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ABSTRACT
Spatial stochastic models of single cell kinetics are capable of capturing both fluctuations in molecular numbers and the spatial dependencies
of the key steps of intracellular regulatory networks. The spatial stochastic model can be simulated both on a detailed microscopic level using
particle tracking and on a mesoscopic level using the reaction–diffusion master equation. However, despite substantial progress on simulation
efficiency for spatial models in the last years, the computational cost quickly becomes prohibitively expensive for tasks that require repeated
simulation of thousands or millions of realizations of the model. This limits the use of spatial models in applications such as multicellular
simulations, likelihood-free parameter inference, and robustness analysis. Further approximation of the spatial dynamics is needed to accel-
erate such computational engineering tasks. We here propose a multiscale model where a compartment-based model approximates a detailed
spatial stochastic model. The compartment model is constructed via a first-exit time analysis on the spatial model, thus capturing critical
spatial aspects of the fine-grained simulations, at a cost close to the simple well-mixed model. We apply the multiscale model to a canonical
model of negative-feedback gene regulation, assess its accuracy over a range of parameters, and demonstrate that the approximation can yield
substantial speedups for likelihood-free parameter inference.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0010764., s

I. INTRODUCTION

Including noise in biological models has proven essential in
order to better understand the cost and constraints of gene reg-
ulation.1 Such noise can come from various sources. For exam-
ple, extrinsic noise arises from small variations in the experimental
setup, such as temperature or pH, affecting the biochemical para-
meters of the cell. Intrinsic noise on the other hand is a result of
low concentrations of molecules and the discrete nature of chemical
reactions, that is, molecules randomly diffusing and reacting upon
collision. The latter has received large interest in molecular systems’
biology, and for this reason, discrete stochastic models of chemical
kinetics are often used to model gene regulatory networks in living
cells.2–8

A wide collection of numerical methods has been developed
for discrete stochastic chemical kinetics, spanning various levels
of sophistication, computational cost, and accuracy,9 and in many
cases showing qualitative or even quantitative agreement with exper-
imental data. The Stochastic Simulation Algorithm (SSA), also
known as Gillespie’s Algorithm,10 is the most widely used method
to simulate models formulated as continuous-time discrete-space
Markov (CTMC) processes, and many refinements and approxima-
tions of the SSA have been proposed.11 The random time change
representation12 offers a complementary view and has also been the
basis for extensions and improved algorithms, notably to accommo-
date time-dependent propensities and delays.13 Often, it is assumed
that the system is well-mixed. In this context, molecular diffusion
is assumed to be fast relative to biochemical reactions so that the
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system is reaction-limited. In the CTMC framework, the biochemi-
cal system is modeled with the chemical master equation (CME),

∂P
∂t
(x, t∣x0, t0) =

M

∑
j=1

aj(x − νj)P(x − νj, t∣x0, t0)

− aj(x)P(x, t∣x0, t0), (1)

where x is the state vector. Each row in x represents the copy num-
ber of a given species. P(x, t|x0, t0) is the probability density of that
state vector, where x0 is the initial state and t0 is the starting time. aj
and νj are the reaction rate and stoichiometric coefficients of reac-
tion j, respectively. Unfortunately, it is, in general, computationally
intractable to solve the CME due to the exponential growth of the
number of states with increasing dimension (the curse of dimension-
ality). Monte Carlo methods using the SSA to generate realizations
of the CTMC are often the only viable alternative to produce an
approximate solution to this equation.

In some cases, the well-mixed assumption is not valid. If dif-
fusion is slow relative to reactions, spatial correlations influence
the kinetics and can lead to, e.g., cluster formation or spatial bi-
stability.14,15 In other cases, the system may include spatial features,
such as membranes or macromolecular crowding,16,17 that must be
included in the model for accurate results. For such systems, spatial
stochastic models are needed. Both microscopic particle-tracking
methods and mesoscopic discrete stochastic methods are widely
used.

eGFRD (enhanced Green’s Function Reaction Dynamics) is an
efficient exact method for simulating particles in continuous space
and time following Smoluchowski diffusion-limited reaction kinet-
ics.18 For efficiency, protective domains containing exactly one or
two molecules are constructed. The random exit time from these
domains is then sampled, and an event queue is built from exit, dif-
fusive, and reaction events between molecules in the same protective
domain. The method relies on analytical solutions of the Smolu-
chowski equation (which involves Green’s functions) to guarantee
competitive performance; however, these are not always available,
especially for complex geometries.

Another class of methods, used, for instance, in Mcell19 and
Smoldyn,20 tracks the position of all the molecules of interest in the
system in mesh-free, continuous space, but discretizes time. Here
instead, the random new position of each particle is sampled at
t + Δt according to Smoluchowski’s dynamics. These methods can
be more efficient than eGFRD and can handle complex geometries,
at the cost of a discretization error.

On the mesoscopic level, the reaction–diffusion master equa-
tion (RDME) framework21 relies on space being discretized into
voxels, where each voxel is considered to be well-mixed. Diffu-
sion is modeled by allowing each molecule to move from voxel to
voxel with a jump rate depending on the diffusion constant and the
mesh.22 The system can then be simulated using versions of the SSA
optimized for the reaction–diffusion case such as the Next Subvol-
ume Method (NSM),23 where events are either a chemical reaction
localized to a specific voxel or a diffusive jump between a pair of
adjacent voxels. Originally demonstrated on Cartesian meshes, the
RDME has been extended to unstructured meshes,22 allowing for
simulations in complex geometries. Depending on the needed mesh
resolution, the RDME model can be much faster than microscopic
models, although there are additional numerical considerations

that can make the method hard to use reliably for non-experts, in
particular, related to the limiting behavior as the mesh size goes
to zero.23–25 In addition, for spatial simulations, approximate and
hybrid methods have been developed, e.g., by assuming that some
species copy numbers are not too small so that tau-leaping can be
used.26,27

