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Abstract

This paper presents an approach to describing the three dimensional shape of a violin plate

in mathematical form. The shape description begins with standard contour lines and ends

with an equation for a surface in three dimensional space. The traditional specification of

cross sectional arching is unnecessary. Advantages of this approach are that it employs

simple and universal description of plate geometry and yields a complete, smoothed, pre-

cise mathematical equation of the plate that is suitable for modern three dimensional pro-

duction. It is quite general and suitable for both exterior and interior plate surfaces, yielding

the ability to control thicknesses along with shape. This method can produce mathematical

descriptions with tolerances easily less than 0.001 millimeters suitable for modern comput-

erized numerical control carving and hand finishing.

1 Introduction

This paper describes an approach for constructing three dimensional mathematical models for

the shape of violin plates that has not previously been used in the violin community. The

method consists of two modeling steps beginning with ordinary plate contour lines. First, each

contour is individually modeled with a general flexible equation independent of its elevation.

Second, the coefficients from contour equations are quantitatively related to elevation using a

second set of simple models. These steps jointly smooth and synthesize contour lines into a

complete surface. The result also allows any number of additional contours to be drawn con-

sistent with the originals and resulting surface. This represents essentially a full mathematical

description of the plate surface shape that can be applied to both exterior and interior surfaces.

Models based on contours are useful in planning and executing three dimensional (3D)

construction, and have been applied in cardiac imaging [1, 2]. They appear especially useful

for computerized numerical control (CNC) methods that have become more affordable and

commonplace in recent years for violin construction. Mathematical models of the physical

structure of violins and the ability to alter them systematically may also contribute to under-

standing of acoustics. There is also a strong sense of aesthetics associated with mathematical
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approaches, although it is quite different from the visual, acoustic and traditional aesthetics

surrounding musical instruments.

A variety of methods for constructing violin plates are in use, including visual and tactile

guides, arching models, complex geometric prescriptions for constructing an outline and f-
holes, and mathematical descriptors of cross sectional curves. Some traditional methods using

those techniques are discussed in Roy [3] and Heron-Allen [4]. One cannot underestimate the

ability of human training, memorization of the shape with eyesight, feel, and step-wise system-

atic production to produce a consistent and beautiful result using classical means. For con-

struction via computerized methods, three dimensional scanning and reverse engineering

have been applied. As successful as they can be, these methods are unable alone to produce a

complete detailed quantitative model of the required shape, or more importantly, to yield

methods for slight adjustments and modifications of the design under exact control. That

capability would allow one to produce precise differences in output when carved under com-

puter control.

To obtain high precision, we require a model, function, or equation, which I will denote by

z = Z(x, y), that gives the correct surface elevation, z, for every x and y coordinate inside the

outline of the plate. We can take the origin (x = 0, y = 0, z = 0) to be the centroid of the bound-

ing box for the belly plate. However, the approach presented here is independent of the exact

location of the origin. Knowing Z(x, y) permits exact specification of the surface, contours,

cross sections or any other features of interest. This allows fine control over computerized tool

paths or thicknesses.

A variety of idealizations with varying degrees of mathematical rigor have been applied to

violin design. For example, classical arching has been said to follow the shape of a curtate

cycloid [5] and various tools are available to make it so. The cycloid was first described by Gali-

leo in 1599; a comprehensive discussion of its geometry was given by Proctor [6]. It is the path

followed by a fixed point at radius b< a, where a is the radius of a rolling circle. The paramet-

ric equations for a curtate cycloid are x = at − b Sin(t) and y = a − b Cos(t). The curtate cycloid

is probably not the correct literal shape for arching [7, 8], but may be useful because it repre-

sents a drawing tool/technique that can approximate the intended shape.

Muratov [9] suggests that the arching results when gravity acts on a flexible surface, and

shows how it might be constructed using an outline form, cloth, and repeated coats of plaster.

