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Background: Whole blood expression profiling is a mainstay for delineating differential
diagnostic signatures of infection yet is subject to high variability that reduces power
and complicates clinical usefulness. To date, confirmatory high confidence expression
profiling signatures for clinical use remain uncertain. Here we have sought to evaluate the
reproducibility and confirmatory nature of differential expression signatures, comprising
molecular and cellular pathways, across multiple international clinical observational
studies investigating children and adult whole blood transcriptome responses to
tuberculosis (TB).

Methods and findings: A systematic search and quality control assessment of gene
expression repositories for human TB using whole blood resulted in 11 datasets with
a total of 1073 patients from Africa, Europe, and South America. A non-parametric
estimation of percentage of false prediction was used for meta-analysis of high
confidence differential expression analysis. Deconvolution analysis was applied to infer
changes in immune cell proportions and enrichment tests applied using pathway
database resources. Meta-analysis identified high confidence differentially expressed
genes, comprising 372 in adult active-TB versus latent-TB (LTBI), 332 in adult active-
TB versus controls (CON), five in LTBI versus CON, and 415 in childhood active-TB
versus LTBI. Notably, these confirmatory markers have low representation in published
signatures for diagnosing TB. Pathway biology analysis of high confidence gene sets
revealed dominant metabolic and innate-immune pathway signatures while suppressed
signatures were enriched with adaptive signaling pathways and reduced proportions of T
and B cells. Childhood TB showed uniquely strong inflammasome antagonist signature
(IL1RN and ILR2), while adult TB patients exhibit a significant preponderance type I and
type II IFN markers. Key limitations of the study include the paucity of data on potential
confounders.
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Conclusion: Meta-analysis identified high confidence confirmatory immune-metabolic
and cellular expression signatures across studies regardless of the population resource
setting, HIV status and circulating endemic pathogens. Notably, previously identified
diagnostic signature markers for TB show limited concordance with the confirmatory
meta-analysis. Overall, our results support the use of the confirmatory expression
signatures for guiding optimized diagnostic, prognostic, and therapeutic monitoring
modalities in TB.

Keywords: tuberculosis, meta-analysis, immunity, systemic responses, microarray, bioinformatics

INTRODUCTION

Tuberculosis caused by members of the Mycobacterium
tuberculosis complex is a leading cause of morbidity and
mortality due to an infectious agent despite the availability of
potent antimycobacterials (WHO, 2015). About a third of the
world population is latently infected with M. tuberculosis with a
life time risk of re-activation to cause active TB and transmission
to other susceptible hosts. BCG, the only licensed TB vaccine
has variable efficacy ranging from 0–80% with limited efficacy in
preventing pulmonary TB in adults who are largely responsible
for disease transmission (Colditz et al., 1994; Karonga Prevention
Trial Group, 1996). The control of TB is further complicated
due to the emergence of antimycobacterial resistance and
co-infection with HIV, with TB as the leading cause of death in
HIV co-infected patients (Bruchfeld et al., 2015). Furthermore,
the host immune response to mycobacterial infection although
thought to be primarily T cell mediated is very complex and
remains incompletely understood (Cooper, 2009; Dwivedi et al.,
2012) and there are currently no validated immune correlates of
protection.

To develop the more efficacious vaccines identified as essential
for global TB control, it is important to understand the host
immune response to M. tuberculosis. A promising approach to
interrogate the host response at a systemic level in order to
identify correlates of protection is systemic analyses of host
transcriptional responses, using methods such as microarrays and
increasingly RNA sequencing.

Several published studies have used genome-wide
transcriptomics to investigate the host systemic response to
TB, pathway biology and to identify diagnostic signatures to
distinguish active TB from LTBI, uninfected controls, and other
diseases (Berry et al., 2010; Maertzdorf et al., 2011a; Bloom et al.,
2012; Kaforou et al., 2013; Anderson et al., 2014; Tientcheu et al.,
2015). These studies were conducted in different geographical
regions, and HIV infection status. Previous studies have reported
that a comparison of independently identified differentially
expressed genes and diagnostic signatures revealed that less
that 80% of differentially regulated genes and only about 60%
of interferon (IFN) gamma signature genes were consistently
found in all studies (Maertzdorf et al., 2011a). In analyzing
whole blood transcriptomics, it is critical to account for cellular

Abbreviations: CD, cluster of differentiation; GEO, gene expression omnibus;
HIV, human immunodeficiency virus; IL1, interleukin 1; TB, tuberculosis; TLR,
Toll-like receptor.

heterogeneity yet an investigation of cellular proportions and
pathways by applying cell-specific deconvolution algorithms
remains lacking for current TB expression profiling studies.
Moreover, independent TB transcriptomics studies conducted
for adults and children can be further complicated by the
different clinical manifestations, prior history of infection, and
for these reasons maybe anticipated to have different systemic
gene expression signatures. In this connection, it is worth noting
that a comparison between adult and childhood TB expression
profiles has not been reported. Moreover, given the wide age
range, population, and cellular heterogeneity of these large data-
rich studies, it is not too surprising that the clinical usefulness of
expression signatures remains uncertain.

