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Abstract: Neuroprotection is a need that remains unmet in treating chronic neurodegenerative
disorders, despite decades of extensive research. To find new neuroprotective compounds, extracts of
Himanthalia elongata (L.) S.F.Gray and of Eisenia bicyclis (Kjellman) Setchell were obtained through
subcritical water extraction applying a four-step temperature gradient. The fractions obtained were
screened against brain enzymes involved in neurodegenerative etiology, namely in Alzheimer’s and
Parkinson’s diseases, and against reactive oxygen and nitrogen species, all contributing factors to
the progression of neurodegeneration. Results showed no significant enzyme inhibition but strong
radical scavenging activities, particularly in the fourth fraction, extracted at the highest temperature
(250 ◦C), highlighting their ability to retard oxidative and nitrosative stresses. At higher temperatures,
fractions were composed of phenolic compounds and Maillard reaction products, a combination
that contributed to their antioxidant activity and, consequently, their neuroprotective properties.
All fractions were evaluated for the presence of iodine, 14 organochlorine and 7 organophosphorus
pesticides, and pharmaceuticals used in Alzheimer’s and Parkinson’s diseases (14), psychiatric drugs
(8), and metabolites (8). The fractions studied did not present any of the screened contaminants, and
only fraction 1 of E. bicyclis should be used with caution due to iodine content.

Keywords: iodine; Maillard reaction; neuroprotection; nitrosative stress; oxidative stress; pesticides;
pharmaceuticals; seaweeds; total phenolic content

1. Introduction

Seaweeds are a group of photosynthetic organisms found worldwide in marine ecosys-
tems. They are taxonomically grouped into three Phyla based on their pigmentation: brown
algae (Phylum Ochrophyta), red algae (Phylum Rhodophyta), and green algae (Phylum
Chlorophyta). This large group of organisms is highly heterogenous and diverse, including
about 11,000 species of seaweeds, of which 7500, 2000, and 1500 are red, brown, and green,
respectively [1,2].

Seaweeds are employed in many maritime countries as food and fertilizer and as raw
material for different purposes, e.g., pharmaceutical, cosmetic, bioenergy, and chemical
industries. Consequently, their global annual production is progressively growing, amount-
ing to 31.2 million tons (fresh weight) in 2016—mostly from Asian countries—and has more
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than doubled over the past 20 years. Predictions suggest that the annual production can
increase by up to 20 million tons by 2050 [3].

One example of a highly valued alga in Europe is Himanthalia elongata (L.) S.F.Gray.
H. elongata, also known as sea spaghetti or thongweed, which is a brown alga found in
the Baltic Sea, the North Sea, and the northeast Atlantic Ocean from Scandinavia, through
Ireland, and south to Portugal, and has been integrated into different foods thanks to its rich
nutritional and gastronomic value [4,5]. Eisenia bicyclis (Kjellman) Setchell is another edible
brown seaweed. It is extensively distributed in South Korea and Japan and is produced
for commercial purposes, such as a carrageenan source and traditional medicine usually
mixed with Ecklonia cava Kjellman and other seaweeds [6].

Given the growing demand for seaweeds and their extracts, scientists recognized
the need to assess their safety [7,8]. Seaweeds are unavoidably exposed to the abundant
presence of multiple contaminants deriving from natural and anthropogenic sources [8–10].
Pesticides are extensively used in agricultural and aquaculture activities to control pests
and diseases [11]. Although the human and the animals’ health benefits of using phar-
maceuticals are recognized, their presence as emerging contaminants in the environment
is a subject of increasing concern [12]. Pharmaceuticals have been found in rivers [13],
oceans [14], groundwater [15], lakes [16], drinking water [17], soils, and sediments [15,18].
Regarding legislation, the European Parliament Regulation (EC) No. 396/2005 [19] sets
maximum residue levels (MRL) for some pesticides in edible seaweeds, but in the case of
pharmaceuticals, no regulation has been set.

Seaweeds are rich sources of structurally diverse bioactive molecules with great
pharmaceutical and biomedical potential, such as anticoagulant, antiviral, antioxidant,
anti-allergic, anticancer, anti-inflammatory, anti-obesity, and neuroprotective effects [2,20].

The search for more efficient therapies to slow the rate of progression of a neurode-
generative disease is still a pressing need in the treatment of chronic diseases such as
Parkinson’s disease (PD) and Alzheimer’s disease (AD), despite more than 30–40 years
of extensive research [21]. The intricate and multifactorial quality of neurodegenerative
disorders suggests that interventions simultaneously targeting multiple risk factors and
mechanisms at an early phase of the pathologies are potentially more efficacious [21].
Current research has been highly focused on cholinesterase (ChE) enzymes, a group of
esterases capable of hydrolyzing choline esters, such as acetylcholine (ACh). There are two
types of ChEs, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), and their
inhibition may be one of the most realistic approaches to treat AD symptoms. Most drugs
developed to treat AD, namely galantamine, rivastigmine, donepezil, and the discontinued
tacrine, are ChE inhibitors [2,22]. In addition, some bioactive seaweed compounds have
been shown to provide mixed type ChE (AChE and BuChE) inhibition [23].

Mitochondrial dysfunction is another manifestation associated with the pathogenesis
of several ageing-related neurodegenerative diseases, particularly PD and AD. Under
normal circumstances, various antioxidants in neurons counteract adverse responses;
however, the dramatic increase in the production of reactive oxygen species (ROS) caused
by mitochondrial dysfunction overwhelms the endogenous antioxidative mechanisms,
creating oxidative stress and eventually resulting in neuronal apoptosis. Moreover, the
human brain is prone to these effects due to its high oxygen consumption, particularly with
highly vulnerable neurons in the substantia nigra (midbrain). Superoxide anion radical
(O2
•−) and hydrogen peroxide (H2O2) have been identified as critical players in a marked

reduction in neuronal function and viability [24,25].
Nitric oxide (•NO) metabolism also contributes to oxidative and nitrosative stresses.