Photographs on his web site are not so convincing as to the accuracy of this method. This idea

of gravitational action on a flexible sheet has an intuitive appeal, and an exact mathematical

representation related to the catenary. The one dimensional catenary curve is well known, and

the problem describing it lies at the origins of the calculus of variations [10]. A catenary surface

however is a difficult mathematical beast [11]. The principles related to its specification were

known to Lagrange [12], and the relevant nonlinear second order partial differential equation

characterizing a catenary surface was known to Poisson [13]. It is
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@
2u
@x2
� 2pq

@
2u

@x@y
þ ð1þ p2Þ

@
2u
@y2

� �

¼ 0; ð1Þ

where p ¼ @u
@x, q ¼ @u

@y, k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2 þ q2

p
, g is the gravitational constant, and � is the density of

the surface [11]. At the boundary, u = 0. This describes the equilibrium condition between the

forces of gravity and tension in the fabric that is implied in Muratov’s construct.

The solution to Eq 1 presents many challenges and is not easily available even in powerful

computing packages, either analytically or numerically. However the solution can be simulated

in the computer design package and physics engine Kangaroo [14] for Rhino/Grasshopper

[15], and the results are disappointing for plate shapes. With the outline of a violin plate
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perimeter, a uniform tension two dimensional catenary assumes arching that is deeper in the

upper and lower bouts than in the C bouts (Fig 1). It is important to note that Fig 1 has an

expanded and arbitrary z-axis to demonstrate the shape. Hence even flatter surfaces also have

a saddle that results from the requirement for uniform tension in Eq 1 and the narrow midsec-

tion. A uni-modal surface might be produced by varying the tension or altering the mass or

force applied at each point or in various regions of the surface. This is likely to be a complex

problem that may not have a simple physical analogy or easy mathematical representation.

Cycloids and catenaries evidently do not represent exact mathematical design prescriptions,

although it is possible that clever modifications of them could find some future practical use.

In this paper we take a more empirical approach to describing surface shape rather than pre-

scribing it. Our starting point is with the contour lines that are commonly used to describe the

shape of plates.

2 Methods

2.1 Modeling individual contours

Contour lines are a standard representation of three dimensional data like topographic maps.

They have been used for centuries to describe the shape of violin plates because they are simple

to measure and represent in two dimensions in charts or books. However, contours do not

seem to have been taken seriously by those addressing a quantitative three dimensional model

of the entire plate. The method described here begins with these contours, mathematically

modeling each one individually, and then combining the individual models into a cohesive

whole. Imperfections within or between contours can be corrected during the process.

I will illustrate this method using contour lines for an instrument following Sacconi [16]

and modified personally. These contour lines in the form of an image file were imported into a

computer aided design (CAD) package where they were traced by hand, induced to be sym-

metric about the midline (Y) axis, and converted to three dimensional coordinates. Direct

Fig 1. Catenary surface for violin outline based on numerical simulation of Eq 1. The z direction is exaggerated and reversed to demonstrate the

non-monotonic surface that always results when tension is equal everywhere in the surface.

doi:10.1371/journal.pone.0171167.g001
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digitization using raster to vector conversion software such as WinTopo [17] is an alternative.

The curves were then imported into a CAD program and graphically placed at correct vertical

heights to yield a skeletal 3D representation of a plate surface. Plate cross sections were not

used in any way. For each plate, both exterior and interior surfaces were represented in this

way. Each surface comprised 9 contour lines. Only the contours representing the smooth arch-

ing away from the plate edges were used, avoiding the problems associated with the sinking or

re-curve, and corners on contours near the edges. Although the contours originated in a classi-

cal drawing, my personal changes, imperfections, and errors yield something that may not be a

true copy of any particular instrument. This is irrelevant for the results, because the method

can apply to any set of contours. The contours used are provided in a space delimited plain

text file as described in Section 4. The details that follow are for the exterior back surface of the

violin.

This simple skeletal representation can be used to reconstruct plates for CNC milling, for

example using a 3D spline interpolation to fill in the arching between contours. This process

brings out the need for smoothing, consistency, and adjustment of the contours. Even clean

contour lines have slight internal inconsistencies, more so among each other than within a sin-

gle contour. The resulting surface usually has creases or other irregularities after 3D spline

reconstruction. While these anomalies can be smoothed in hand finishing, doing so might

take one farther away from the intended surface. It is desirable to make the contour curves as

consistent as possible with each other to minimize the need to remove imperfections. Perfectly

consistent contour lines would not need Z smoothing.

The first step is to construct a basic model for a single contour. Each contour curve was

converted to a set of points by sampling every 0.25 to 1.0 millimeters depending on its length.