Meta-analyses can provide a statistically stringent and
powerful approach to integrate and computationally deconvolute
large independent datasets and thereby infer with high
confidence new and consistently differentially expressed genes
and pathways across multiple studies and age groups. Very
recently, several studies have conducted a meta-analysis of a
subset of publicly available TB transcriptomic studies; however,
none of these meta-analyses studies involved a complete and
comprehensive range of both adult and childhood TB (Sambarey
et al., 2017; Wang et al., 2018) Most notably, the primary
data in these studies have yet to be used to identify sentinel
immune-metabolic pathways and to deconvolute the proportions
of different immune cell types during TB and which are critical
in understanding more completely the host systemic responses
and for accounting the contribution of specific immune cell type
pathways to disease pathogenesis.

In the present investigation, we evaluate the primary
hypothesis that a common pathogenic predictive pathway
biology response (inclusive of cellular, molecular, and
metabolic determinants) underpins TB across different ages
and populations. Accordingly, this raises a key question of
delineating high confidence qualitative and quantitative pathway
biology differences between childhood and adult TB. To address
the central hypothesis and question, we used meta-analysis for
integrating data from heterogeneous populations, to identify
high confidence differentially and similarly expressed marker
genes in children and adults, with active and latent TB across
multiple international observational case control studies,
irrespective of HIV status, geographical location, and circulating
endemic pathogens. Furthermore, we performed gene expression
deconvolution to determine which cell types constituted the
highest proportions in TB patients and are possible contributors
to disease pathologies.
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MATERIALS AND METHODS

Data Acquisition
Gene expression data repositories (GEO and ArrayExpress)
were searched for datasets on human response to TB in
English for meta-analysis with the following criteria: (I)
Search term; {(human TB whole blood) AND “Homo
sapiens”[porgn:__txid9606]} was used to retrieve datasets
relating to TB gene expression. (II) Each study should be
conducted using whole blood not peripheral blood mononuclear
cells (PBMCs) as PBMCs when correctly purified have little
granulocytes which have been shown to contribute to
M. tuberculosis pathogenesis (Lowe et al., 2012). (III) The
study should include active TB and one of either latently
infected individuals (LTBI) or uninfected controls. (IV) Studies
conducted using custom arrays or using qPCR were excluded
because such array does not contain all genes in the genome and
could be biased for specific cell types. Furthermore, following
database searches publications associated with selected datasets
were read to confirm clinical definitions and whether patients
were treated prior to blood collection for microarray. Where
datasets were not accessible or raw datasets were not available,
authors were contacted for raw datasets, but further data were
not made available. All searches were done on publicly available
data repositories; no unpublished abstracts and studies were
considered. A second assessor role (TF and PD) refereed issues
arising from primary data and for workflow accuracy with any
discrepancies resolved by discussion and consensus with BK
and PG. A detailed workflow of data acquisition, curation, and
analysis can be found in Supplementary Figure S1. As defined
by the original studies, whole blood for transcriptome studies was
collected before initiation of treatment and in one study before
or within 24 h of initiation of treatment (Kaforou et al., 2013).
All searches were done on or before May 2016. While reporting
guidelines have yet to be standardized for meta-analysis of gene
expression, we adhered as close as possible to guidelines for the
meta-analysis of observational studies in epidemiology (MOOSE,
Supplementary Table S2).

Quality Control, Filtering, and
Summarization
The arrayQualityMetrics package in bioconductor (Gentleman
et al., 2004; Kauffmann et al., 2009) was used to assess the
quality of each dataset in the R statistical environment. After
quality control, each dataset was independently normalized
before differential expression analysis. Datasets were generated
using different array platforms (Illumina, Affymetrix, or Agilent),
which have different probe identifiers (IDs) representing different
genes on the array chip. Therefore, probes were summarized to
Entrez gene levels by selecting probes with the largest median
across the samples regardless of clinical phenotype to represent
a specific gene. Genes present in at least two datasets were
selected for inclusion in meta-analyses to account for as many
genes as possible across different array platforms. Prior to
extensive statistical analysis, an exploratory analysis of pairwise
correlations between fold changes of the datasets was used to

identity outlier datasets that could bias the meta-analysis. Only
datasets with good pairwise correlations to other datasets were
selected for downstream analysis.