Although •NO is an important signaling molecule, it can react with other ROS to produce
reactive nitrogen species (RNS). For instance, •NO can react with O2

•− to form peroxynitrite
(ONOO−) that can subsequently be converted to highly toxic intermediates such as nitrogen
dioxide (NO2), carbonate (CO3

•−), and hydroxyl (•OH) radicals. Moreover, •NO affects
cell survival through S-nitrosylation: a reversible alteration of cysteine (cys) residues
in proteins to form the corresponding nitrosothiol, which regulates gene transcription,
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vesicular trafficking, receptor-mediated signal transduction, and apoptosis. Indeed, some
neuroprotective proteins are modulated by S-nitrosylation, thus suggesting that nitrosative
stress is an important contributor to the development of neurodegeneration [26,27].

Phenolic compounds are an example of essential molecules, often found in seaweeds,
which confer protection against diseases involving oxidative and nitrosative stresses,
namely due to their antioxidant and anti-inflammatory properties and their ability to chelate
metal ions [28]. Moreover, recent studies reveal that some polyphenols may contribute to
other biological effects besides their antioxidant and radical scavenging properties [28,29].

One crucial aspect to consider when working with bioactive molecules is their extrac-
tion technique. Several extraction methods are available, but the conventional ones are
still the most used [30,31]. Nonetheless, these methods carry several drawbacks since they
are laborious, time-consuming, and can promote the degradation of some of the desired
compounds. Furthermore, they use large amounts of solvents that often produce toxic,
volatile, and flammable residues, thus significantly contributing to environmental pollu-
tion and the greenhouse effect [30,31]. Consequently, green or environmentally friendly
methods are being developed, presenting many advantages compared to their conven-
tional counterparts: shorter extraction times, reduced energy consumption, fewer negative
environmental impacts, and increased safety [32].

One such green process is subcritical water extraction (SWE). SWE uses liquid water
at high temperatures (over 100 ◦C) and pressures above the corresponding vapor pressure.
The water dielectric constant decreases when the temperature increases, while also lowering
the polarity, viscosity, and surface tension, whereas the ionic product increases [33]. To sum
up, the water behaves like organic solvents while allowing for a safer and faster extraction,
better yield, and environmentally friendly conditions. All things considered, this extraction
method has become increasingly popular, in part due to its unique solvation properties,
which can be altered by changing the temperature [34–39].

The present work focuses on the biological properties of H. elongata and E. bicyclis
fractions obtained through SWE and their neuroprotective effects and antioxidant capacity.
In addition, the presence and total content of bioactive relevant biomolecules, mainly
phenolic compounds and Maillard reaction products, and the presence of environmental
pollutants (pesticides and pharmaceuticals) and iodine were also evaluated.

2. Material and Methods
2.1. Samples

Himanthalia elongata (L.) S.F.Gray and Eisenia bicyclis (Kjellman) Setchell were supplied
dried by Algamar (Pontevedra, Spain) and Próvida (Mem Martins, Sintra, Portugal), respec-
tively. First, after samples’ hydration for 5 min in salted water (35 g NaCl/L), they were
rinsed in ultrapure water to remove NaCl. Then, they were dehydrated at 41 ◦C (Excalibur,
model 4926T, Dublin, Ireland) for 18 h and ground to obtain particles in the 1–2 mm range.

2.2. Subcritical Water Extraction of Seaweeds

SWE of the seaweeds was performed using equipment described elsewhere [40]. Briefly,
the extraction conditions were as follows: ca. 20 g of seaweed was placed in the reactor,
and the pressure (100 bar) and water flow rate (10 mL/min) were kept constant during the
experiment. After a specific time, the desired temperature in the reactor was reached, and the
extract leaving the reactor was collected: first fraction—from room temperature to 90 ◦C (ca.
100 min), second fraction—from 90 to 140 ◦C (ca. 90 min), third fraction—from 140 to 190 ◦C
(ca. 90 min), and fourth fraction—from 190 to 250 ◦C (ca. 100 min).

All fractions collected were freeze-dried, and the dried fractions were stored at 4 ◦C
until further analysis. All experiments were replicated.

2.3. Reagents, Solvents, and Materials

Tris(hydroxymethyl)aminemethane (Tris), 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB),
acetylthiocholine iodide (ATCI), S-butyrylthiocholine iodide (BTCI), acetylcholinesterase
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(AChE) from Electrophorus electricus, butyrylcholinesterase (BuChE) from equine serum,
bovine serum albumin (BSA), potassium phosphate monobasic (KH2PO4), potassium
phosphate dibasic trihydrate (K2HPO4·3H2O), sodium nitroprusside dihydrate (SNP),
sulfanilamide, naphthylethylenediamine dihydrochloride, ortho-phosphoric acid 85%,
β-nicotinamide adenine dinucleotide (NADH), phenazine methosulfate (PMS), nitrote-
trazolium blue chloride (NBT), 2,2-diphenyl-1-picrylhydrazyl (DPPH), 6-hydroxy-2,5,7,8-
tetramethylchroman-2-carboxylic acid (Trolox), 2,2′-azino-bis(3-ethylbenzothiazoline-6-
sulfonic acid) (ABTS), potassium persulfate (K2O8S2), sodium carbonate, Folin–Ciocalteau
reagent, and gallic acid were purchased from Sigma-Aldrich (St. Louis, MO, USA and Stein-
heim, Germany). Magnesium chloride hexahydrate and sodium chloride were obtained
from VWR (Leuven, Belgium).

The 21 pesticide standards (purity ≥ 95%, Supplementary Table S1) and the internal
standards (4,4′-dichlorobenzophenone and triphenyl phosphate) were purchased from
Sigma-Aldrich Co. (Darmstadt, Germany). Standard solutions of 14 organochlorine pesti-
cides (α-, β-, γ-, and δ-hexachlorocyclohexanes (HCHs), hexachlorobenzene (HCB), o,p′-
DDT ([1,1,1 trichloro-2, 2-bis-(p-chlorophenyl) ethane]), p,p′-DDE ([2,2bis(p-chlorophenyl)-
1,1-dichloroethylene]), p,p′-DDD (dichlorodiphenyldichloro-ethane), aldrin, dieldrin, en-
drin, α, β-endosulfan, and methoxychlor) and 7 organophosphorus pesticides (dimethoate,
diazinon, chlorpyrifos-methyl, parathion-methyl, malathion, chlorpyrifos, and chlorfenvin-
phos) were prepared in n-hexane (Chromatography grade) supplied by Merck (Steinheim,
Germany). For the solid-phase extraction (SPE), C18e (500 mg/3 mL) solid-phase extrac-
tion (SPE) cartridges were provided by Phenomenex (Madrid, Spain), and methanol was
supplied by Sigma-Aldrich (Steinheim, Germany).