This yielded between about 100 to 1500 points per contour. The exact number of points sam-

pled is not critical provided the shape is captured. Each contour curve is an oval or a pinched

oval, suggesting a trigonometric base model as one would typically use for periodic data. Any

single curve can be modeled very nicely as the set of points [X(t), Y(t)] with coordinates equal

to the weighted sums,

XðtÞ ¼ x0 þ
Xm

k¼1

pkSinðktÞ ð2Þ

and

YðtÞ ¼ y0 þ
Xn

k¼1

qkCosðktÞ; ð3Þ

where the constants p1 . . . pm and q1 . . . qn are unique to each contour curve, and 0� t� 2π
(radians). This is formally called a “parametric” model because the coordinates are specified in

terms of the dummy parameter t. The term y0 is present because the curves may not be verti-

cally perfectly centered. An x0 term is expected to be negligible because the contours are explic-

itly horizontally centered and made symmetric around the y axis. The z coordinate is the same

for all points in a given contour, by definition.

This model may seem a bit mysterious but will be more intuitive if one imagines polar coor-

dinates. In Eqs 2 and 3, the dummy parameter t represents angular measure. The parametric

equation for a circle is [Sin(t), Cos(t)] with 0� t� 2π. Recall the trigonometric identity Sin2 +

Cos2 = 1: hence the points on the circle are a constant distance from the origin. For points on

an oval, the distance from the center varies with angle in a sinusoidal fashion. In model fitting

with discrete points it is more convenient to replace angular measure with fractional curve

length for each point, fi, which is easily calculated from the total number of sample points n as,
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fi = i/n. For a circle, these would be identical to angular measure, but for an oval, fractional

curve length only approximates angular measure. Also, in a pinched oval, angular measure is

not monotonically increasing as the curve is traversed, whereas fractional curve length is

monotonic.

Fitting this and other models to data points derived from contour curves, diagnostics, and

graphics requires sophisticated mathematical modeling software. All the computations and

graphics described herein were accomplished using Mathematica [18]. This report contains

refined descriptions that might well be accomplished in simpler packages. However, develop-

ment and exploration of these methods has required extensive capabilities, the details of which

are not described here. A pdf file of the Mathematica program to accomplish all the calcula-

tions, tables, and graphics in this paper is available from the author.

For simple shapes like the pinched ovals of plate contours, the number of sine and cosine

terms in the sums above can be relatively small. In all cases, I set m = n = 7 which is adequate

for accurate matching of the model to all the contour lines. Inaccuracies are evident when the

number of terms drops below 4 or 5. Using the method of least squares to fit Eqs 2 and 3 to the

sampled points, the p and q coefficients or parameters that yield the closest overall fit of the

model can be determined. These are presented in Tables 1 and 2 There, estimates for x0 and y0,

which are generally close to zero have not been listed. An example contour and model fit is

shown in Fig 2. The set of 7 p and 7 q coefficients (parameter estimates) for that fit are listed as

contour (row) 4 of Tables 1 and 2, described below. Coefficients for a given contour curve are

critical to shape, but at the same time are somewhat arbitrary. They are simply shape descrip-

tors of the contour. What is not so obvious is that these shape descriptors demonstrate useful

simple relationships to the z coordinate or elevation across the collection of contours as illus-

trated in the next section.

Table 1. Estimated shape coefficients for the parameters in Eq 2. Estimates of x0 are not listed.

Contour Elevation p1 p2 p3 p4 p5 p6 p7

1 14.8 1.991 −0.032 −0.018 −0.013 −0.010 −0.008 −0.007

2 14.6 6.512 −0.250 1.343 −0.008 0.490 0.012 0.177

3 14.1 13.779 −0.624 2.767 0.138 0.873 0.094 0.280

4 13.3 20.633 −1.146 3.794 0.146 1.119 0.077 0.489

5 12.1 28.886 −2.154 6.279 0.089 1.474 0.205 0.568

6 10.0 39.399 −4.644 10.625 0.144 1.965 0.624 0.340

7 8.0 50.359 −5.568 15.172 1.482 1.773 0.615 −0.135

8 5.8 64.021 −7.728 20.435 3.097 0.305 0.380 −0.514

9 4.6 76.464 −8.325 24.328 4.444 −1.603 −0.102 −0.768

doi:10.1371/journal.pone.0171167.t001

Table 2. Estimated shape coefficients for the parameters in Eq 3. Estimates of y0 are not listed.

