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Brucellosis is a chronic infectious disease caused by brucellae or other bacteria directly invading human body. Brucellosis presents the
aggregation characteristics and periodic law of infectious diseases in temporal and spatial distribution. Takingmajor European countries
as an example, this study established the temporal and spatial distribution sequence of brucellosis, analyzed the temporal and spatial
distribution characteristics of brucellosis, and quantitatively predicted its epidemic law by using different traditional ormachine learning
models. ,is paper indicates that the epidemic of brucellosis in major European countries has statistical periodic characteristics, and in
the same cycle, brucellosis has the characteristics of piecewise trend. ,rough the comparison of the prediction results of the three
models, it is found that the prediction effect of long short-term memory and convolutional long short-term memory models is better
than autoregressive integrated moving average model. ,e first mock exam using Conv layer and data vectorizations predicted that the
convolutional long short-term memory model outperformed the traditional long short-term memory model. Compared with the
monthly scale, the prediction of the trend stage of brucellosis can achieve better results under the singlemodel prediction.,ese findings
will help understand the development trend and liquidity characteristics of brucellosis, provide corresponding scientific basis and
decision support for potential risk assessment and brucellosis epidemic prevention and control, and reduce the loss of life and property.

1. Introduction

Brucellosis is a chronic infectious disease caused by
brucellae bacteria invading human body. ,e main
clinical symptoms include fever, fatigue, muscle, and joint
pain [1]. With the development of global animal hus-
bandry, brucellosis has become one of the important
public health problems in the world. People suffering from
Brucella bacteria often have repeated attacks if they
cannot see a doctor in time or are misdiagnosed. In a long
term, it will influence economy of the region, even the
world.

At present, there are many studies on the epidemic trend
and influencing factors of brucellosis in the world. ,rough
spatial autocorrelation analysis, Wu et al. found that bru-
cellosis high aggregation areas in Zhejiang Province spread
year by year. With the increasing of animal husbandry
production, the number of brucellosis cases is also rising [2].
Silva et al. used a generalized additive model to detect high-
risk areas of brucellosis in Mato Grosso State, Brazil [3].
Peng et al. found that the epidemic scope of brucellosis in
China has been expanding in recent years. Using multiple
linear regression analysis, they concluded that the amount of
sheep stock, GDP, and some meteorological factors were
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significantly correlated with brucellosis incidence rate [4]. In
addition to conventional statistical data analysis, Wang et al.
used artificial neural network model and remote sensing
satellite data to explore the impact of natural environmental
variables on brucellosis, such as vegetation and climate [5].
Ducrotoy et al. found that, under the background of the
increasing level of agricultural intensification, the large-scale
centralized breeding of animal husbandry will increase the
risk of zoonotic infection, including brucellosis [6].

Overall, the current study considers that the incidence
rate and spatial and temporal distribution of brucellosis
include two aspects, including natural environment and
social economy, but mainly related to the development of
social economy and agriculture and animal husbandry [7, 8].

On the other hand, there are still some deficiencies in the
global research on Brucella. At present, the research on the
distribution of brucellosis in the intercontinental range is
mainly aimed at the long-term time evolution and biological
immunology, but the real-time research is relatively few [9,
10]. Moreover, there is no relevant research on the pre-
diction of brucellosis based on machine learning method at
home and abroad, and the distribution and prediction based
on spatial analysis also wait for further improvement.

In this paper, the ConvLSTM network based on spatial
grid is used to predict brucellosis and panel analysis, so as to
explore the development trend and fluidity characteristics of
brucellosis. ,e conclusions of the study will provide cor-
responding scientific basis and decision support for potential
risk assessment and brucellosis epidemic prevention and
control and reduce the loss of life and property.

2. Data Preparation

2.1. Study Area. Brucellosis is prevalent worldwide, espe-
cially in areas with developed animal husbandry. Although
some countries in Northern and Central Europe, like
Sweden, Austria, and Belgium, have been granted brucel-
losis-free status, the Mediterranean basin remains with high
prevalence of brucellosis and sporadic cases have been re-
ported in Greece and Portugal in recent years [11]. ,e
overall incidence of human brucellosis in Europe peaked in
2016, which was associated with the high proportion of
Brucella-infected cattle and small ruminant populations in
Italy, Greece, and Portugal, and thus brucellosis is still a
zoonotic health problem in these countries [12]. Besides,
international travel and illegal trafficking of herds and dairy
products through national borders are also factors that
cannot be negligible.