A total of 30 compounds (Supplementary Table S1) embracing 14 pharmaceuticals
used in Alzheimer’s and Parkinson’s diseases, 8 psychiatric drugs, and 8 metabolites were
the target of the present study. Pharmaceuticals used in Alzheimer’s and Parkinson’s dis-
eases (amantadine hydrochloride, apomorphine hydrochloride, benserazide hydrochloride,
carbidopa, entacapone, R(-)-deprenyl hydrochloride (selegiline hydrochloride), donepezil
hydrochloride, galanthamine hydrochloride, pramipexole dihydrochloride monohydrate,
safinamide mesylate salt, rasagiline mesylate, rivastigmine hydrogen tartrate, ropinirole
hydrochloride, and rotigotine hydrochloride) were acquired from Sigma-Aldrich (Madrid,
Spain), diazepam was purchased from Lipomed AG (Arlesheim, Switzerland), the metabo-
lites of citalopram (citalopram N-oxide hydrochloride, citalopram propionic acid, demethyl-
citalopram hydrochloride, and didemethylcitalopram hydrochloride) were purchased from
H. Lundbeck (Copenhagen, Denmark), norsertraline hydrochloride (sertraline metabolite)
was obtained from Cerilliant-Certified Reference Materials (Round Rock, TX, USA), and
the remaining compounds (carbamazepine, citalopram, O-desmethylvenlafaxine (venlafax-
ine metabolite), 10,11-epoxy carbamazepine (carbamazepine metabolite), fluoxetine hy-
drochloride, norfluoxetine hydrochloride (fluoxetine metabolite), paroxetine hydrochloride,
sertraline hydrochloride, trazodone hydrochloride, and venlafaxine hydrochloride) were
acquired from Sigma-Aldrich (Madrid, Spain). Carbamazepine-d10 and venlafaxine-d6
purchased as a methanolic solution (Cerilliant-Certified Reference Materials, Round Rock,
TX, USA), fluoxetine-d5 hydrochloride prepared in methanol (Sigma-Aldrich, Madrid,
Spain), and diazepam-d5 purchased as a methanolic solution (Lipomed AG, Arlesheim,
Switzerland) were used as isotopically labeled internal standards (ILIS) in the positive
ionization mode, and ibuprofen-d3 purchased as a methanolic solution (Sigma-Aldrich,
Madrid, Spain) was used as ILIS in the negative ionization mode. Individual stock stan-
dards were prepared at a concentration of 1 g/L on a weight basis. Psychiatric drugs and
metabolites were prepared in methanol, and norsertraline hydrochloride was purchased as
a methanolic solution. Rotigotine and entacapone were prepared with ethanol, carbidopa
was prepared in methanol, donepezil, ropinirole, amantadine, benserazide, rasagiline,
pramipexole, and galanthamine were prepared with a mixture of 66.6% ultrapure water
and 33.33% methanol, and selegiline, rivastigmine, apormorfine, and safinamide were
prepared with a mixture of 66.6% ultrapure water and 33.33% ethanol.
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Methanol MS grade Hipersolv CHROMANORM® was purchased from VWR (Gli-
wice, Poland), acetonitrile MS grade Hipersolv CHROMANORM® was acquired from
VWR (Fontenay-sous-Bois, France), propanol MS grade was obtained from Sigma-Aldrich
(Steinheim, Germany), and formic acid (PA-ACS) and ethanol were purchased from Carlo
Erba (Rodano, Italy). Chromatographic solvents were filtered through a 0.22 µm nylon
membrane (Fioroni Filters, Ingré, France) using a vacuum pump (Dinko D-95, Barcelona,
Spain) and degassed for 15 min in an ultrasonic bath (Sonorex Digital 10P, Bandelin DK
255P, Berlin, Germany). Nylon syringe filters (0.22 µm, 13 mm) were used for filter fraction
extracts (Specanalitica, Carcavelos, Portugal).

Ultrapure water (resistivity of 18.2 MΩ·cm at 25 ◦C) was prepared using a Simplicity
185 system (Millipore, Molsheim, France).

2.4. Chemical Composition of SWE Fractions
2.4.1. Total Phenolic and Total Phlorotannin Contents

The total phenolic content (TPC) of the four fractions was measured through a col-
orimetric assay using the Folin–Ciocalteau reagent [41], with gallic acid (GA) as the stan-
dard (Abs = 0.00722 × GAE + 0.0651; R2 = 0.999). Quantification was performed using
96-well plates in a Synergy HT W/TRF multimode microplate reader (BioTek Instruments,
Winooski, VT, USA) using Gen5 2.0 software (BioTek Instruments). The assays were per-
formed in triplicate and the results were expressed as mg of gallic acid equivalents (GAE)
per gram extract (dry weight, dw).

The quantification of total phlorotannins (1,3,5-substituted phenols) was based on the
reaction with 2,4-dimethoxybenzaldehyde (DMBA), as described previously [42]. Mea-
surements were performed using 96-well plates in a Synergy HT microplate reader using
phloroglucinol (Phl) as the standard (Abs = 0.0307 × PhlE + 0.0956; R2 = 0.998). The assays
were performed in triplicate, and the results were expressed as mg of Phl equivalents per g
of extract (dw).

2.4.2. Maillard Reaction Products and Browning Index

Maillard reaction products were assessed at 294, 360, and 420 nm, and the formation
of fluorescent glycation end-products (AGEs) was estimated by measuring the fluorescence
at a set of excitation/emission wavelengths of 360 ± 40 nm/460 ± 40 nm in a Synergy
HT microplate reader, after appropriate dilution of samples [42,43]. The analysis was
performed in triplicate.

The color parameters of yellow to yellow-brown and the browning index (Br) were
calculated as reported previously [42].

2.4.3. Iodine Determination

The extracts’ total iodine (I) content was assessed using a modified Sandell–Kolthoff
reaction described previously [44] using a Synergy HT Microplate Reader. Measurements
were performed in triplicate.