Contour Elevation q1 q2 q3 q4 q5 q6 q7

1 14.8 2.015 −0.016 −0.006 −0.003 −0.002 −0.001 −0.001

2 14.6 20.721 0.037 2.034 0.035 0.590 0.025 0.231

3 14.1 39.172 0.033 3.642 0.007 0.945 −0.031 0.311

4 13.3 56.795 0.199 5.350 0.157 1.469 0.091 0.547

5 12.1 77.406 0.485 6.984 0.365 1.702 0.249 0.528

6 10.0 100.034 1.679 8.000 1.146 1.273 0.805 0.036

7 8.0 120.333 1.873 8.663 1.025 0.756 0.724 −0.388

8 5.8 139.610 2.724 8.856 1.206 −0.075 0.907 −0.861

9 4.6 152.546 3.393 8.567 1.324 −0.888 1.015 −1.207

doi:10.1371/journal.pone.0171167.t002
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Contour models constructed in this way tend to be over-parameterized, meaning that a

model with fewer parameters would fit nearly as well. The models can be made more parsimo-

nious arbitrarily by using fewer coefficients. Another approach is to include a penalty term for

the total number of parameters or the sum of their absolute values in the sum of squares equa-

tion. This will force “unnecessary” parameters toward zero values. The impact of excess terms

can be that some parameters are imprecisely estimated. In many scientific applications, this

would be unacceptable because inferential importance is often attached to the estimated values

in models. This is not an issue here—we care only that the model represents the correct shape

even if it is internally partially redundant. Too few parameters yield inaccurate fits to the con-

tour, which disrupts the shape. So it is better to err on the side of slight redundancy.

Some may notice a similarity between typical contour curves and Cassini ovals, a family of

quartic curves [19]. I will briefly endeavor to keep readers from wasting their time—these are

not Cassini ovals, first investigated by the Italian astronomer Giovanni Domenico Cassini

(1625–1712) in 1680. Cassini ovals are sections of a torus and are not flexible enough for the

contours required in violin plate surfaces. The model I have proposed above is purely empiri-

cal, and is essentially a truncated Fourier series [20, 21].

Fig 2. Model fit to a single contour at z = 13.26. Coordinates are in millimeters. The solid line represents the

model, and points are derived from the actual contour line. Every fifth data point is shown. Very minimal lack of

fit is evident in the most acute curvatures. The aspect ratio of this figure is 1.

doi:10.1371/journal.pone.0171167.g002
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2.2 Modeling coefficients versus elevation

To illustrate the relationship between the elevation of a contour and its shape characteriza-

tions, we can examine the set of coefficients for all 9 contour curves for the violin back exterior

in Tables 1 and 2. In those tables, each row is a contour and each column is an estimated

parameter. Note the fairly smooth pairwise relationships between elevation and the parame-

ters, also shown in Fig 3. This suggests that each coefficient can be made a continuous function

of elevation through numerical interpolation of those relationships. Each coefficient then

becomes a formal function of elevation, denoted by pi(z) and qi(z) for i = 1 . . . 7 and elevation

z. Using those interpolation functions, a contour can be constructed for any height, rather

than only for the small set of elevations actually measured. Continuity of shape coefficients

across elevation can be visualized in Fig 3 where each panel plots height versus one of the p or

q coefficients. Construction of the solid lines in Fig 3 will be described below.

This step of the overall modeling process affords the greatest flexibility. Although we sought

essentially a perfect fit for each contour curve, a perfect interpolation of shape coefficients

across elevation is not required. For example, there seems to be some noise in the estimated

values, perhaps due to over parameterization, asymmetry, or measurement error. Interpola-

tions of contour coefficients can smooth the surface shape. Likewise, varying the interpolations

will create differences in surface geometry. A common type of interpolation with cubic splines

goes exactly through the coefficient-height pairs and yields smooth minimalist curves between

the data points. The resulting surface will contain the original contours exactly.

