, por-
phyrins increased in urine and plasma, probably due to hematopoiesis stimulation. After
two and a half months, porphyrins started to decrease. Seven months after the treatment
initiation, urine porphyrins were completely normalized. The patient reported asthenia
and Hb level was 9.3 g/dL. Phlebotomies were performed less frequently to maintain Hb
level above 10 g/dL without a major increase in porphyrins levels. Since the beginning of
treatment, there was no novel cutaneous manifestation.
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3. Modulation of Heme Biosynthesis Pathway Activity by Iron Availability in
the Erythron

Heme formation requires iron as it is incorporated into PPIX by FECH in the last step
of the biosynthesis pathway. In the erythroid tissue, more than being only a substrate in
heme synthesis, iron concentration is involved in the regulation of the whole pathway.

3.1. IRE/IRP System

Several mRNAs coding for proteins involved in iron metabolism include an iron
responsive element (IRE) [9]. When iron availability is low, iron regulatory proteins (IRPs)
1 and 2 are able to bind to IRE [9,32]. If the IRE is in the 5′ UTR (ALAS2, ferroportin,
L and H-ferritin) or in the 3′ UTR (RTf1, DMT1), of mRNA, IRP binding will lead to a
translation inhibition or to an enhanced mRNA stability, respectively. Thus, when cellular
iron is low, ALAS2 mRNA translation will be inhibited and heme synthesis is repressed.
Conversely, in iron replete conditions, IRPs lose their ability to bind the 5′ IRE either by
degradation (IRP2) or iron-sulfur cluster (ISC) formation (IRP1). IRP1 then functions as a
cytoplasmic aconitase.

3.2. Iron-Sulfur Proteins

Iron-sulfur proteins (Fe-S proteins) are involved in various metabolic reactions, such
as redox reactions in respiratory complexes, citric acid cycle or DNA synthesis [33,34]. ISC
biosynthesis takes place in the mitochondria and is coordinated by the ISC machinery [35].
ISCs have the ability to transfer single electrons. Two Fe-S proteins are involved in the
heme biosynthesis pathway. First, IRP1, a cytosolic counterpart to mitochondrial aconitase,
which catalyzes the isomerization of citrate to isocitrate [36]. An increase in intracellular
iron induces the formation of an ISC, preventing IRP1 binding to IREs.

Second, the last enzyme of the heme biosynthesis pathway, FECH, is also an Fe-S
protein. The ISCs do not participate in the catalytic activity [37]. However, mutations
altering one of the four cysteine residues involved in the cluster fixation resulted in a
decrease in FECH activity [38,39] and in a typical EPP phenotype in patients [40]. It has
been shown that FECH expression is regulated by iron availability [10]. Indeed, in human
K562 cells cultivated under iron-depleted conditions, FECH activity and protein level were
decreased with a conserved amount of mRNA. Bacterial FECH, lacking the ISC, did not
show the same decrease in FECH activity. Thus, FECH is regulated by intracellular iron
level, probably through its ISC. Post-transcriptional regulation of FECH was confirmed
in vivo in Irp2-/- mice [41]. Furthermore, the stability of newly formed ferrochelatase
protein was drastically impaired in murine erythroleukemia cells cultivated with an iron
chelator [41].
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3.3. FECH and ALAS2 Regulation by Iron in EPP Patients

Taken collectively, this data on iron regulation of ALAS2 and FECH suggests that
when iron availability is low, there is an inhibition of ALAS2 mRNA translation, combined
with an increase in ferrochelatase protein degradation; all of it converging to decrease heme
production. In patients with functional heme biosynthesis pathway, a chronic depletion in
iron stores leads to microcytic hypochromic anemia with a moderate increase in PP-Zn,
which highlights the partially conserved ferrochelatase activity even if iron availability
is scarce. In EPP patients with deficient FECH, iron deficiency might lead to less PPIX
accumulation by inhibiting ALAS2 but should also increase PPIX level by inhibiting FECH
action. Therefore, the outcome on PPIX level might depend on the relative sensitivity of
ALAS2 and FECH to iron deficiency. ALAS2 inhibition could sufficiently slow the heme
pathway activity and prevent PPIX accumulation despite FECH inhibition and increased
degradation. Conversely, if FECH inhibition, in iron deplete conditions, prevails over
ALAS2 inhibition, there should be an increase in PPIX levels. In EPP patients with induced
iron deficiency, the 45% decrease in PPIX level (vs. more than 90% decrease in uroporphyrin
level in CEP patients) illustrates the dual effect of iron depletion.