2.4.4. Pesticide and Pharmaceutical Analysis

Extractions for the pesticides’ analysis were accomplished using a solid-phase extrac-
tion methodology followed by gas chromatography analysis. SWE algae extracts were
diluted with ultrapure water (1:1) and passed through the SPE C18e cartridge, and the
procedure was performed according to Silva et al. [45]. The 14 organochlorine pesticides
were analyzed by gas chromatography/electron capture detection according to the method
described by Fernandes et al. [46], and the 7 organophosphorus pesticides by gas chro-
matography/flame photometric detector [46]. Chromatographic analysis for the target
pharmaceuticals was carried out on a Shimadzu Nexera UHPLC system (LCMS-8030, Shi-
madzu Corporation, Kyoto, Japan) coupled to a triple-quadrupole mass spectrometer and
operated in the electrospray ionization mode. Lab Solutions software (Shimadzu Corpora-
tion, Kyoto, Japan) was used for control and data processing. The mass spectrometer was
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operated in multiple reaction monitoring mode (MRM). Argon was used as the collision-
induced dissociation gas at a pressure of 230 kPa, and nitrogen was used as a nebulizing
and drying gas. All the pharmaceuticals were analyzed in the positive ionization mode
except for entacapone and citalopram propionic acid, which were analyzed in the negative
ionization mode. Two programs were developed to analyze the studied pharmaceuticals
and their metabolites. A CortecsTM UPLC® C18+ column (100 mm × 2.1 mm i.d., 1.6 µm
particle size) from Waters (Milford, MA, USA) was used for the chromatographic analysis.
Eluent A was 0.1% formic acid in ultrapure water and eluent B was acetonitrile LCMS grade
for positive ionization mode. The gradient elution started with 5% of eluent B, increasing
to 100% B in 3 min, maintained at 100% B during 0.5 min, and returned to initial conditions
within 0.5 min. The column was re-equilibrated for 3 min before the next injection. Eluent A
was ultrapure water for negative ionization mode, and eluent B was acetonitrile LCMS grade.
The gradient elution started with 10% of eluent B, increasing to 100% B in 5.5 min, maintained
at 100% B during 1 min, and returned to initial conditions within 0.5 min. The column was
re-equilibrated for 2 min before the next injection. A flow rate of 0.3 mL/min was used in
both chromatographic programs, and the injection volume was 5 µL. The column oven was
set at 30 ◦C, and the auto-sampler was operated at 4 ◦C. The needle was rinsed before and
after sample aspiration using acetonitrile:methanol:propanol (1:1:1, v/v/v).

2.5. Bioactivities
2.5.1. Radical Scavenging Activities

The antiradical activity of the extracts was evaluated by several complementary
in vitro assays, namely 2,2-diphenyl-1-picryl-hydrazyl-hydrate free radical scavenging
(DPPH•), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid assay (ABTS•+), superoxide
anion radical scavenging (O2

•−), and nitric oxide radical scavenging (•NO), according
to established procedures [41,42,47]. For the DPPH• assay, a calibration curve was pre-
pared with Trolox (Abs = −0.00630 × TE + 0.716; R2 = 0.998), and the antioxidant activity
was expressed as mg of Trolox equivalents per g of dw of extract (mg TE/g dw). In
ABTS•+, the absorbance was taken at 734 nm, and TE was also used as the standard
(Abs = −0.00415 × TE + 0.673; R2 = 0.995). The obtained results were expressed as mg of
TE equivalents per g of dw of extract (mg TE/g dw). For all the assays, triplicate measure-
ments were made for each extract. Concerning O2

•− and •NO scavenging activities, results
are expressed as IC50 values and samples were tested in triplicate, and the experiments
were repeated three times.

2.5.2. Cholinesterase Inhibition

AChE and BuChE inhibition assays were performed according to the procedure
described by Soares et al. [42], based on the quantification of 5-thio-2-nitrobenzoic acid
(TNB) production. Results are expressed as IC50 values. Samples were tested in triplicate,
and the experiments were repeated three times.

2.6. Statistical Analysis

All results are reported as mean± SD or mean± SEM. The IC50 values were calculated
using GraphPad Prism Software, version 8. One-way analysis of variance (ANOVA) with
Tukey’s as a post hoc test (for comparison of more than three samples) or t-test (comparison
of two samples) were used to evaluate the differences between the four fractions in terms
of IC50 values and compound content (GraphPad Prism Software, version 8, San Diego,
CA, USA). Differences at p < 0.05 were considered statistically significant.

3. Results and Discussion
3.1. SWE Composition
3.1.1. Total Phenolic Content and Total Phlorotannin Content

The total phenolic and phlorotannin contents of Himanthalia elongata (L.) S.F.Gray and
Eisenia bicyclis (Kjellman) Setchell SWE fractions 1 to 4 are shown in Table 1.
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Table 1. Total phenolic content (TPC) and total phlorotannin content (TPhC) of Himanthalia elongata (L.)
S.F.Gray and Eisenia bicyclis (Kjellman) Setchell fractions.

Seaweed Fraction
TPC TPhC

(mg GAE/g Extract dw) (mg Phl/g Extract dw)

H. elongata

1 5.80 ± 0.08 a 0.498 ± 0.016 a

2 10.7 ± 0.5 b 0.133 ± 0.009 b

3 53.0 ± 0.5 c <LOD
4 71.1 ± 2.5 d <LOD

E. bicyclis

1 33.4 ± 2.5 a,c 1.29 ± 0.06 a

2 20.6 ± 1.2 a 1.20 ± 0.05 b

3 55.4 ± 13.3 b 0.114 ± 0.014 c

4 44.7 ± 3.9 c <LOD
dw: dry weight; LOD: limit of detection. Results are expressed as mean ± SD of three determinations. Different
superscript letters within each seaweed represent significant differences at p < 0.05.

While no trend was observed between TPC and temperature for E. bicyclis fractions,
higher SWE extraction temperatures led to a higher phenolic yield in the case of H. elongata.
This result generally agrees with that described in the literature, for instance, for white wine
grape pomace [40], microalgae (Chlorella vulgaris Beijerinck), macroalgae (Sargassum vulgare
C.Agardh, Sargassum muticum (Yendo) Fensholt, Porphyra spp., Cystoseira abies-marina
(S.G.Gmelin) C.Agardh, Undaria pinnatifida (Harvey) Suringar, Halopitys incurvus (Hudson)
Batters), and medicinal and aromatic plants (Rosmarinus officinalis L., Thymus vulgaris L.,
and Verbena officinalis L.) [43].

To the best of our knowledge, there are no previous reports on the TPC value of SWE
of these two seaweed species.