RDME simulations are, in general, efficient if the mesh can be
chosen appropriately; however, to correctly resolve boundaries, the
mesh cannot be too coarse near those boundaries. A varying mesh
size in the domain can be used, but the mesh size cannot be var-
ied too rapidly locally since this can lead to poor mesh quality that
can negatively influence accuracy.28 In addition, the technical debt
and software footprint of a RDME system are relatively high, soft-
ware needed to handle mesh generation, assembly of diffusion jump
matrices, etc.29 This is not a major issue when the objective is to
carefully study the detailed spatial aspects of cellular control sys-
tems in single cells, such as in Refs. 4, 14, 30, and 31. However, there
are important scenarios where also RDME simulation becomes too
expensive and where simpler, more specialized multiscale approx-
imation that captures key aspects of the spatial dynamics without
the full complexity of needing a mesh could be very valuable. Tasks
such as likelihood-free parameter inference or sensitivity analysis are
good examples, where a large number of repeated simulations are
needed. Another important scenario that calls for cheaper approx-
imations is when embedding a spatial stochastic gene regulation
model in a multicellular simulation. Center-based models (CBMs)
are the most commonly used frameworks in that domain, with hun-
dreds of thousands of cells approximated geometrically as spheres
interact mechanically. As an example, we recently developed a mul-
ticellular model of cancer tumor growth where Smoldyn was used
to model intracellular spatial dynamics in order to study the effects
of chemical kinetics on tumor growth rate.32 Due to the large com-
putational cost, simulations were limited to a small number of cells
(10–100).

The goal in this paper is to develop and demonstrate a system-
atic way to construct multiscale models of stochastic gene regula-
tion that capture key aspects of the spatial dynamics without a fully
resolved particle-based or mesh-based spatial stochastic simulation.
Our driving requirements are that the approximation should not rely
on mesh generation (to facilitate future embedding in, e.g., center-
based models) and that the computational cost should be very close
to a corresponding simplistic well-mixed model (WMM). Further-
more, we want to be able to easily parametrize the approximation
a priori without any significant pre-processing for the important
special case where the geometry is made up of two concentric
spheres modeling the cytoplasm and the nucleus. This geome-
try is important since it is widely used to model signal transduc-
tion in yeast and mammalian cells; see, e.g., Refs. 30 and 31. It
is also the geometry used in multicellular center-based models.
We approach this by formulating a coarse-grained, compartment-
based well-mixed model and by obtaining its parameters using
hitting-time analysis on the Smoluchowski diffusion-limited model.
Using this strategy, we are able to speedup simulations compared
to a detailed spatial simulation, while maintaining key features
of the higher modeling fidelity compared to a naive well-mixed
or compartment-based model. We derive easy-to-evaluate reaction
rates for the compartment-based model for the important special
case of two concentric spheres modeling the cytoplasm and the
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nucleus and explain how the parameters can be computed using
finite element methods for general geometries. The key benefit of
our proposed approximation is that we obtain a very cheap surro-
gate model that can be used to improve computational efficiency
in tasks such as likelihood-free parameter inference. We note that
the proposed model is not intended as a general replacement of the
Smoluchowski model or of the RDME framework when high spatial
resolution is needed, but rather as a cheap alternative to a well-mixed
model that adds some spatial detail with very limited increase in cost
or code complexity.

Negative feedback arising from self-repression is an omnipre-
sent motif in models of gene expression. It is often used as a compo-
nent in larger pathways and has been studied extensively in previous
modeling work, including in the spatial stochastic setting. For exam-
ple, Sturrock et al.50 used the motif to develop a spatial stochastic
model of the Hes1 gene regulatory network in embryonic stem cells,
showing that unlike well-mixed models, it is capable of reproducing
the behavior of wild-type embryonic stem cells34 and gives insights
into the role of noise in cell differentiation. A known property of the
stochastic feedback loop is the bursty gene expression and the possi-
bility of oscillations in protein and mRNA copy numbers.35 We use
the negative-feedback motif as a case-study throughout the paper.

The remainder of this paper is organized as follows. In Sec. II,
we introduce the model of negative feedback and briefly review well-
mixed and spatial stochastic chemical kinetics models commonly in
use in systems biology and compare these two approaches quanti-
tatively. In Sec. III, we introduce the proposed multiscale compart-
ment model and explain how to parametrize it based on the micro-
scopic model. Section IV evaluates the approximation in terms of
accuracy and speedup over a spatial particle-based simulation using
Smoldyn, discussing the domain of applicability of the proposed
model. We also demonstrate the possible computational gain in the
application of parameter inference. Finally, in Sec. V, we conclude
the paper with a discussion of possible applications in more complex
modeling tasks and possible extensions of the method.

II. BACKGROUND
In this section, we first introduce the negative-feedback model.

We briefly then review the well-mixed and spatial stochastic model
formalism and give examples of how trajectories and distributions
generated from the models compare in different areas in parameter
space. Finally, we compare simulations of a spatial stochastic rep-
resentation and a discrete well-mixed representation quantitatively
over a wider range of parameters.

A. Model of negative-feedback gene regulation
The stochastic spatial model we consider was first proposed in

Ref. 33 to study the impact of noise in embryonic stem cell differ-
entiation using the RDME. As illustrated in Fig. 1, a gene placed in
the nucleus at the center of the cell transcribes mRNA. The mRNA
molecules then diffuse out of the nucleus and into the cytoplasm.
There, they get translated into proteins. These proteins then diffuse
back into the nucleus and bind to the gene, suppressing their own
expression. This creates a delayed response between mRNA tran-
scription and gene repression, giving rise to stochastic oscillations

FIG. 1. Sketch of the negative-feedback loop. The delayed response induced
by compartmentalization and spatial localization of chemical species in the reac-
tion network results in a bursty or oscillatory expression of the gene. It is critical
to capture diffusive transport of molecules between compartments and the spa-
tial stochastic nature of the chemical kinetics in order to capture realistic system
behavior.33

in the latter. This canonical model of negative-feedback gene regu-
lation is a suitable test problem for method development, since the
motif is both of direct interest to modelers33,36,37 and it frequently
appears as a module in larger, more complex networks, such as mod-
els of Delta-Notch signaling.38,39 In particular, the negative-feedback
model has recently highlighted the need to capture both stochastic
and spatial effects for qualitative and quantitative understanding of
Hes1 gene regulation.31,33