In Fig 3 we can see the relationship between elevation and shape coefficients. In each plot,

the points are the fitted contour coefficients and the line drawn is a smoothed continuous rela-

tionship based on the cubic polynomial model

pi ¼ aþ b log ðW � zÞ þ c log ðW � zÞ2 þ d log ðW � zÞ3 ð4Þ

Fig 3. Relationships between elevation (horizontal axes) and estimated model coefficients (vertical

axes). Plotted points are values from Tables 1 and 2. Solid lines represent interpolations as discussed in the

text. The first eight plots are for estimates x0, p1–p7; the second eight plots are for y0, q1–q7. Note the

horizontal axis is the same for each plot; the vertical axis is different for each plot.

doi:10.1371/journal.pone.0171167.g003
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where a, b, c, and d are new parameters to be estimated and W is a fixed constant taken to be

slightly larger than the largest z. This model is cubic overall rather than cubic between points

as a spline would be. As such it yields large scale smoothing rather than small scale smoothing,

and was chosen for simplicity and empirically good fit. A model without logarithms could also

work—the exact form of this interpolation is essentially irrelevant except that it reasonably

represents the pi. The estimates for each p and q coefficient are shown in Table 3. There is one

equation for each coefficient, but the set of a, b, c, d’s is immaterial except to determine one

shape coefficient for given z. The interpolations do a reasonable job of representing the esti-

mated coefficients.

Why is this useful? Whereas each contour model is restricted to a fixed elevation, these new

models smooth and connect the shape coefficients across heights—z is not restricted to fixed

values within the range for the plate. In other words, we can draw a contour at any elevation, z,

by calculating the needed shape coefficients from the appropriate Eq 4 and plugging the coeffi-

cients in Eqs 2 and 3. We have replaced a set of discrete pi and qi by functions pi(z) and qi(z).

The shape coefficients change smoothly across heights because the slope or derivative of Eq 4

changes smoothly. The resulting contours are jointly consistent with the originals used to con-

struct the models and connect them ideally.

Additionally, we have replaced 14 × 9 = 126 coefficients (ignoring x0 and y0) for a given set

of contours with 14 × 4 = 56 parameters that smoothly determine a contour at any elevation.

This represents a terrific advantage in efficiency. We are now in a position to see a smoothed

version of a violin plate with any contours of our choosing. An example is shown in Fig 4

which shows the exterior back plate. In that figure, space between the contour lines is interpo-

lated to illustrate the smoothness of the surface. Such interpolation is not strictly necessary

because we are free to calculate dozens or hundreds of contour lines to fill in the gaps, although

this would be hard to draw. In any case, modeling allows or requires the contour shape coeffi-

cients to change smoothly with plate elevation. This induces the contours to change gently

with elevation, which creates smoothness in the surface. In addition we have a way to charac-

terize every point on the surface mathematically.

There is nothing special about Eq 4 as a representation of the way a shape coefficient

changes with elevation. A number of simple models with continuous first and second

derivatives might reasonably represent the data in Fig 3. This contrasts with the model in

Table 3. Estimated parameters from Eq 4 that make shape coefficients functions of elevation. For all these regressions, W = 17.

Coefficient a b c d

p1(z) −77.533 161.479 −95.539 21.222

p2(z) −1.507 4.435 −3.636 0.327

p3(z) −13.396 28.794 −18.552 5.171

p4(z) −7.251 17.679 −13.541 3.316

p5(z) 6.690 −17.586 14.944 −3.653

p6(z) 3.447 −8.220 6.031 −1.314

p7(z) 1.650 −2.693 −0.662 −0.107

q1(z) −164.517 316.284 −150.451 29.709

q2(z) 0.965 −2.187 1.233 −0.002

q3(z) −14.466 25.896 −9.805 1.264

q4(z) 2.303 −5.568 4.030 −0.788

q5(z) −3.563 5.609 -0.886 −0.357

q6(z) 1.645 −3.923 2.776 −0.527

q7(z) −2.505 4.682 −1.973 0.128

doi:10.1371/journal.pone.0171167.t003
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Eqs 2 and 3, which are fundamentally connected to the periodicity in individual contours.

Alternatives to Eq 4 will yield slightly different relationships between coefficients and eleva-

tion, which will in turn alter the shape of the surface. The resulting differences are likely to

be small, but there is no reason not to explore them. What should be avoided is simply con-

necting the coefficients with line segments. That strategy would not yield continuous deriva-

tives upon which smoothness depends and likely result in creases in the surface.

As examples, two additional interpolation strategies were applied to the shape coefficients.

One is an ordinary cubic spline [22, 23] with knots set at the observed coefficient-height pairs.