Nonetheless, Cofrades et al. [48] showed that the TPC value in 50% aqueous methano-
lic extract of H. elongata was particularly high, 23.47 g GAE/100 g dw, in comparison with
brown alga Undaria pinnatifida (Harvey) Suringar (4.46 g GAE/100 g dw) and red alga
Porphyra umbilicalis (L.) J.Agardh (5.53 g GAE/100 g dw). Moreover, Rajauria et al. [5] tested
different H. elongata extracts (aqueous, methanolic, and hydromethanolic (20–80%)) and
reported TPC values ranging from 59.8 mgGAE/g (methanolic extract) to 286.0 mgGAE/g
(60% methanol), while the aqueous extract contained 116.5 mgGAE/g. TPC values between
6.60 and 162.22 mgGAE/g were also obtained for H. elongata by Silva et al. [49] for different
organic extracts. Concerning E. bicyclis, Kown et al. [6] evaluated different fractions, obtain-
ing TPC values in the following order: ethyl acetate fraction (263.27 mgGAE/g) > butanol fraction
(169.79 mgGAE/g) > hexane fraction (56.12 mgGAE/g) > chloroform fraction (47.86 mg-
GAE/g) > water fraction (15.90 mgGAE/g).

Regarding TPhC, higher contents were found in fractions 1 and 2 for both seaweeds,
corresponding to 8.5% and 3.9% of the total TPC in fraction 1 for H. elongata and E. bicyclis,
respectively. Heffernan et al. [50] obtained a phlorotannin content of 198.28 ± 9.17 (µg PE/mg
sample) in ethanol/water extracts of H. elongata. Kim et al. [51] investigated the seasonal
variation of the phlorotannins content during the lifecycle of E. bicyclis using 100% ethanol
at room temperature for 12 h. These authors reported extraction yields between 2.13% and
0.56% of the fresh weight in July until the cold season (December–April), respectively.

Nonetheless, it is worth noting that, during the extraction procedure, some com-
ponents initially present in the sample can be released and may react, producing new
compounds. One such chemical event is the Maillard reaction. Plaza et al. [43] showed that
this interaction occurs during SWE of natural samples (including seaweeds) at high tem-
peratures, positively affecting the overall antioxidant capacity of the samples and forming
products prone to react with the F-C reagent, leading to an overestimation of the TPC. In
addition, the increase of the ionic product of water at the temperature/pressure conditions
used in SWE makes the water more reactive and able to generate new biologically active
compounds through Maillard reactions.
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3.1.2. Maillard Reaction Products

Intermediate colorless Maillard reaction products are usually detected by UV ab-
sorbance at 294 nm, while the final stage compounds at 360 and 420 nm [42]. The intermedi-
ate compounds are considered precursors of the browning products in the Maillard reaction
or caramelization, and in the final stage, melanoidins or heterocyclic compounds, also
known as advanced glycation end-products (AGEs), are produced from active intermediate
products [42,52]. Figures 1 and 2 show that the absorbance recorded at 294 nm increased
from fraction 1 to fraction 3 for both seaweeds, and decreased in fraction 4. Regarding
absorbances at 360 and 420 nm, temperature favored the formation of the final stage prod-
ucts since absorbances at 360 and 420 nm increased mainly for H. elongata. These results
agree with the browning index obtained (blue line in Figures 1 and 2). The browning index
increased (p < 0.05) in every fraction of the extracts for both seaweeds.
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The fluorescent advanced glycation end-products (AGEs) or melanoidins, other Mail-
lard reaction products, have strong light emission between 400 and 500 nm upon excitation
at 360 or 370 nm [42]. Overall, the fluorescent AGEs content increased with temperature
(Table 2) until fraction 3 (190 ◦C) for both seaweeds, with fraction 4 showing a decrease in
its values for H. elongata and E. bicyclis. This indicates that higher formation of intermediate
and final Maillard reaction products was obtained in stage 3 (at 190 ◦C) for both seaweeds.

Table 2. Advanced glycation end-products (AGEs) formed during the Maillard reaction for Himan-
thalia elongata (L.) S.F.Gray and Eisenia bicyclis (Kjellman) Setchell.

Seaweed Fraction AGEs

H. elongata

1 280 ± 28 a

2 335 ± 35 a

3 2915 ± 191 b

4 1570 ± 99 c

E. bicyclis

1 67.7 ± 2.5 a

2 225 ± 21 a

3 4400 ± 283 b

4 1315 ± 78 c

Results are expressed as mean ± SD of three determinations. Different superscript letters within each seaweed
represent significant differences at p < 0.05.

Comparing the Maillard reaction products and the TPC content of seaweeds, it can be
observed that, particularly for E. bicyclis, there is an increase in the TPC content in fraction
3 that can be positively related to AGEs present in this fraction (Table 2) [43]. According
to Plaza et al. [43] and Grigoriou and Pinakoulaki [53], besides phenolics, there are other
classes of compounds that positively react with Folin–Ciocalteu reagent due to the presence
of reducing groups. One example is the Maillard reaction products. As shown, this class of
compounds are present in higher amounts in the fractions obtained at higher temperatures
(190 and 250 ◦C) than at lower temperatures (90 and 140 ◦C), thus contributing to increased
TPC values. Regarding the DPPH• and ABTS•+ scavenging activities (see Section 3.2.1),
these are higher and significantly different for fractions 3 and 4 compared with fractions 1
and 2. Again, these results suggest a positive relation between Maillard reaction products
and the scavenging activities of the extracts. Maillard reaction products are very complex
compounds, and their antioxidant activity can include reducing power ability, scavenging
of free radicals, metal ion chelating activity, and regulation of intracellular antioxidant
enzymes in vivo [52]. The antioxidant mechanisms of melanoidins were attributed to the
radical scavenging activity and the metal chelating capacity resulting from its anionic
hydrophilic nature that can form stable complexes with metal cations [52].