The chemical reactions are described in Eqs. (2)–(6), where G0/
and GP are the gene promoter sites in unbound and bound states,
respectively. Reactions (2) and (3) are restricted to the nucleus, while
reaction (4) is restricted to the cytoplasm. Reactions (5) and (6) can
fire everywhere in the cell. In our model, the nuclear membrane acts
as a barrier, only allowing proteins to enter the nucleus from the
cytoplasm and mRNA to exit the nucleus into the cytoplasm. This is
a common way to model the membrane and is used in Ref. 33. More
complex treatment of the membrane transport is of course possible,
for example, by explicitly modeling nuclear pores, but in a RDME
model in Ref. 31, such an addition showed no major impact on the
overall system dynamics. The baseline parameters of our model are
summed up in Table I and are taken from Sturrock et al.,31

G0/ + P
ka
⇌
kd

GP, (2)

G0/
μ
Ð→ G0/ + mRNA, (3)

mRNA κ
Ð→ mRNA + P, (4)

mRNA
γ
Ð→ 0/, (5)

P
γ
Ð→ 0/. (6)

This simple regulatory network is found in many biological
systems. It is inherently spatial due to the localization of reactions.
However, the degree of spatial effects depends on the parameters
of the model, in particular, on the degree of diffusion control of
the reactions. Simply put, the faster molecular diffusion is relative
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TABLE I. Base parameters as presented in Sturrock et al.33 Parameters in bold are varied across several orders of magnitude
to compare our models in different configurations (Sec. IV). Throughout this study, μ, κ, and γ are varied simultaneously by
multiplying them by a common variable, noted χ.

Parameter Description Localization Base value

R Cell radius 6.0 μm
rn Nucleus radius 2.5 μm
σ Molecular radius 0.01 μm
D Diffusion constant 0.6 μm2 min−1

ka Binding rate Nucleus 1.00 × 109 m−1 min−1

kd Unbinding rate Nucleus 0.1 min−1

μ Transcription rate Nucleus 3.0 min−1

κ Translation rate Cytoplasm 1.0 min−1

γ Degradation rate Entire cell 0.04 min−1

to bimolecular association, the more well-mixed the system will
be. Since the spatial stochastic simulations are much more com-
putationally expensive than their well-mixed counterparts, a ques-
tion of practical importance is when we need to explicitly include
these spatial details, and when they can be approximated by a com-
putationally cheaper model. To study this question quantitatively,
we first implement a spatially detailed version of the model using
the microscale, particle-based simulation software Smoldyn.20 We
then consider two coarse-grained approximations. The first is the
standard well-mixed approximation described in Sec. II C, where
we assume that the entire cell is one single, well-mixed reaction
volume. The second model is the new multiscale approximation
developed in Sec. III, where we use a compartment-based model
structure and derive transition rates using first-exit times. For both
models, we use diffusion-controlled rates for the bimolecular reac-
tions. In this way, they are directly comparable to the baseline spatial
model.

B. Spatial stochastic simulation using Smoldyn
We first implement the microscale spatial stochastic model

using the Smoldyn software.20 The underlying model used by Smol-
dyn is the Smoluchowski diffusion-limited reaction model, in which
particles are modeled as hard spheres. Unlike implementations
based on Green’s function reaction dynamics,18,40 Smoldyn employs
approximations and a fixed time step to advance the simulation. Nat-
urally, the accuracy of the simulation depends critically on that time
step parameter, ranging from a mesoscopic description for large
time steps to increasingly detailed dynamics for small time steps. In
our case, for comparison between the modeling levels, it is impor-
tant that we choose the time step such that Smoldyn’s accuracy is at
least at the level of the difference between the well-mixed approxi-
mation and the spatial simulation. A very small time step, however,
greatly increases the computational cost of the simulation and can
become prohibitive in some areas of the parameter space, in particu-
lar, where diffusion is very fast. To determine the most suitable time
step, we use an adaptive strategy where we successively halve the
time step until a satisfactory accuracy is reached. In the ideal case,
we would like to stop refining the time step when the gain in accu-
racy cannot be differentiated from the Monte Carlo error or, in other

words, when the Kolmogorov distance between the two consecutive
refinements is smaller than the self-distance of the finest refinement,
as described in Ref. 41. In practice, this turned out to be too com-
putationally demanding. Instead, we stopped the procedure when
the Kolmogorov distance between two consecutive refinements was
below some arbitrarily set threshold. Specifically, we compute the
Kolmogorov distance over the marginal distributions of each species
and report the average of these distances. Thus, the distance between
the detailed spatial model and the approximations is not reliable
when it is smaller than this threshold. For our study and use case,
we found that setting this threshold to 0.1 turned out to be a good
compromise between the quality of the results and the computation
time.

For completeness, we also estimate the Monte Carlo error by
measuring the self-distance of the spatial simulations. These mea-
surements are presented in Appendix B. On an average, the expected
self-distance is 0.02, below our threshold of 0.1.

C. Well-mixed stochastic chemical kinetics
In the well-mixed approximation, diffusion is assumed to be

fast enough (relative to reaction binding rates) such that the sys-
tem has time to become well-mixed between every reaction. The
diffusion constant is not an explicit constant in the WMM, but
rather enters indirectly via diffusion-limited mesoscopic reaction
rate expressions for the bimolecular reaction.

In what follows, we assume that a microscale binding rate,
ka, is given for the forward binding reaction (2). The classical
Collins–Kimball theory then relates the microscopic rate ka to the
mesoscopic rate kmeso

a ,42

kmeso
a =

4πσDka
4πσD + ka

, (7)

where σ is the sum of the reaction radii of the participating species
(another microscopic parameter, used in the Smoldyn simulation).
This formula was also more recently motivated by Gillespie,43

relating the microscopic reaction parameter to the probability of
the reaction given collision. The mesoscopic rate (7) provides a
good approximation when the reaction is not too diffusion-limited.
An alternative, more accurate mesoscopic rate can be derived by
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matching properties such as the mean reaction time in the limit of
small reaction volumes. In three dimensions, this approach leads to
the following diffusion-limited mesoscopic rates:45,44

kmeso
a =

ka
h3 [1 +

ka
D
G(h, σ)]

−1

, (8)

where

G(h, σ) =
1

4πσ
−

1.5164
6h

. (9)

In simulations of the WMM and the CBM, we use Eq. (8) as meso-
scopic rates for the bimolecular reactions. Since we are considering
the system to be well-mixed inside the nucleus, we will take the

length scale parameter as h = V
1
3
n in (8), where Vn is the volume

of the nucleus.