This interpolation reflects the exact values at the knots, and connects them with piecewise

smooth cubic polynomials. The overall interpolations can appear irregular, but the resulting

surface will be smooth. The third interpolation strategy is based on b-splines [22, 23], which

use the coefficient-height pairs as control points for the spline. The resulting curve does not

necessarily pass exactly through the coefficient-height points, but is responsive to their influ-

ence. The b-spline interpolation shows an intermediate degree of smoothness between the

Fig 4. Surface plot derived from smoothed contours as described in the text.

doi:10.1371/journal.pone.0171167.g004
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overall cubic polynomial and the piecewise spline. The interpolation representations of coeffi-

cient-height pairs is shown in Fig 5. Surfaces that result from these three interpolation strate-

gies are shown in Fig 6.

3 Results

3.1 The surface equation

In the beginning of this paper I indicated that it would be desirable to have the function z = Z
(x, y) that determines the elevation, z, of the plate for any x-y coordinates inside the plate

boundary. There are at least two ways to accomplish this. The first is based on the fact that any

point (x, y) can be projected vertically to intersect a contour line. Finding the contour that con-

tains the given (x, y) explicitly yields the elevation z. To see how this can be done, rewrite Eq 2

Fig 5. Examples of three methods of interpolating elevation versus coefficient points. From left to right

they are cubic spline, b-spline, and cubic polynomial. The top row is for coefficient q1 and the bottom row for p5

as examples. All methods are smooth on a fine scale. The b-spline and cubic polynomial are also smooth on a

large scale but may not fit the data points exactly.

doi:10.1371/journal.pone.0171167.g005

Fig 6. Surface plate shapes resulting from three interpolation strategies. From left to right they are

based on cubic spline, b-spline, and cubic polynomial interpolation. Note that the radial lines are not true radii

due to the fact that fractional arc length rather than angular measure was used in the contour model as

discussed in Section 2.1.

doi:10.1371/journal.pone.0171167.g006
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in the form

Xðz; tÞ ¼
Xm

k¼1

pkðzÞ SinðktÞ; ð5Þ

to indicate the effect of elevation by virtue of the pi(z) regression fits in Fig 2 and Table 3. Simi-

larly for Eq 3 and qi(z). We can then numerically solve the two simultaneous equations

Xðz; tÞ ¼ x; ð6Þ

Yðz; tÞ ¼ y ð7Þ

for any given x and y for the two unknowns z and t. Focus will be on the solution for z. The

value for the dummy parameter t is of no interest, but it is necessary to find a solution for the

system. Various methods could be used to solve this system, but one that works reasonably

well is to numerically minimize the quantity

T ¼ ðx �
Xm

k¼1

pkðzÞ SinðktÞÞ2 þ ðy �
Xm

k¼1

qkðzÞCosðktÞÞ2 ð8Þ

with respect to z and t. A few examples are shown in Table 4.

Although correct in theory, this method for Z(x, y) is somewhat inconvenient. Generating a

set of (x, y, z) coordinates is relatively slow and subject to errors because of the computational

burden. If (x, y) lies outside the contour boundary, the some solution methods may yield non-

sensical values because there is no basis to extrapolate there. The dummy parameter, t, which

was a mere convenience in Eqs 2 and 3 is now integral to the solution of Eq 8. But as illustrated

in Fig 6, the radial lines are irregular as a consequence of using fractional arc length rather

than angular measure for t in Eqs 2 and 3 (discussed in Section 2.1).

An alternative is to create a 3D interpolating function across a new family of smooth con-

tours. Many contours can be generated to give the interpolation extensive support. The inter-

polating function object, which I will denote by Zh(x, y), passes exactly though the contours

because they are smooth across elevation, and yields the z coordinate of any point (x, y). The

figures above are filled in using exactly such a 3D interpolation function. Zh(x, y) is also a small

computational burden because it represents the entire surface rather than a single (x, y, z)

point. But it is probably the fastest method to obtain coordinates for the surface. Here again

interpolations cannot be extended beyond the outer contour.