In Europe, case data are less affected by statistical bias
and untimely treatment. At the same time, European
countries have a small area and close communication, which
can more fully reflect the epidemic characteristics of in-
fectious diseases and facilitate spatial analysis and predic-
tion. ,erefore, this paper selects major European countries
as the research object to analyze and predict the distribution
of brucellosis. According to the data of the European Center
for Disease Control and prevention, the final study area is
determined as 25 major countries in Europe, and the specific
scope is shown in Figure 1.

2.2. Data Introduction. ,e data selected in this study are
mainly divided into the following parts.

2.2.1. Case Data. ,e case data of brucellosis is the core data
of this study.,ere are two main sources: the database of the
World Animal Health Information System (OIE-WAHIS) of
theWorld Organization for Animal Health and the report of
zoonotic infectious diseases of the European Center for
Disease Prevention and Control (ECDC).

OIE-WAHIS is a unique comprehensive database. ,e
database reports and disseminates information about animal
health around the world. OIE-WAHIS data reflect the in-
formation collected by the veterinary service departments of
OIE member and nonmember countries and regions on
livestock and wildlife diseases, emerging diseases, and
zoonosis listed in OIE. OIE-WAHIS provides the number of
cases of brucellosis of different strains through its data
analysis platform. However, due to the reported number and
its main focus on animal diseases, there is a certain lack of
data.

ECDC is an EU institution to strengthen Europe’s de-
fense against infectious diseases. Its core functions include
paying attention to epidemic information, providing cor-
responding report data, giving prevention suggestions, etc. It
provides case data of major European countries in the
annual report of zoonotic infectious diseases, including the
number of diseases, gender, and age distribution.

,is paper takes the data provided by ECDC as the main
case data, and the disease situation provided by OIE-WAHIS
as the auxiliary case data. ,e final data include the number
of cases in 2008–2018 main countries in Europe (annual and
monthly), incidence rate, gender, and age distribution.

2.2.2. Vector Data of European Region. In order to carry out
the research of spatial analysis and ConvLSTM prediction
model, this research needs space vector data in Europe, and
the source is OpenStreetMap (https://www.openstreetmap.
org). Select European data through the official website of
OSM, and you can download the SHP vector file of European
national administrative divisions.

2.2.3. Impact Factor Data. In order to make a better pre-
diction, this study needs to collect data on other influencing
factors that may be related to the incidence of brucellosis.
According to the analysis of epidemic characteristics, the
influencing factors mainly include socioeconomic factors,
animal husbandry, and food. ,e data comes from the FAO
statistical database (FAOSTAT, https://www.fao.org/faostat/
zh/#home) of the Food and Agriculture Organization of the
United Nations (FAO).

,e FAO statistical database provides free food and
agriculture data for more than 245 countries and regions,
covering all data available to all FAO Regional Groups since
1961 to the latest. By selecting the classification required in
FAOSTAT, we can obtain the corresponding data, select the
corresponding classification, and finally obtain the impact
factors of all European countries.
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Due to different data sources and different formats and
names, sorting and cleaning are needed to ensure the smooth
progress of the study. ,e data sorting of this study takes the
case data of major European countries of ECDC as the core
to sort and clean the data.

After data cleaning and processing, we get the influ-
encing factors of brucellosis in various countries from 2008
to 2018, including the following categories: cattle stock,
sheep stock, butter supply, cheese supply, skimmed milk
supply, beef consumption, mutton consumption, grassland
and pasture area, population, and GDP.

Considering that the subsequent model will adopt the
gradient descent algorithm for corresponding training, and
the eigenvalue ranges between different influence factors are
different, and there is a large gap, it is also necessary to store
a normalized data sample for subsequent research and ac-
celerate the convergence speed of the model. Based on this,
we adopt the min-max normalization method, and its for-
mula is as

x
∗

�
initial value − min value
max value − min value

. (1)

3. Method

3.1. Grid Feature Engineering. In this paper, we choose
European countries as the research scale. Because there
are few case data of brucellosis, the case data of brucellosis
are directly mapped in the vector layer, and the results
cannot fully reflect the spatial proximity attributes of
adjacent countries. ,erefore, in order to highlight the
local spatial relationship brought by convolution layer, on
the premise of keeping the topological relationship be-
tween countries unchanged, this paper divides the re-
search area into grids.