D. Quantitative differences between the spatial
and well-mixed models

Figure 2 illustrates the difference between the spatial and well-
mixed versions of the model as we vary the ratio between the reac-
tion rates and the diffusion rates (the degree of diffusion control of
the system). To preserve the steady state at about the same value
in all our simulations, we vary the chemical kinetics parameters

together by multiplying them by χ, which can be interpreted as the
“reactivity” of the system, i.e., the higher the value of this parameter,
the quicker the system will change. We use Gillespie’s Stochastic
Simulation Algorithm (SSA),10 using the implementation provided
in the GillesPy2 package45 part of the StochSS suite of tools46 to
simulate the well-mixed model.

To measure the distance between the data distribution of the
simulations in Fig. 2, we use the Kolmogorov distance. This metric is
commonly used for comparing simulation methods.41 Furthermore,
Lillacci and Khammash used it as a summary statistic for model
selection using flow cytometry data.47 It is defined as the maximum
difference between the cumulative distribution functions of the two
quantities of interest. This distance is also commonly used in statis-
tical tests to determine how likely it is that two datasets are drawn
from the same distribution. In our case, each dataset is made of 64
trajectories, each containing 100 samples for each species.

As can be seen in the top row of Fig. 2, the well-mixed approx-
imation works well when the diffusion is fast, i.e., the species’ dis-
tributions are well aligned with one another, and the Kolmogorov
distance is correspondingly small. In fact, in this case, the Kol-
mogorov distance is smaller than the refinement threshold we set
to determine Smoldyn’s acceptable time step. In other words, it is
not possible to say if the difference between the WMM and Smol-
dyn is due to the well-mixed assumption or the step size choice in
Smoldyn. In the second case of medium diffusion (middle row),
although mean values are close, there is a clear difference in mRNA

FIG. 2. mRNA (a) and protein (b) levels for three different parameter sets: χ was set to 1.741 for all simulations, and D was set to 3.167, 0.3446, and 0.012 37 μm2 min−1 for
the upper, middle, and bottom rows, respectively. The first two columns show 10 out of 64 simulated trajectories, simulated using either a well-mixed model (first column, red)
or Smoldyn (second column, blue). The last column shows the corresponding distribution estimated from these 64 trajectories and the Kolmogorov distance between these
two distributions. The total distance is computed by averaging the Kolmogorov distance between the protein distributions and the distance between the mRNA distributions
(0.06, 0.24, and 0.72 for the upper, middle, and bottom rows, respectively). Overall, it gives a good sense of when the well-mixed model is a good approximation of Smoldyn.
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and protein distributions, and the Kolmogorov distance increases.
In the last case (slow diffusion, bottom row), even mean values are
far apart, especially for the case of protein shown in Fig. 2(b), and
the Kolmogorov distance is high. This illustrates how the accuracy
of the well-mixed approximation depends on the diffusion control
of the system and that the Kolmogorov distance captures discrepan-
cies that are not well represented by the mean value, highlighting the
stochastic nature of gene expression.

III. COMPARTMENT-BASED MULTISCALE MODEL
In this section, we introduce a well-mixed compartment-based

approximation. Compartment-based models (CBMs) are common
enhancements of the simplest well-mixed models. Unlike a spatial
model, where the compartments are explicitly represented geomet-
rically, we implicitly account for the two compartments, cytosol
and nucleus, by introducing additional reactions in the well-mixed
formalism,

G0/ + Pnuc
kmeso
a
⇋
kd

GP, (10)

G0/
μ
Ð→ G0/ + mRNAnuc, (11)

mRNAnuc
kexit
ÐÐ→ mRNAcyt , (12)

mRNAcyt
κ
Ð→ mRNAcyt + Pcyt , (13)

Pcyt
kentry
ÐÐ→ Pnuc, (14)

mRNAnuc
γm
Ð→ 0/, (15)

Pnuc
γp
Ð→ 0/, (16)

mRNAcyt
γm
Ð→ 0/, (17)

Pcyt
γp
Ð→ 0/. (18)

As can be seen, the system can be divided into two logical
parts: one for the reactions inside the nucleus and one for those
in the cytoplasm. The reactions in each compartment can be sim-
ulated in a straightforward way on the well-mixed scale (all the rates
can be computed from the corresponding microscopic rates as in
Sec. II C). However, the reactions (and their corresponding rates)
that model the transport of molecules between the compartments
need to be defined. The rate parameters kexit and kentry are given by
the inverse of the mean first passage time of the corresponding pro-
cesses. These rates correspond to nucleic mRNA diffusing from the
nucleus, through a membrane, and out into the cytosol, and protein
diffusing back from the cytoplasm and into the nucleus.

We model this process on the microscopic scale in the follow-
ing way: An mRNA molecule can diffuse out from the nucleus by
reacting instantaneously with the nucleic membrane. A protein P
can diffuse into the nucleus by reacting, also instantaneously with
the membrane from the outside.

We model the nucleus of the cell by a sphere of radius rn, with
an absorbing boundary condition. It can be shown that ⟨T(x0)⟩, the
expected first-exit time given the initial position of a particle at x0, is
the solution of Eq. (19), where D is the diffusion constant. The full
derivation of this result is based on Ref. 48 and is described in full
length, with its boundary conditions, in Appendix A,

DΔx0⟨T(x0)⟩ + 1 = 0. (19)

Taking advantage of the symmetry of this domain, we solve
Eq. (19) to get the expected exit time depending on the initial
distance from the sphere’s center r. We recover the (well-known)
result

⟨T(r)⟩ =
r2
n − r2

6D
, ∀r ∈ [0, rn]. (20)

From this, we obtain the reaction rate

kexit =
1

⟨T(0)⟩
=

6D
r2
n

. (21)

We make the biological assumption that the gene sits roughly in
the middle of the nucleus and does not move significantly on the
time scale of the simulation. The mRNA is produced at the site of
the gene, and for this reason, we assume a fixed point starting loca-
tion following Refs. 31 and 33. It would also be possible to assume
a uniform position in the nucleus, in which case we would take
the expected value over the uniform distribution on a sphere of
radius rn.