3.1.3. Iodine

Seaweeds are a rich source of essential elements, and iodine (I), in particular, is very
abundant, with reported values between 4.3 and 2660 mg/kg wet weight [54,55]. The
well-known health benefits of I are associated with its role in the functioning of the thyroid
gland and the associated production of thyroid hormones [56,57]. The World Health
Organization recommends an I daily intake (RDI) of 150 µg and a tolerable upper intake
level (UL) of 600 µg/day [58], considering that ingestion at levels above the RDI can also
negatively impact human health [57]. Considering the potential health applications of
the SWE extracts, it is crucial to assess the I amount present in each fraction according
to the WHO recommendation. The levels of iodine measured in H. elongata in the four
fractions were 92.6 ± 5.2, 79.8± 1.5, 35.6± 5.0, and 12.5± 0.7 µg/g extract dw for fractions
1 to 4, respectively. Regarding E. bicyclis, the values found were 635 ± 42, 134 ± 11,
98.7 ± 8.1, and 7.51 ± 0.85 µg/g extract dw for fractions 1 to 4, respectively. Both seaweeds
presented the same trend, with a higher iodine content in fraction 1 and the lowest for
fraction 4, decreasing with the temperature increase (from 90 ◦C in fraction 1 to 250 ◦C in
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fraction 4). No studies about SWE effects on iodine content for H. elongata and E. bicyclis
were found in the literature. However, Soares et al. [42] assessed the influence of SWE using
different extraction temperatures (90 to 250 ◦C) on the recovery of several compounds,
including iodine, from the green alga Codium tomentosum Stackhouse and brown seaweed
Fucus vesiculosus L. These authors reported that the amount of iodine extracted from both
seaweeds was higher in fractions obtained at a lower temperature (90 ◦C) and lower for the
fractions obtained at higher temperatures (250 ◦C). The results imply that iodine seems to be
present in its inorganic form, easily extractable with water [42,54], and the extraction steps
at lower temperatures (90 and 140 ◦C) are the ones with the highest yield. Iodine values
reported in the literature for H. elongata were 116.6 ± 22.62 [59] and 135 ± 21 µg/g dw [60]
of seaweed. Regarding E. bicyclis, 600 and 586 ± 56 µg of I/g dw of seaweed were
reported [61,62]. Several factors are responsible for different values when measuring I in
seaweeds, such as the growth stage, sampled algal tissue, sampling localization, salinity,
tidal amplitude, processing, harvest conditions, and temperature [54]. Considering the
WHO recommendations, fraction 1 of E. bicyclis should be used with caution.

3.1.4. Analysis of Pesticides and Pharmaceuticals in SWE Seaweed Extracts

To ensure that the 8 fractions obtained after SWE extraction (4 of H. elongata and 4
of E. bicyclis) were pesticide-free, they were analyzed by the proposed SPE/GC-ECD
and SPE/GC-FPD methodology [45,46]. The 21 target pesticides (14 organochlorine
and 7 organophosphorus pesticides) were not detected in the SWE extracts. However,
organochlorine pesticides have recently been reported [63], and bioaccumulation of these
pesticides in algae has also been observed [10]. Regarding organophosphorus pesticides,
García-Rodríguez et al. [64], despite detecting trace amounts of other pesticide families,
did not detect organophosphorus pesticides in seaweeds. Pharmaceuticals and metabolites
were also analyzed in the seaweed SWE fractions, but none of the 30 target compounds
were observed. In 2021, Ojemaye et al. [65] reported the analysis of six pharmaceuticals
(acetaminophen, sulfamethoxazole, diclofenac, carbamazepine, triclosan, and lamivudine)
and one stimulant (caffeine) in five seaweed species (Ulva sp., Gelidium pristoides (Turner)
Kützing, Bifurcaria brassicaeformis (Kützing) E.S.Barton, Caulerpa filiformis (Suhr) K. Her-
ing, and Aeodes orbitosa (Suhr) F.Schmitz). Acetaminophen, sulfamethoxazole, diclofenac,
lamivudine, and carbamazepine were detected in all samples. For most of the analyzed
samples, diclofenac was the pharmaceutical detected with the highest frequency and con-
centration. The study conducted in 2018 by Helou et al. [66] mentioned the detection of
two illicit drugs (cocaine and methadone) and two behavioral medicines (carbamazepine
and diazepam) in edible seaweeds. In 2021, Soares et al. [42] published a study in which
115 compounds, embracing 82 pharmaceuticals (non-steroidal anti-inflammatory drugs,
analgesics, antibiotics, anorexics, anxiolytics, beta-blockers, laxatives, stimulants, and
psychiatric drugs) and 33 polar pesticides, were screened in the SWE fractions of F. vesicu-
losus and C. tomentosum. None of these pollutants were detected [42]. To the best of our
knowledge, no studies evaluating the presence of organochlorine and organophosphorus
pesticides and pharmaceuticals used for Alzheimer’s and Parkinson’s diseases treatment in
SWE seaweed extracts were published. In the present work, the compounds were screened
on the SWE fractions and not on the seaweed samples. Therefore, the obtained results
suggested that the SWE fractions are safe concerning the analyzed target compounds for a
potential application.

3.2. Bioactivities
3.2.1. Antioxidant Activity

The DPPH• radical scavenging potential of the SWE H. elongata and E. bicyclis fractions
is shown in Table 3, according to the calibration curve obtained for Trolox.
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Table 3. Scavenging activity of Himanthalia elongata (L.) S.F.Gray and Eisenia bicyclis (Kjellman)
Setchell fractions.

Seaweed Fraction
DPPH

(mg TE/g
Extract dw)

ABTS•+
(mg TE/g

Extract dw)

•NO
(IC50,

mg/mL)

O2•−

(IC50,
mg/mL)

H. elongata

1 2.62 ± 2.34 a 14.9 ±z 0.4 a 0.379 a 0.203 a

2 6.06 ± 0.09 b 20.1 ± 2.0 a 0.316 a 0.120 b

3 30.2 ± 0.9 c 123 ± 8 b 0.313 a 0.119 b

4 28.3 ± 0.5 c 140 ± 3 c 0.246 a 0.0530 c

E. bicyclis

1 26.8 ± 1.8 a 34.0 ± 0.8 a 0.257 a 0.393 a

2 38.8 ± 5.5 a,b 32.5 ± 2.6 a 0.340 a 0.336 a

3 54.1 ± 12.0 b 112 ± 20 b 0.486 b 0.192 b

4 52.7 ± 3.9 b 69.1 ± 12.0 c 0.308 a 0.173 b

dw: dry weight. Results are expressed as mean ± SD of three determinations or IC50 values. Different superscript
letters within each seaweed represent significant differences at p < 0.05.