We take the spatial region of the longitude and latitude
under the European Terrestrial Reference System and map
the observed values in the data set to a spatial region limited
by longitude and latitude through 16∗16 grid division.
When meshing, we start from the country with the smallest
area and retrieve the grid of the country one by one. If the
area exceeds one-third of the grid, it is marked as the
national grid. On the contrary, the size of each grid is
compared. If one grid occupies more than twice the area of
others, the grid is selected as the country mark. If it does
not exist, we will select the grid with the smallest area
occupied by other countries in the grid occupied by that
country as the marker. After processing, the results are
shown in Figure 2.

Different countries use different grid representations.
We divide the case data of different countries by the number
of grids to obtain the specific data of each grid. To reduce
skewness, we logarithmically convert the counts in pixels
and normalize them on the scale of 0–255, and the gray value
of the image represents the specific value.

3.2. 0e GeoGrid-Based ConvLSTM Network. ConvLSTM
recurrent neural network can combine the spatiotem-
poral information attached to the constructed three-
dimensional tensor (multidimensional influence factor
vector) for spatiotemporal prediction [13, 14]. ,e overall
structure of the model consists of five parts: input
layer, Conv layer, pooling layer, LSTM layer, full con-
nection layer, and output layer. Firstly, all the infor-
mation to be input is preprocessed to obtain a vector with
spatial and local features that can be input in the con-
volution, and then input it into the convolution layer to
start training. ,e vector in the convolution layer can be
used as a filter to extract local features to enhance the
spatial performance of the model. ,en, the information
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Figure 1: Twenty-five countries in Europe of the study area.
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from the conv layer is input into the LSTM layer for
training. ,is layer can represent the timing character-
istics, reflect the influence of time, and finally reach the
output layer through the full connection layer [15].
,rough the gradient descent training method, the data
of previous years are trained, and finally the future data
are predicted. For the model structure, appropriate pa-
rameters need to be selected according to needs to achieve
the best training effect. Figure 3 is the algorithm flow
chart of ConvLSTM.

Next, we will analyze the structure of each layer and the
corresponding parameter selection in detail.

3.3. Activation Function. In the neural network, each level
needs to use the activated function to unify and measure
it. At the same time, it also enhances the learning ability
of complex physical features. In the training, the activated
function can calculate the weight error, and the neural
network is optimized through the reverse propagation
mechanism. In this paper, tanh function is selected as the
activation function of neural network model.

Tanh function is a hyperbolic function, which can
map the input value between (−1, 1) to realize the uni-
fication of measurement. ,e implementation method is
shown in

f(x) �
e

x
− e

− x

e
x

+ e
−x , (2)

f′(x) � 1 − tan h
2
x. (3)

3.3.1. Conv Layer. ,e Conv layer in the neural network is
composed of several Conv units. Each Conv unit can op-
timize the training data through the back-propagation al-
gorithm. ,e purpose of Conv operation is to extract the
input features. ,e Conv layer is connected with the top full
connection layer, and multiple Conv layers can extract
different features iteratively. ,e parameters of Conv layer
include Conv core size, stride, boundary expansion, and
input and output channels.

,e model selected in this experiment includes a
Conv layer. ,e filter is used to perform Conv operation
and extract local features. Assuming that the size of
the sliding window is h, the size of the filter is h ∗ k. ,e
filter operates on each sliding window. ,e method is
shown in

u(i) � f w · xi: (i+h−1) + b , (4)

where u(i) represents the Conv output value of a filter at the
position i and f(·)is a nonlinear activation function.
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Figure 2: ,e grid is divided according to the area of the country.
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3.3.2. ConvLSTM Network Prediction Model Training. As an
extension of LSTM, ConvLSTM adds a conv layer before the
general timing prediction LSTM, so that it can have a Conv
structure in the state transition from input to and from
transmission to. ,e specific method is as

it � σ Wxi ∗xt + Whi ∗Ht−1 + Wci ∘Ct−1 + bi( ,

ft � σ Wxf ∗xt + Whf ∗Ht−1 + Wcf ∘Ct−1 + bf ,

Ct � ft ∘Ct−1 + it ∘ tanh Wxc ∗ xt + Whc ∗Ht−1 + bf ,

Ot � σ Wxo ∗ xt + Who ∗Ht−1 + Wco ∘Ct−1 + bo( ,

Ht � Ot ∘ tanh Ct( .