The cytoplasm is modeled by a spherical shell of inner radius rn
and outer radius rc. We set an absorbing boundary on the inner sur-
face and a reflexive boundary on the outside. Again, taking advan-
tage of the spherical symmetry of the domain, we obtain an analytical
solution of Eq. (19),

⟨T(r)⟩ =
r3
nr − rn(2r3

c + r3
) + 2r3

c r
6Drnr

, ∀r ∈ [rn, rc]. (22)

We then compute the expected exit time (i.e., the entry time
in the nucleus) for a particle whose starting position is selected at
random within the domain, that is, the initial position is uniformly
distributed across the cytoplasm. This is done by integrating Eq. (22)
over the uniform distribution,

kentry =
∫Ω dx0

∫Ω⟨T(x0)⟩dx0
=

15rn(r3
c − r3

n)D
5r3

nr3
c − 9rnr5

c + 5r6
c − r6

n
. (23)

An mRNA molecule immediately starts producing P molecules
after exiting the nucleus. This implies that on the microscopic scale,
P molecules will be produced close to the membrane for some time,
until the mRNA has had time to become well-mixed inside the
cytosol. In turn, this also implies that the P molecules will, possibly,
diffuse back into the nucleus quickly.

Since we assume molecules to always be well-mixed inside their
domains in the compartment-based model, we cannot simulate this
process with high accuracy if the production of P molecules in
the cytosol and the entry rate are too fast. Intuitively, we should
have a mesoscopic entry rate that is slower than the time that it
takes for the molecule to get well-mixed, which is proportional to
V2/3

cyt /6D. In Sec. IV, we investigate the parameter domain where
the well-mixed model (WMM) and the new compartment-based
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model (CBM) accurately approximate the microscopic particle
simulation.

IV. NUMERICAL EXPERIMENTS
In this section, we assess the accuracy and limitations of our

proposed multiscale approximation strategy and study the poten-
tial performance gains. First, we look at the errors in a chosen set
of summary statistics and by comparing distributions via the Kol-
mogorov distance. Then, we demonstrate a practical application of
the approximation in a likelihood-free parameter inference setting.

A. Approximation quality
We generate 256 parameter points from a 16 × 16 grid span-

ning our 2D parameter space. For each parameter point, we simulate
each model level (well-mixed, compartment-based, and fully spa-
tial) and compare the results using the Kolmogorov distance metrics
described in Subsection II D and by comparing the distance between
a set of summary statistics.

Summary statistics such as moments are commonly used in
likelihood-free inference to reduce data dimensionality and are crit-
ical to ensure good efficiency in the context of Bayesian parameter
inference.49 Choosing good or even optimal summary statistics is a
hard problem in practice. For the sake of simplicity, we here use a set
of four commonly used summary statistics: the mean value, the stan-
dard deviation, the minimum value, and the maximum value. We
apply these statistics to the two species of interest in our model (P
and mRNA, using the total amount in the entire cell for both species)
and normalize these values, before using the L2 norm to compute the
final distance between two simulations.

Each simulation consists of an ensemble of 64 statistically inde-
pendent realizations. The simulation process can be described as
follows: we first generate the initial state by running the simulation
for 1000 min using the base parameters from Table I, in order for
the simulation to reach the steady state. We run the simulation for
1200 min using the current parameters and discard the first 200 min
as burn-in. Each of the 64 trajectories then contains 100 time sam-
ples. We then extract the marginal distributions of both mRNA and
proteins and use these 2 × 6400 values to compare each model.

We ran all simulations on Rackham, a High Performance
Computing (HPC) cluster provided by the Multidisciplinary Cen-
ter for Advanced Computational Science (UPPMAX). Each node on
Rackham is equipped with two 10-core Intel Xeon E5 2630 v4 at
2.20 GHz/core and 8 × 16 384 MB (128 GB) of ECC 2400 MHz
DIMM DRAM memory. Each simulation was run on a single core.
Simulation time ranged from 2.5 to 23.1 s for the WMM, from
2.5 to 34.0 s for the CBM, and from 240.8 s to 34 h 28 min for
Smoldyn, depending on parameter values. In all cases, the shortest
runtimes were obtained when both the diffusion and the reaction
rates were minimal, while the longest runtimes were reached when
these parameters were maximal.

As expected, the well-mixed approximation is accurate down
to Smoldyn’s step size error compared to the spatial model provided
the diffusion is high enough compared to the reactivity of the system.
Conversely, as diffusion slows down, the well-mixed approximation
loses accuracy. Figures 3(a) and 3(c) provide quantitative insight
into the validity of the well-mixed approximation for this model
system. While the simple well-mixed model attempts to incorporate

FIG. 3. Measured error between Smoldyn and the WMM [(a) and (c)] and the CBM
[(b) and (d)], using either summary statistics [(a) and (b)] or the Kolmogorov dis-
tance [(c) and (d)], depending on parameters D and χ. In all four cases, accuracy
decreases as diffusion decreases and χ increases. Overall, the CBM is signifi-
cantly more accurate than the WMM, especially when using summary statistics,
when diffusion is low and χ is high. The white line on the color bar corresponds
to the threshold for selecting Smoldyn’s step size. Every difference below this
threshold is not significant.

effects from diffusion via the diffusion-controlled rate (8), it is inher-
ently limited by the failure to resolve the spatial details of the model
(e.g., the relative size and shape of the nucleus and the cytoplasm).

The CBM also relies on the well-mixed approximation
(although for smaller domains, where this approximation is more
likely to hold true), and we expect a similar trend in accuracy to the
WMM but with an improved range of validity. Figures 3(b) and 3(d)
show the summary statistics distance and the Kolmogorov distance
between Smoldyn and the CBM. Similar to the well-mixed model,
the approximation deteriorates as diffusion slows down and reac-
tion rates increase, although this happens in a smaller section of the
parameter space compared to the WMM. In addition, in the case of
summary statistics, this trend is much less visible than with the Kol-
mogorov distance. In other words, it seems that the compartment-
based model is accurate up to the second order moment for the cross
section of the parameter space we have studied.
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FIG. 4. Simulation time for all three models, depending on parameters D and
χ. Overall, when the WMM or the CBM matches Smoldyn’s accuracy, it can be
expected to be two or three orders of magnitude faster.

We can divide the cross section of the parameter space into
three main regions: in the upper left corner, the well-mixed approx-
imation is good enough and both the CBM and the WMM show
results close to the particle simulation. In the bottom right corner,
where diffusion is very slow and reactions are fast, neither the CBM
nor the WMM approximates Smoldyn well; the error is notably
higher although there is a significant improvement in the CBM com-
pared to the WMM. In between these two regions lies a transition
area, where the approximation is good enough with the CBM but
not with the WMM. This range is large in the case of the summary
statistics we consider. In summary, the CBM extends the region with
acceptable accuracy comparable to Smoldyn substantially compared
to the WMM.