Several studies of FECH and ALAS2 expression in EPP patients have been reported.
The ALAS2 protein was shown to be more expressed in young erythrocytes from a small
group of patients compared to control subjects [16]. ALAS2 mRNA was also more abundant
in patients. One could have expected lower protein level in patients compared to control
subjects, given that under iron deficient state, which is frequent in EPP, ALAS2 mRNA
translation is inhibited. In this study, the increase in ALAS2 protein was less marked than
that in mRNA, which could indicate a partial translation inhibition by the IRE/IRP system.
In erythroleukemic K562 cell, FECH inhibition by N-methylprotoporphyrin resulted in
marked increase in ALAS2 mRNA without an increase in FECH expression [16]. Other
studies by the same group showed that ALAS2 mRNA was increased in K562 cells treated
with an iron chelator in a dose-dependent manner [42]. This was not the case for FECH,
causing the ratio of ALAS2 mRNA on FECH mRNA to increase with the dosage. However,
the abundance of aberrant FECH transcripts was increased in iron depleted cells [43]. This
was associated with a decrease in total FECH protein as well as in ALAS2 (as expected due
to the IRE/IRP translation inhibition).

Overall, this supports the idea that FECH deficiency increases ALAS2 expression
by a yet unknown mechanism. It was proposed that in EPP patients, FECH deficiency
leads to an ALAS2 overexpression which contributes to PPIX accumulation [42]. Thus, it is
appealing to hypothesize that the frequent iron deficiency in patients mitigates the ALAS2
overexpression via the IRE/IRP system. Iron substitution could then further aggravate
PPIX accumulation by lifting the inhibition on ALAS2 mRNA translation.

The role of iron in mitigating erythropoietic porphyrias is further underlined by the
description of a patient with erythropoietic protoporphyria caused by combination of
mutations in CLPX and in the IRE domain of ALAS2 [44]. The first mutation caused
CLPX proteolytic activity to decrease and led to ALAS2 accumulation. The second pre-
vents IRPs binding to ALAS2 mRNA, thus impairing post-transcriptional inhibition under
iron deficiency. Family members without the mutation in ALAS2 accumulated moderate
amount of PPIX and showed mild photosensitivity whereas the patient had highly elevated
erythrocytes PPIX and symptoms as seen in EPP. Oral iron therapy was able to decrease
PPIX level.

In CEP, it could be hypothesized that without the induction of ALAS2 expression,
such as seen in FECH deficient patient, iron deficiency efficiently succeeds in inhibiting
ALAS2 mRNA translation via the IRE/IRP system. This would explain why inducing
iron deficiency in the CEP patient is able to more successfully decrease the heme pathway
intermediates accumulation. Following the same logic, an ALAS2 gain-of-function mutation
was shown to be responsible for a more severe CEP phenotype [45].

The ALAS2 overexpression or gain-of-function mutations in erythropoietic porphyrias
suggest that ALAS2 expression could be a target for therapeutics aiming to reduce its
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activity. Such a strategy has been used in acute hepatic porphyrias. Indeed, patients treated
with givosiran, an inhibitor of ALAS1, the first enzyme of the heme biosynthesis pathway
in the liver, showed sustained decreased in ALAS1 mRNA and urinary toxic precursors of
heme, delta aminolevulinic acid and porphobilinogen [46–48].

4. FECH Regulation at the Protein Level

Recent studies of FECH activity revealed that the enzyme is not only the final enzyme
of the heme synthesis, but also an important regulator of the whole pathway [49]. For
instance, heme production during erythropoiesis is regulated by EPO signaling through
FECH phosphorylation, which induces an upregulation of its activity [50]. It has been
shown that FECH works in interaction with several proteins involved in iron metabolism
including mitoferrin-1 (MFRN1) [51], ABCB7 [52–54], ABCB10 [53–55], Frataxin [56],
FAM210B [57] as well as other enzymes of the heme biosynthesis pathway, ALAS2 and
protoporphyrinogen oxidase PPOX, the penultimate enzyme of the pathway [54].

As stressed in Medlock et al., 2015, a multi-protein complex made up of terminal
enzymes of heme biosynthesis involved in iron metabolism would facilitate coordination of
heme synthesis and iron uptake by the mitochondrion [51,54]. Moreover, it would protect
the cell from reactive molecules, such as porphyrins, iron and heme.