(5)

,e method of combining conv neural network and
LSTM model is used, and a softmax layer is added at the top
of the model again. ,is method is used to train the whole
model by minimizing the error of cross entropy. Given a
training sample X(i), its real label y(i) ∈ [0, 1] and the es-
timated probability y(i) ∈ [0, 1], where j ∈ [1, 2, . . . k]. ,e
error is defined as shown in

L X
(i)

, y
(i)

  � 
1

j�0
1 y

(i)
� j log yj

(i)
 . (6)

When ·{ } is true, y(i) � j  is 1; otherwise, it is 0.

4. Result

4.1. Prediction Result. According to the method described
above, the data at each time, including the vector layer of
cases and ten layers of influence factors, are used as an input
layer to train the vector data of brucellosis. According to the

relevant conclusions of the trend characteristics in Section 3,
the prediction in this section is divided into two parts, which
are called ConvLSTM (1) and ConvLSTM (4) for training
and prediction of monthly data and stage data (one stage
every four months).,is experiment is carried out in Google
cloud.

First, training the monthly data: taking a total of 120 data
in each month from 2008 to 2017 as the training set, the
brucellosis case data in each month of 2018 are predicted.
Among them, the case prediction in high incidence rate
countries is shown in Figure 4 and Figure 5. In the figure, the
bar chart represents the real data, and the line chart rep-
resents the predicted value.

It can be seen from the figure that the prediction effect of
monthly data has been significantly improved compared
with LSTM, especially that the overfitting effect of the later
section of the overall curve is optimized compared with
LSTM. However, it can also be seen that the prediction effect
of the model for the first few months is generally better than
that for the following months. In other words, the prediction
effect of the model for cases is weakened over time.

To deal with the problem that the prediction effect of the
model on cases will be weakened over time, we sum the data
every four months, compile them into stage data, and input
them into ConvLSTM network. ,e results of the high
incidence rate of brucellosis are shown in Figure 6. In the
figure, the bar chart represents the real data, and the line
chart represents the predicted value.

After comparison, we can find that the stage prediction
results of ConvLSTMmodel are better than those of monthly
prediction and LSTM model at the same time. It can also be
seen from the prediction results that there are certain stage
characteristics in the epidemic of brucellosis, and the

Figure 3: ConvLSTM network structure diagram.
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prediction model can also reflect this characteristic. At the
same time, the results of this section can also prove that
ConvLSTM has a good effect on the prediction of brucellosis
in major European countries with local spatial attributes.

4.2. Model Comparison. In this paper, the results of bru-
cellosis case data in 2018 obtained from LSTM, ConvLSTM
monthly data prediction, and ConvLSTM stage data pre-
diction are summed to obtain the case prediction from
January to April 2018. ,e results of the prediction of the
number of cases in Europe are shown in Figure 7.

Combining the results of ARIMA, we can conclude that
the prediction results of incidence rate of LSTM and
ConvLSTM are better than that of ARIMAmodel. By adding
Conv layer, vectorizing the data and using ConvLSTM
model for prediction, the prediction effect will be higher

than that of LSTM model. In the first mock exam, the
prediction of brucellosis can be achieved better by using the
epidemic trend stage. Figure 8 shows the spatial distribution
of real cases. Figures 9–11 show the spatial distribution of
predicted case data of different models.

In this paper, the evaluation method of brucellosis
prediction is established to predict the specific effect of the
model and scientifically evaluate the experimental results.
For the effect of the model, the statistical method is adopted
to calculate the deviation between the fitted predicted value
and the real data, and the root mean square error (RMSE) is
used to determine the degree of fitting. ,e lower the RMSE,
the smaller the estimation deviation between the estimated
predicted value of the fitted prediction model and the real
data and the higher the degree of fitting. In the limited
measurement times, the specific calculation method of root
mean square error is shown in the following equation:

0

5

10

15

20

25

Jan Feb Mar Apr May Jun Jul
Month

Aug Sep Oct Nov Dec

N
um

be
r o

f c
as

e

True value and predicted number of Brucella cases (Italy and Greece)

Italy
Greece

Figure 4: High incidence rate ConvLSTM model monthly forecast results chart (Italy and Greece).