These results also provide quantitative information regarding
which model to use depending on the parameter of the system:
roughly speaking, based on these experiments, if the ratio between
the diffusion and the transcription rate D/χ is below 0.05, we can
expect Smoldyn to be the best option. If this ratio is between 0.05
and 0.1, the CBM becomes the best choice (based on its significantly
faster runtime). Finally, if the ratio is above 0.1, all models show
comparable accuracy.

The gain in accuracy of the CBM over the WMM would not be
of any practical use if it translated to a significant increase in com-
putational cost. In Fig. 4, we show the computation times of all three
models across the same cross section of parameter space. For Smol-
dyn, we only record the time necessary to run the simulations with
the finest, acceptable time step, i.e., we discard the time spent adapt-
ing the simulation to find this time step. We recall that the time steps
are chosen such that the self-error between two successive time step
halvings is below the 0.10 threshold. Our results show that both the
WMM and the CBM remain two or three orders of magnitude faster
than Smoldyn across the whole parameter subspace studied in this
paper.

B. Likelihood-free parameter inference using
approximate Bayesian computation

Next, we consider the task of inferring the reaction rate para-
meters in the Gene Regulatory Network (GRN) model from time
series data. Specifically, we generate data using the fine-scale spatial

model and then study how parameters inferred using the WMM
compare to those obtained using the CBM.

Approximate Bayesian Computation-Sequential Monte Carlo
(ABC-SMC) is a popular likelihood-free parameter inference tech-
nique commonly used in systems biology. The method relies on
systematic comparisons of the observed data and the data gener-
ated by simulating the system with parameters drawn from a prior
distribution. Parameter sets that lead to a small distance (as deter-
mined by a threshold parameter) between simulated and observed
data are retained and are used to form the posterior distribution.50

The high-dimensional nature of the time series data leads to a high
variance, so in practice, the distance is usually computed based on
summary statistics, such as the statistics demonstrated in Fig. 3, or
the Kolmogorov distance.47

The choice of the distance threshold is also important for both
accuracy and performance; if it is too large, many parameter sets are
retained and the posterior does not improve much from the prior,
and if it is too small, the computational cost of simulations becomes
prohibitive due to low acceptance rates, especially if the simulator is
expensive. In ABC-SMC, successive sets of samples are generated
with finer and finer thresholds to approximate the true posterior
distribution of the parameters to be estimated.51 To compute each
set (called a population), a new parameter point (called a particle)
is sampled from the distribution of the previous population (now
used as the prior distribution). Once enough particles have been
accepted in the current population, the threshold is refined and a
new population is generated. The final result is taken as the posterior
distribution. ABC-SMC can also be used to compare several alter-
native models. In this case, the model used to simulate the data is
represented by an extra parameter to be inferred. The posterior dis-
tribution of this parameter then gives the probability of each model,
given the data.

Here, we conduct such a model comparison to highlight how
the CBM can be used as a cheap surrogate of a full spatial simulation,
capturing data better than the well-mixed model. For this experi-
ment, we use the Python framework pyABC.52 Synthetic observed
data are generated with Smoldyn and comprise 64 trajectories, each
with 100 time samples. We use the summary statistics from Sec. IV A
and the Euclidean distance to measure the difference. All simulation
parameters are kept the same as those in the previous experiment.
We let pyABC generate ten populations, starting from a uniform
prior and using the default strategy to refine the thresholds (namely,
MedianEpsilon, which sets the next threshold to the median of the
distances of the current population).

Figure 5 summarizes the results. Each row shows the poste-
rior estimate for a different synthetic dataset. The true parameters
used to generate the observed data are shown with orange dots and
vertical dotted lines. The first and second columns show the poste-
rior distributions generated from the last population with the WMM
[(a), (d), and (g)] and the CBM [(b), (e), and (h)], respectively. In
the case where the last population did not contain enough particles,
the last population containing more than ten particles was used. The
last column [(c), (f), and (i)] shows the model probabilities for each
model.

For the first parameter set (first row) when the diffusion is
fast (reaction-limited reactions), both the WMM and the CBM pro-
vide acceptable estimates of the true parameters and neither model
is clearly favored. In this regime, the standard WMM model is an
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FIG. 5. Posterior distributions computed using ABC-SMC as implemented in pyABC, using synthetic data generated with Smoldyn for three different possible parameter
points. Summary statistics were used to measure the distance between the candidate particles and the synthetic data. The posteriors were computed using either the WMM
[left column; (a), (d), and (g)] or the CBM [middle column; (b), (e), and (h)]. The orange dots and vertical lines denote the true parameter values used to generate the observed
data. The right column [(c), (f), and (i)] shows the posterior probabilities assigned to each model. For the first parameter set, both models result in relatively good estimates of
the true parameters [(a) and (b)], and we are not able to select a clear preferred model (c). For the second parameter set (middle row), the CBM posterior results in relatively
accurate inference, while the WMM gives poor results. The CBM is selected as the clearly favored model (f). For the third parameter set (last row), both models struggle to
recover an accurate posterior mean, although the CBM is still heavily favored in terms of model probabilities, highlighting the fact that it captures critical features of the spatial
dynamics.
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TABLE II. Estimated minimal execution cost for an ABC-SMC experiment using either
of the three solvers, for three pairs of values (D, χ): high diffusion (1.04, 1.74), medium
diffusion (0.32, 1.74), and low diffusion (0.02, 9.19). For practical reasons, the time is
estimated from the accepted particles collected by pyABC and thus provides a lower,
ideal bound to the actual time it would take to run these experiments.

Estimated minimal cost (core hours)

Solver High diffusion Medium diffusion Low diffusion

WMM 1.70 1.47 3.49
CBM 2.21 1.79 1.14
Smoldyn 4635.48 3405.71 780.40

acceptable approximation to the spatial dynamics from the perspec-
tive of inferring parameters. For the second parameter set (second
row), the system becomes diffusion-limited and the spatial effects
become more prominent. As can be seen, the CBM provides a rea-
sonable estimate of the true parameters, while the WMM yields poor
results. By the time the last population is complete, the CBM is heav-
ily preferred by pyABC (f). For the final parameter point in the
strongly diffusion-limited regime (third row), neither model results
in a good estimate, although the CBM is still strongly preferred over
the WMM (i).