The obtained values for TE show that higher extraction temperatures present an
increased DPPH• scavenging activity. However, it is worth mentioning that, for H. elongata,
a significant gap was observed between the first two and the last two fractions, and the TE
value for fraction 2 was five times lower than the one assessed for fraction 3. Furthermore,
there was no statistical difference between the third and fourth fractions for both seaweed
species. Silva et al. [49] evaluated the ability of different extracts (ethanolic, acetone, ethyl
acetate, hexane, and chloroform) of H. elongata to scavenge DPPH•. They observed that the
hexane extract was the most active (75.33 mgTE/g), and at the same time, contained the
lowest amount of phenolics (6.60 mgGAE/g), reinforcing the idea that other compounds
may also be involved in the overall antioxidant activity of seaweeds.

Kwon et al. [6] tested different E. bicyclis fractions against DPPH•, observing that
ethyl acetate was the most active, followed by butanol and hexane fractions. Water and
chloroform fractions were not active. The results obtained by these authors demonstrated
that DPPH• scavenging and TPC values were positively correlated, which was not verified
in the current study.

Table 3 displays the results of ABTS•+ radical scavenging potential of the SWE
H. elongata and E. bicyclis fractions. As seen thus far, higher extraction temperatures con-
tinue to yield higher antioxidant activity. Moreover, there was no significant difference
between the TE values for the first and second fractions. The considerable gap in TE values
between the first two and the last two fractions of H. elongata is also worth noting, similarly
to the results observed for the DPPH• scavenging assay. In the case of E. bicyclis, higher
temperatures also favored ABTS•+ scavenging activity, although fraction 3 was more active
than fraction 4.

•NO and O2
•− radicals have important physiological roles as vascular signaling

molecules. However, when overproduced, they react, generating the highly cytotoxic
ONOO−. An imbalance between these ROS and RNS and the endogenous antioxidant
system leads to oxidative and nitrosative stresses, two pathways involved in neurodegener-
ation progression [67].

All fractions showed •NO scavenging activity, inhibiting nitrite production up to
about 70%, with concentrations of 0.5 mg/mL extracts and upwards. Nonetheless, fractions
extracted with higher temperatures presented a lower half-maximal inhibitory concentra-
tion (IC50), as seen in Table 3, with fraction 4 requiring 0.246 mg/mL of H. elongata and
0.316 mg/mL of E. bicyclis to prevent 50% of the nitric oxide radicals from reacting with
oxygen. Nonetheless, these IC50 values are not statistically different from those obtained
for fractions 1, 2, and 3.

Once again, all extracts showed strong antioxidant activity, scavenging 100% of O2
•−

with concentrations of 0.5 mg/mL extracts and upwards. However, as seen for •NO
scavenging, fractions extracted with higher temperatures presented lower IC50 values, as
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summarized in Table 3. Fraction 4 notably displayed the most promising results, needing
only 0.0530 mg/mL (for H. elongata) to prevent 50% of the superoxide anion radicals from
reacting with the NBT reagent, a quarter of the 0.203 mg/mL needed of fraction 1. A similar
trend was found for E. bicyclis fractions, although fraction 4 of E. bicyclis was less active
than the corresponding one of H. elongata.

Although no information was found in the literature regarding the IC50 for H. elongata’s
•NO and O2

•− scavenging activity, Soares et al. [42] conducted a study on green alga
C. tomentosum and brown seaweed F. vesiculosus fractions obtained through SWE. This
research found that the fractions extracted at 250 ◦C were the most active overall, and
the brown alga was more active than C. tomentosum regarding •NO scavenging activity,
presenting an IC50 of 132.4 and 254.2 µg/mL, respectively. On the other hand, the green alga
showed the lowest IC50 value for O2

•− scavenging activity, 85.7 µg/mL. However, even
though H. elongata is also a brown seaweed, its IC50 values were closer to C. tomentosum. It
is also worth noting that H. elongata was the most active regarding O2

•− scavenging out of
all three algae mentioned, achieving the lowest IC50 value of 0.0530 mg/mL [68,69].

In general, the SWE H. elongata and E. bicyclis extracts showed great antioxidant activity,
especially regarding the inhibition of the O2

•−. These results are generally consistent
with those described in the literature, as brown algae have been shown to possess great
radical scavenging activity (including ROS, RNS, DPPH•, and ABTS•+), both in noncellular
systems and ex vivo, due to their characteristic high amounts of phenolic compounds and
carotenoids, such as fucoxanthin [70].

Moreover, it has been observed that the extraction temperature plays a vital role
in the antioxidant capacity of the samples. This is also in agreement with the literature
and may further suggest that the compounds responsible for H. elongata and E. bicyclis
antioxidant properties are mostly less polar since studies have shown that the extraction
ability of subcritical water toward the more polar compounds decreases with the increase
in temperature [71,72]. Nonetheless, further research is needed to confirm the nature and
identify the specific bioactive compounds present in H. elongata.

These results are also consistent with the outcome observed for the TPC assay and the
phlorotannin content, suggesting that the algal polyphenols such as phlorotannins present
in fractions 1 and 2 could indeed be the primary constituents responsible for the antiradical
properties of the extracts of these fractions [5]. Several studies have linked H. elongata
antioxidant capacity to the seaweed’s high TPC [48,73–75]. Regarding fractions 3 and 4,
the phlorotannin content is <LOD, but the Maillard reaction products are present in high
quantities (Table 2), possibly being responsible for the antiradical properties obtained. Sev-
eral authors have already reported the high bioactivities (antioxidant and neuroprotective)
of the Maillard reaction products formed during food processing at high temperatures and
the positive correlation with browning development [52,76].

3.2.2. AChE and BuChE Inhibition

None of the fractions studied showed significant cholinesterase inhibition, not able
to suppress enzyme activity over 50%. Fraction 4 was the most promising in both cases,
presenting about 40% and 50% AChE inhibition at 2 mg/mL for H. elongata and E. bicyclis,
respectively. For BuChE, both fractions 4 displayed ca. 40% inhibition (Table 4). Due to
solubility problems, higher concentrations of this fraction could not be further studied to
assess its inhibitory potential.