0

2

4

6

8

10

Jan Feb Mar Apr May Jun Jul
Month

Aug Sep Oct Nov Dec

N
um

be
r o

f c
as

e

True value and predicted number of Brucella cases (Portugal and Spain)

Portugal
Spain

Figure 5: High incidence rate ConvLSTM model monthly forecast results chart (Portugal and Spain).

6 Canadian Journal of Infectious Diseases and Medical Microbiology



RMSE �

�����������

1
N



N

i�0
xi − xi







. (7)

In the above formula, N is the time measurement (year
or month) of the fitted data and |xi − xi| is the deviation
between a group of measured values and the true value.

Due to the better short-term prediction effect of some
models, we uniformly calculate the prediction root mean
square error from January to April 2018. ,e error results of
ARIMA’s single country time series prediction, LSTM
model’s single country time series prediction, ConvLSTM
monthly data prediction, and ConvLSTM stage data pre-
diction are shown in Table 1.

From the error calculation results, it can be seen that the
prediction effect of LSTM and ConvLSTM models is better

than ARIMA model. ,e results of ConvLSTM model are
better than LSTM.,e ConvLSTMmodel using stage data is
better than the ConvLSTM model using monthly data. ,is
result is consistent with our previous conclusion.

5. Discussion

,e purpose of our study is to explore the epidemic char-
acteristics and spatiotemporal distribution of Brucella by
comparing the spatiotemporal sequence prediction methods
of Brucella and we collected, preprocessed, and applied the
multisource data. In the stage of spatiotemporal sequence
analysis, the visualization methods of temporal data and
spatial data are used. In the model prediction stage, ARIMA
time series prediction model, LSTM cyclic neural network
model, and ConvLSTM model are constructed. In the result
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evaluation stage, RMSE is used to evaluate the result
accuracy.

,e results showed that the brucellosis prevalence in
major European countries was periodic, which differed
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Figure 8: True value distribution of Brucella cases.
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Figure 9: Spatial distribution of prediction data (ARIMA).

Table 1: Root mean square error of different models.

ARIMA LSTM ConvLSTM
5.73 3.83 1.73
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among countries. ,e incidence of brucellosis in Italy and
Greece peaked in May and June, while in Spain it peaked in
September. A possible explanation for this might be that the
seasonality of brucellosis in Italy was related to the avail-
ability of dairy products at high risk for contamination in the

spring, and in Greece it was linked to the peak period of
slaughter and parturitions among farm animals, especially
during the Orthodox Easter Season [16, 17]. Compared with
Italy and Greece, Spain and Portugal had lower incidence of
brucellosis, and the inconsistency of seasonality may be due
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Figure 10: Spatial distribution of prediction data (LSTM).
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to demographic, occupational, and socioeconomic factors as
more than half of the reported brucellosis cases in the
Iberian Peninsula lived in cities [18].

,rough the comparison of the first mock exam results,
the prediction results of LSTM and ConvLSTM models are
obviously better than those of ARIMA models. ,e pre-
diction results of ConvLSTM and Conv models are better
than those of LSTM models by using the ConvLSTM layer
model and the data of vectorization. Although ConvLSTM
has a good effect on the prediction of brucellosis in major
European countries with local spatial attributes, compared
with the model, the effect of the initial prediction is better,
and the later prediction has unstable results, which may be
due to the overfitting of the subsequent prediction of
Conv neural network. In addition, with the extension of
prediction time, the instability of prediction itself is also
one of the possible reasons [19]. ,e follow-up research
hopes to further improve the prediction results, such as
optimizing the convolution layer, adopting higher-level
network, improving parameter and mechanism learning,
and improving the prediction stability.

6. Conclusions

,e core research work of this paper focuses on the spa-
tiotemporal feature extraction and development trend
model prediction of human brucellosis in major European
countries. ,e prediction results have shown that LSTM and
ConvLSTMmodels have higher forecast precision and could
be further improved with divided trend stages. ,e major
European countries with high prevalence of brucellosis
include Greece, Italy, Portugal, and Spain, among which
Greece was at increased risk and instability of human
brucellosis infection. ,e findings of this study contribute to
our understanding of the application of machine learning in
epidemic disease prediction and provide effective decision
support and theoretical basis for the prevention and control
of Brucella in relevant departments.
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