Clearly, given a sufficient computational budget, using the
Smoldyn simulator during inference, should result in even bet-
ter parameter estimates, at the cost of much longer computational
times. To estimate this cost, we sampled the computational time of
the three solvers across the studied parameter space in Fig. 4. As can
be seen, the detailed spatial model requires one to several orders of
magnitude longer simulation time depending on parameters. We
then looked at the accepted particles from the three experiments
presented in Fig. 5 and interpolated their cost for each of the three
solvers, in terms of computation time, using the data from Fig. 4.
The results are presented in Table II. Since the sampling particles for
each population are an embarrassingly parallel problem, we express
the cost estimate in terms of core hours. However, note that this is
the estimated cost of the accepted particles only; hence, it is a lower
bound of the true cost. Indeed, it does not include the overhead asso-
ciated with the pyABC software, the non-parallelizable sections of
the ABC-SMC algorithm, or the time associated with rejected parti-
cles (which are not included in the pyABC output). For our experi-
ments underlying Fig. 5—where we used a mixture of simulations
from the WMM and the CBM—the total cost including accepted
and rejected particles ranged from 10 to 100 core hours. It is clear
that the estimated minimal cost of an inference experiment with
either the WMM or the CBM is several orders of magnitude lower
than the cost associated with Smoldyn. At the same time, the cost of
using the CBM only is marginally higher that that using the WMM,
highlighting the substantial potential gains from using a surrogate
model.

Overall, our results show that using the compartment-based
approach does increase the accuracy of the well-mixed approxima-
tion, both generally in terms of the error for selected summary statis-
tics and marginal distributions (Fig. 3) and in the context of para-
meter inference tasks using state-of-the-art likelihood-free methods
(Fig. 5) As expected, the errors in the approximation depend on the

degree of the diffusion control of the system, which we highlight by
varying parameters in the space of the diffusion rate and the reac-
tivity of the system. Importantly, we show that the CBM, compared
to the WMM, provides a boost in accuracy for diffusion-controlled
systems resulting in much more accurate parameter inference in this
regime, at a marginal increase in computational cost.

V. DISCUSSION
The well-mixed assumption is a common approximation in

computational systems biology, and its theoretical framework is well
established. However, spatial dynamics can have a strong influence
on the dynamics. In practice, it is important for large-scale model-
ing tasks such as model exploration and parameter inference to use
the cheapest possible simulation method that can accurately cap-
ture the behavior of interest. We compare the classic well-mixed
approximation and a fine-grained spatial particle-based simulation
for a negative-feedback regulatory network and propose a new com-
putationally cheap compartment-based multiscale approximation
that greatly extends the well-mixed model’s domain of applicabil-
ity. We focused on the two parameters that influence the degree of
well-mixedness of the system, namely, the diffusion rate and the
speed of the chemical reactions. Our results reveal in which area
of the parameter space the well-mixed assumption can be relied
on, and they show a clear advantage for the compartment-based
model.

We obtain an a priori parametrization of the proposed mul-
tiscale model by relying on a concentric sphere geometry for the
cell. However, we note that in the case of a general geometry, the
reaction rates in the compartment model could be readily obtained
by solving Eq. (19) numerically. A clear advantage of the concen-
tric sphere geometry used in this study is that we are able to derive
analytical formulas for the transition rates between compartments.
This makes it possible to cheaply parametrize the model for any
parameter combination. This geometry is an important case; it is by
far the most commonly considered geometry in spatial models of
eucaryotes, and it is also used in the overlapping-sphere model53 for
multicellular simulation. A recent study used such an overlapping-
sphere model together with particle simulations to study the effect
of spatial dynamics in gene regulation on receptor activation and its
role in tumor growth.32 A future envisaged application area of the
multiscale compartment model developed herein is a means to add
spatial stochastic detail in such simulations with only a moderate
increase in the computational cost.

We here considered two compartments—one for the nucleus
and one for the cytoplasm. It is of course possible to add more com-
partments, either to model other spatial features of the cell or to
refine the position of each particle in the cell, in a similar fashion
to the RDME framework.14 In this case, the transition rate from
one compartment to another would be computed by first setting a
Dirichlet boundary condition at the interface between these com-
partments and a Neumann boundary condition everywhere else, and
then solving Eq. (19). Thus, the same domain with different bound-
ary conditions would be used to get the transition rates from one
compartment to all its neighbors. We note, however, that the objec-
tive here is to use very few compartments to obtain a cheap approx-
imation, rather than to provide an alternative to a resolved RDME
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simulation, which would also become prohibitively expensive in the
type of parameter inference task we demonstrate here.

We chose a model of negative-feedback gene regulation as a
model problem in this study. While here cast in generic terms, we
would like to emphasize that by including the spatial dimension, the
size of the model is quite representative for models previously con-
sidered in applied spatial modeling projects,4,30 and in particular, it
is identical to a model of the Hes1 dynamics31 (but there parame-
terized to compare to a specific dataset). Although subject to future
studies, we believe that the method will generalize to larger, more
complex networks. For example, Mitogen Activated Protein Kinase
(MAPK) pathways are structurally very similar to the model we use
here when it comes to the spatial aspects. The key difference would
be additional species and more reactions in the cytoplasm (the phos-
phorylation cycles). However, the actual dynamics regarding the
transport to the nucleus could be modeled in almost the same way as
our example, and this is an important reason for why we chose this
model problem. Our approach is best suited for the scenario where
the key spatial aspect is the diffusion-limited transport between main
cellular compartments such as the cytosol to the nucleus as it cap-
tures the mean first passage times accurately. It is less suited for
scenarios where fine-grained localized spatial correlations between
molecules have large direct effects; i.e., for highly diffusion-limited
scenarios a fully resolved spatial model will be needed, as is expected
and can be seen in our numerical results.