Once again, it was challenging to find comparable information regarding H. elongata’s
anti-ChE activity in the literature. Nonetheless, a previous study on another brown alga,
F. vesiculosus, has shown that fractions obtained through SWE also presented no AChE or
BuChE inhibition over 50%. Furthermore, as seen in the present study, only the fraction
extracted at the highest temperature achieved enzyme inhibition close to 40% [42]. However,
André et al. [77] reported anti-AChE activity up to 90% on aqueous extracts (decocted at
100 ◦C for 30 min) of three different F. vesiculosus samples. Choi et al. [78] also showed that
ethanolic extracts of brown alga E. bicyclis possessed potent AChE and BuChE inhibition
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activity, particularly 68.01% ± 1.37% and 95.72% ± 3.80% at 25 µg/mL, with IC50 values of
2.78 ± 0.07 and 3.48 ± 0.32 µg/mL, respectively. However, their extract was much more
active than our fractions.

Table 4. AChE and BuChE inhibition (%) of SWE of Himanthalia elongata (L.) S.F.Gray and Eisenia
bicyclis (Kjellman) Setchell.

AChE Inhibition (%, Mean ± SEM) BuChE Inhibition (%, Mean ± SEM)

Seaweed Concentration
(mg/mL) 1 2 3 4 1 2 3 4

H. elongata 2.00 n.a. n.a. n.a. 35.8 ± 11.2 a n.a. n.a. 20.2 ± 7.3 a 39.3 ± 7.9 a

1.00 n.a. n.a. n.a. 24.2 ± 3.6 a n.a. n.a. n.a. 27.0 ± 11.6 a

E. bicyclis 2.00 n.a. n.a. 33.7 ± 6.9 a 49.3 ± 0.97 a n.a. n.a. 29.6 ± 7.2 a 37.8 ± 8.6 a

1.00 n.a. n.a. 24.3 ± 3.7 a 35.3 ± 6.6 a n.a. n.a. 24.5 ± 1.6 a 26.9 ± 3.9 a

n.a.—not active, % of inhibition below 10%. Results are expressed as mean ± SEM of three independent assays,
each one performed in triplicate. The same superscript letters in the same row correspond to non-statistically
significant differences (p > 0.05).

These results suggest that the extraction method plays an important role in the anti-
ChE activity of algal samples, and SWE may negatively affect this inhibitory capacity.
Therefore, further research is required to confirm this conclusion.

4. Conclusions

SWE is a green extraction process proven to be a very efficient technique for obtain-
ing highly bioactive fractions. These fractions are considered safe regarding a total of
51 contaminants (21 pesticides and 30 pharmaceuticals) screened, and their iodine content
is safe for consumption, except fraction 1 of Eisenia bicyclis (Kjellman) Setchell, that should
be used with caution.

In this study on Himanthalia elongata (L.) S.F.Gray and E. bicyclis, the samples’ antioxi-
dant capacity, the total phenolic content, and the Maillard reaction products depended on
the extraction temperature. Furthermore, they varied among the fractions extracted, with
the third and fourth fractions showing the most promising results.

Overall, even though no significant ChE inhibition was detected (below 50%), fractions
3 and 4 were the ones with the highest biological activities, namely DPPH•, ABTS•+, •NO,
and O2

•− scavenging activity, which can be tentatively explained due to the presence of
Maillard reaction products.

Future research should focus on ascertaining H. elongata’s and E. bicyclis’ ability to
inhibit other brain enzymes associated with neurodegenerative etiology, such as tyrosinase
and monoamine oxidase A and B.

Lastly, HPLC analysis could provide important insight into the composition of
H. elongata and E. bicyclis fractions and the specific compounds responsible for their high
antioxidant capacity.
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34. Ciko, A.M.; Jokić, S.; Šubarić, D.; Jerković, I. Overview on the application of modern methods for the extraction of bioactive
compounds from marine macroalgae. Mar. Drugs 2018, 16, 348. [CrossRef] [PubMed]

35. Dembek, M.; Bocian, S. Pure water as a mobile phase in liquid chromatography techniques. TrAC Trends Anal. Chem. 2020, 123, 115793.
[CrossRef]

36. Ko, M.-J.; Nam, H.-H.; Chung, M.-S. Subcritical water extraction of bioactive compounds from Orostachys japonicus A. Berger
(Crassulaceae). Sci. Rep. 2020, 10, 1–10. [CrossRef] [PubMed]

37. Liang, X.; Fan, Q. Application of Sub-Critical Water Extraction in Pharmaceutical Industry. J. Mater. Sci. Chem. Eng. 2013, 1, 1–6.
[CrossRef]

38. Pinto, D.; Vieira, E.F.; Peixoto, A.F.; Freire, C.; Freitas, V.; Costa, P.; Delerue-Matos, C.; Rodrigues, F. Optimizing the extraction of
phenolic antioxidants from chestnut shells by subcritical water extraction using response surface methodology. Food Chem. 2021,
334, 127521. [CrossRef]

39. Zhang, J.; Wen, C.; Zhang, H.; Duan, Y.; Ma, H. Recent advances in the extraction of bioactive compounds with subcritical water:
A review. Trends Food Sci. Technol. 2020, 95, 183–195. [CrossRef]

40. Pedras, B.; Salema-Oom, M.; Sá-Nogueira, I.; Simões, P.; Paiva, A.; Barreiros, S. Valorization of white wine grape pomace through
application of subcritical water: Analysis of extraction, hydrolysis, and biological activity of the extracts obtained. J. Supercrit.
Fluids 2017, 128, 138–144. [CrossRef]

41. Barroso, M.F.; Ramalhosa, M.J.; Alves, R.C.; Dias, A.; Soares, C.M.D.; Oliva-Teles, M.T.; Delerue-Matos, C. Total antioxidant
capacity of plant infusions: Assessment using electrochemical DNA-based biosensor and spectrophotometric methods. Food
Control 2016, 68, 153–161. [CrossRef]

42. Soares, C.; Paíga, P.; Marques, M.; Neto, T.; Carvalho, A.P.; Paiva, A.; Simões, P.; Costa, L.; Bernardo, A.; Fernández, N.; et al.
Multi-step subcritical water extracts of fucus vesiculosus l. And codium tomentosum stackhouse: Composition, health-benefits
and safety. Processes 2021, 9, 893. [CrossRef]

43. Plaza, M.; Amigo-Benavent, M.; del Castillo, M.D.; Ibáñez, E.; Herrero, M. Facts about the formation of new antioxidants in
natural samples after subcritical water extraction. Food Res. Int. 2010, 43, 2341–2348. [CrossRef]
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