MFRN1 is an iron importer localized at the inner membrane of the mitochondrion. It
is encoded by the SLC25A37 gene. MFRN1 was found in an oligomeric complex with FECH
and ABCB10 [55]. ABCB10 is thought to stabilize MFRN1 [55]. The complex facilitates
MFRN1-imported iron transfer to FECH for heme biosynthesis [55]. As stated before, FECH
stability is decreased when cellular iron is depleted and less available for ISC formation [10].
In patients with reduced FECH activity, SLC25A37 mRNA levels were reduced. Reduced
MFRN1 could impair ion uptake by the mitochondrion leading to lesser ISC formation
and to reduced FECH activity [58]. Reduced SLC25A37 mRNA was found in patients with
classical EPP, individuals with XLP and individuals with consistent biochemical studies for
EPP without identifiable mutation in FECH or ALAS2 [59].

ABCB7 was found to interact directly with FECH [52]. In cell cultures, ABCB7 mRNA
degradation led to the inhibition of heme biosynthesis and its overexpression led to an
increase in heme content. It is thought that ABCB7 plays a role in the formation and
maintenance of FECH ISC. In another study, a complex consisting of ABCB10, ABCB7
and FECH was isolated [53]. ABCB7 knockdown cells showed loss of multiple Fe-S
mitochondrial enzymes, increased mitochondrial iron associated with a defect in heme
biosynthesis, IRP2 activation and MFRN1 upregulation. Consistently, ABCB7 mutations
can result in X-linked sideroblastic anemia with ataxia.

FAM210B is a mitochondrial inner membrane protein required for heme synthesis in
differentiating erythroid cells [57]. Indeed, it facilitates iron import by MFRN1 to support
sustained synthesis of heme and ISC during erythroid maturation. FAM210B deficient
cells showed impaired ISC biosynthesis resulting in increased ALAS2 mRNA translation
inhibition by IRP1. In addition, it was proposed that FAM210B in an oligomer with FECH
and PPOX, could facilitate the transfer of protoporphyrinogen to FECH [57]. Moreover,
FAM210B seems to be required for FECH full activation. Thus, FAM210B connects the iron
uptake by the mitochondrion and heme synthesis.

Frataxin-defective organisms accumulate iron in the mitochondrion and show defi-
cient ISC biogenesis [35,60]. In the cytosol, there is a relative decrease in iron, resulting in
activation of IRPs. It was demonstrated that frataxin is an iron-binding protein. During
the ISC biosynthesis, frataxin could have the role of an iron donor or at least a regulatory
role. Since frataxin binds to yeast and human FECH [61,62], it was proposed that it could
provide iron to FECH [56,63].

Altogether, this indicates that FECH activity is not only regulated by iron availability
but probably also by complex interactions with multiple protein partners, some of them
involved in mitochondria iron metabolism. FECH seems to be situated at a crossroads
between heme synthesis and ISC biosynthesis.
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5. Conclusions

Iron plays a major role in heme biosynthesis as a substrate but also as a key regulator
at several levels. Iron deficiency is probably protective in EPP and CEP, whereas its
supplementation should be carried out with care, especially with regard to the hepatic
complications of the disease in EPP. We propose that it should be restricted to symptomatic
iron deficiency. On the contrary, XLPP patients seem to benefit from oral iron therapy. A
few CEP patients were treated with success by iron depletion (by iron chelators or iterative
phlebotomies). This treatment should be considered either in patients without transfusion
dependent anemia, in patients for whom bone marrow allograft is not an option or both.

The regulation of heme synthesis by iron occurs at least three different levels. At the
post-transcriptional level by the IRE/IRP system, through ISC formation and at the protein
level via FECH interactions with proteins involved in iron metabolism. Although the role of
iron in regulating heme synthesis and as a modifier of severity in erythropoietic porphyria
is now strongly demonstrated, many questions remain to be elucidated. For example, there
is still no explanation on why patients with erythropoietic protoporphyria are subject to
iron deficiency. A better understanding of erythropoietic porphyrias pathogenesis might
suggest therapeutics targets.

Data on patients with erythropoietic porphyrias suggests that ALAS2 is one of them.
By slowing down the erythroid heme biosynthetic pathway, it could be expected to di-
minish the toxic intermediates accumulation. Recently, GlyT1, a glycine transporter of
erythropoietic cells, was identified as a potential target. Glycine is a substrate of the first
and rate limiting enzyme of heme biosynthesis, ALAS2. GlyT1 can be selectively inhibited
by bitopertin. GlyT1 inhibition in rats results in a microcytic hypochromic anemia without
iron-overload [64]. A mouse-model of beta-thalassemia treated with bitopertin showed im-
proved hematological parameters with diminished ineffective erythropoiesis, but it failed
to improve erythropoiesis in patients [65,66]. A phase II trial to evaluate bitopertin efficacy
in decreasing porphyrins accumulation in red blood cells of patients with erythropoietic
porphyrias is scheduled in 2022.
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