We chose to compare models using two metrics, the first based
on a small set of summary statistics and the second on the Kol-
mogorov distance. Summary statistics are a common tool in the
Bayesian likelihood-free inference. Using a different set of summary
statistics would influence the measured error between our mod-
els. For instance, we expect the possibility to differentiate between
the different modeling levels in the model selection we conduct to
depending on both the summary statistics and the amount of data
available. This is itself an interesting question and will be investi-
gated in a future study. We also note that compared to only con-
sidering the mean values, the Kolmogorov distance better captures
the dynamics involved in our system (see Fig. 2). Kolmogorv dis-
tance has also been used for Bayesian inference and model selection
from fluorescent activated cell sorting (FACS) data in Ref. 47 as a
metric to compare simulated data to experimental data. For the sake
of simplicity, we only used synthetic data for this study, but a similar
approach with experimental data would be relatively straightforward
following the same protocol.

Finally, we want to comment on the proposed CBM approxi-
mation vs RDME simulations, which would fall in between Smoldyn
and the well-mixed models in cost, provided the mesh resolution
is not too fine. It is natural to think that a very coarsely resolved
RDME simulation would compare favorably to this approximation.
However, this is not likely for two main reasons: (1) The over-
head of handling meshes and the many diffusion jumps for larger
diffusion constants become relatively large compared to a highly
optimized well-mixed code. (2) Our approximation relies on ana-
lytical hitting times accounting for the actual geometry, and these
can be expected to perform better than a RDME approximation
using very large mesh elements (which would not be able to resolve
the boundaries in a reasonable way). Even in the case that a coarse
RDME simulation would have about the same accuracy as the CBM
appromixation, it would be slower and much more complex to setup,

so it would be outside its “sweet spot” in terms of efficiency/fidelity
trade-off (medium to high spatial resolution). Furthermore, here we
are seeking approximations that have a very small software com-
plexity footprint (to facilitate, e.g., future integration in muticellular
simulations). RDME software for non-cubic domains intrinsically
has a need for mesh generation and assembly of diffusion jump coef-
ficients. We want to avoid this in this work, to arrive at a very cheap
model that carries the key spatial features without all the engineering
complexity. A distinct advantage with the proposed approximation
is that it can be readily simulated with any well-mixed code. This
means that it can readily be used also in inference packages such as
Sciope54 that supports Gillespy2.45
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APPENDIX A: HITTING-TIME DERIVATION
1. Equation for the first-exit time

In order to derive closed-formed formulas for the exit and entry
rates, let us consider a particle starting at position x0 and diffusing
in some domain Ω, with an absorbing boundary Γa and a reflexive
boundary Γr , and let X(t) be the position of the particle at time t.
Additionally, let us denote PX(x, t|x0, t0), the probability distribution
ofX, andT(x0), the random time when the particle hits the boundary
of the domain.

Let us now consider G(x0, t), the probability that a particle
starting at x0 is still in Ω at time t,

G(x0, t) = ∫
Ω
PX(x, t∣x0, 0)dx. (A1)

Put differently, 1 − G(x0, t) is the probability that the particle
has already exited the domain at time t, i.e., P(T(x0) ≤ t). By defini-
tion, this is the cumulative distribution function of T(x0); hence, the
probability distribution function of T(x0) is given by

PT(t; x0) = −
∂G(x0, t)

∂t
. (A2)

The expected first-exit time is then given by

⟨T(x0)⟩ = ∫

∞

0
tPT(t; x0)dt = ∫

∞

0
t(−

∂G(x0, t)
∂t

)dt. (A3)

Integrating by parts, it can be shown that the following equation
holds:
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⟨T(x0)⟩ = ∫

∞

0
G(x0, t)dt. (A4)

Following Ref. 48, we now write down Einstein’s Fokker–Planck
equation, also known as the Smoluchowski equation,

∂

∂t
PX(x, t∣x0, 0) = DΔxPX(x, t∣x0, 0), (A5)

subject to the initial condition

PX(x, 0∣x0, 0) = δ(x − x0), x0 ∈ Ω (A6)

and the following boundary conditions:

PX(x, t∣x0, 0) = 0, ∀t ≥ 0 ∀x ∈ Γa ∀x0 ∈ Ω, (A7)

∂

∂x
PX(x, t∣x0, 0) = 0, ∀t ≥ 0 ∀x ∈ Γr ∀x0 ∈ Ω, (A8)

where Δx is the Laplacian operator according to variable x.
Our system being temporally homogeneous (i.e., the dynam-

ics of the system do not depend on some external clock), we can
write the equivalent backward Fokker–Planck equation, where the
Laplacian is now computed with respect to x0,

∂

∂t
PX(x, t∣x0, 0) = DΔx0PX(x, t∣x0, 0). (A9)

With boundary conditions,

PX(x, t∣x0, 0) = 0, ∀t ≥ 0 ∀x ∈ Ω ∀x0 ∈ Γa, (A10)

∂

∂n
PX(x, t∣x0, 0) = 0, ∀t ≥ 0 ∀x ∈ Ω ∀x0 ∈ Γr . (A11)

We can now integrate this equation over Ω, which gives

∂

∂t
G(x0, t) = DΔx0G(x0, t). (A12)

We finally integrate this equation in time,

∫

∞

0

∂

∂t
G(x0, t)dt = DΔx0 ∫

∞

0
G(x0, t)dt, (A13)

which gives us
DΔx0⟨T(x0)⟩ + 1 = 0. (A14)

2. Boundary conditions
Putting (A1) and (A4) together, note that

⟨T(x0)⟩ = ∫

∞

0
∫

Ω
PX(x, t∣x0, 0)dxdt. (A15)

From (A10), we get

⟨T(x0)⟩ = 0, ∀x0 ∈ Γa. (A16)

From (A11), we get

∂

∂n
⟨T(x0)⟩ = 0, ∀x0 ∈ Γr . (A17)

FIG. 6. Self-distance between two sets of 32 trajectories and 100 time samples,
using both the Euclidian distance based on summary statistics (a) and the Kol-
mogorov distance (b). The white line shows the average self-distance (21.2 for the
summary statistics and 0.033 for the Kolmogorov distance). With 64 trajectories,
the average distances can be expected to be around 15.0 with summary statistics
and 0.023 with the Kolmogorov distance. In the case of the Kolmogorov distance,
this is much below the threshold we used to select Smoldyn’s step size (0.1).

APPENDIX B: SELF-DISTANCE
Figure 6 shows self-distance between two sets of 32 trajectories

and 100 time samples, using both the Euclidian distance based on
summary statistics and the Kolmogorov distance.
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