However we accomplish it, assume that we have a set of (x, y, z) coordinates representing

the surface of our violin plate. Those points should be of sufficient density that graphics or

simple interpolations in standard CAD/CAM packages will represent the surface accurately

for further processing. An advantage of surface modeling compared to solid modeling is that

partial control over plate thickness can be maintained by having separate interior and exterior

surfaces that can be machined independently. Alternatively one could assemble surfaces into

Table 4. Some example values for Z(x, y) from Eq 8.

x y Z(x, y)

55 -75 7.5

-27 43 15.6

15 30 15.3

-45 -45 8.2

doi:10.1371/journal.pone.0171167.t004
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solid objects in CAD/CAM software for machining. It is within the scope of inexpensive soft-

ware to generate raster tool paths from such solids. These will be necessarily a little coarse but

acceptable because hand finishing, such as scraping, is required. There are much better tool

paths than those based on rasters for these plates, but that is altogether a different complex

topic.

3.2 Results of modeling four plate surfaces

The methods described above were applied to both inside and outside surfaces of belly and

back plates (four surfaces total). The interior contours of each plate were derived by me from

the exterior contours and approximate plate thicknesses provided by public and personal

sources. Additional thickness is to be removed with plate tuning. This permits near final CNC

carving with final tuning by hand. Results of surface modeling are shown in Fig 7.

My emphasis in this report is on the method rather than the output. All of the mathematics

employed is purely descriptive rather than prescriptive. Provided reasonable choices are made

where the methods are flexible, the final surface geometry will contain the initiating contour

curves up to the precision of the oval model, which is quite high, and the tolerance of the coef-

ficient interpolations, which can be more relaxed. With testing, revision, and a smarter tool

path than simple raster, it is possible to produce a machined plate of near final dimension. It

should also be evident that these methods can produce plates for instruments larger than the

violin, although I have personally not done so.

4 Discussion

The goal of this work has been to provide a precise mathematical characterization of the sur-

face of a violin plate. My motivations are oriented toward labor saving technologies, CNC

carving in particular. Having control over details of the process, even when leaving significant

hand finishing for aesthetics and acoustics is essential. Beginning such an effort from common

simple empirical characterizations of shape such as contour curves is highly desirable, as

opposed to assuming a specific mathematical form a priori. I have avoided some specific for-

mal mathematical prescriptions because they seem not to be correct, but more importantly

because they are unnecessary.

It is my hope also to illustrate that descriptive mathematics in service of this art can be as

aesthetic, personal, and unique as hand work. It is possible that someone would adopt such

methods, settle on a convenient design, and produce a string of very similar looking violins by

CNC machine. This might be something to explore if one were studying varnish methods, but

Fig 7. Results of mathematical surface modeling. From left to right the figures are belly exterior, belly

interior, back exterior, and back interior.

doi:10.1371/journal.pone.0171167.g007
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is hardly the goal here. Less nuanced methods would suffice for production on an impersonal

scale. What seems more interesting is to refine a personal model or use this as a method for

copying interesting historic pieces, and save some labor. Small changes precisely done could

be assessed for their effect on acoustics for example. In such an endeavor, variability because of

differences in wood could be reduced by replication. Without such replication, one could

never be sure if a difference in sound is due to wood or nuances in construction.

Much has been made of mathematics possibly underlying classical instrument construction.

These perspectives range from simple use of the golden ratio, to formal constructions of the out-

line or inside mold and corresponding landmarks, to prescriptions for arching, equations for

spirals, and so on. Although I personally have a love for applied mathematics, I consider such

attempts to be hollow and useless. The artists who contributed to this form over the centuries

were not mathematicians, and there is no underlying theory to be discovered by such methods.

This is not to say that modern technology has no role to play in the art. For example we can

employ tools that are more durable, sharper, or more precise than old ones. We can use modern

chemistry, material science, and imaging to allow better understanding. We can use technology

to save labor, assuming that labor is actually unnecessary for the greater goal. In some cases, the

labor of hand work is quite pleasurable, part of the experience, and contributes to an essential

feel for the object. In other cases, it is simply hard work, a distraction, and might be minimized

by a better hand tool or a refined technique. The perspective is probably very personal.

In the present case, we can combine the simplest contour descriptors with sophisticated

modeling to assist what is becoming a standard approach to plate carving, at least in the rough.

The flexibility of this method is enormous, and the mathematics is applied as a servant rather

than as a tyrant.

Supporting information

S1 File. This file contains x,y,z coordinates for the 9 contour lines used in the text. Coordi-

nates are space delimited. Contours are distinguished by their z coordinates.

(TXT)
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