Differential Expression Statistical
Analysis
To determine genes differentially expressed in active TB, dataset
specific and meta-analysis approaches were performed using
the RankProd package in the R statistical environment for
estimation of percentage of false prediction (Hong et al., 2006;
R Development Core Team, 2011). Meta-analyses for adult and
childhood TB were conducted separately. For each individual
study, three pairwise contrasts were made where possible;
these were active TB versus LTBI, active TB versus uninfected
controls, and LTBI versus uninfected controls. Second, the
same comparisons were made in a rank product meta-analysis,
resulting in an overall estimate of gene expression fold changes
and statistical significance across all studies under consideration.
The childhood studies lacked uninfected controls in the original
studies; therefore, contrasts were performed with LTBI alone
and assume that LTBI exhibits a less immune stimulatory status.
Differentially expressed genes (adjusted p-value < 0.05, absolute
fold change 1.5) obtained from the meta-analysis and from
the individual study analysis were compared to identify with
high confidence differentially expressed genes for downstream
systemic pathway biology analysis. Given the fundamental
differences between manifestations of TB in adults and children
(Alcaïs et al., 2005), differentially expressed genes obtained from
adult and childhood TB were also compared to identify genes
commonly differentially expressed in both and those uniquely
expressed in either patient population.

Whole Blood Cellular Deconvolution
The cellular components of whole blood can vary in different
physiological states and during infections and illness and
could influence results obtained from whole blood differential
expression analysis. Accordingly, the CellMix package (Gaujoux
and Seoighe, 2013) was used to deconvolute the proportions of
different immune cell types in active TB patients, latently infected
individuals, and uninfected controls. The signatures used for the
deconvolution are based on individual immune cell signatures
identified based on cell specific gene expression analyses as
previously described (Abbas et al., 2005). The normalized and
log2 transformed dataset was used for the deconvolution using
gedBlood function in the CellMix package (Gaujoux and Seoighe,
2013). Student’s t-test was used to perform pairwise statistical
analysis of cell proportions between different clinical phenotypes
in each dataset. For each cell type, the median of the controls
(either LTBI or uninfected controls) was subtracted from the
active TB patients for graphical representation per dataset.

Pathway Analysis
The manually curated innate database (InnateDB; Dunkelberger
and Song, 2010) was used for pathway analysis to interrogate
biological pathways associated with differentially regulated genes
in active TB. Up and downregulated genes were analyzed
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separately and for each, three separate analyses were made;
genes differentially regulated (adjusted p-value < 0.05 and
fold change > 1.5) in both adult and childhood TB, those
regulated only in adults, and those regulated only childhood TB.
To generate graphical representations of significant pathways,
adjusted p-values were −log10 transformed and plotted on the
x-axis for each pathway.

RESULTS

Data Curation, Quality Control, and
Analysis Workflow
Twelve microarray datasets with total sample size of 1110 patients
(consisting of active TB patients, LTBI, and uninfected controls)
passed predefined criteria. Of the 12 datasets, nine were from
adults (825 patients) and three datasets were obtained from
children (285 subjects). The studies analyzed here include both
HIV negative and HIV positive patients as defined per the
original studies. Table 1 contains information about datasets
included in this analysis and their respective GEO accession
numbers. Table 1 also shows the geographical locations of sample
collections sites, year the study was conducted, array platforms
used for the microarray, and the age definition of the patients.
Before extensive differential expression analysis, an exploratory
analysis was done on the twelve datasets, as outlined in the
analysis workflow in Figure 1A (Supplementary Figure S1). In
this exploratory analysis, the top 1000 most variable probes in
the datasets were used to perform a hierarchical unsupervised
clustering to determine if expression of these genes can cluster
samples from different clinical phenotypes and identify outlier
datasets. The clustering largely grouped active TB patients

from LTBI and uninfected controls but there was no clear
distinct clustering of latently infected individuals and uninfected
controls as shown in Figure 1B. Pairwise correlations of the
different datasets were done to identify outlier datasets. Dataset
(GSE34608) was found not to be well correlated with the rest
of the other datasets (Table 1 and Supplementary Figures S2–
S4) and was therefore removed from the differential expression
analysis pipeline. Furthermore, after QC for each dataset, poor
quality samples were removed. The number of samples removed
for each dataset can be found in Supplementary Figure S1
and the outlier dataset also removed resulting in 11 datasets
consisting of 1073 subjects taken forward for meta-analysis.

Host Systemic Perturbation in Active
Tuberculosis: Re-analysis of Individual
Studies
After normalization and probe summarization across datasets,
18,945 Entrez IDs in adults and 18,629 Entrez IDs in
children passed filtering. These gene probes were subjected to
standardized re-analysis for differential expression analysis for
individual studies and meta-analysis across all studies using
the RankProd package. Tables 2A–C show a summary of
differentially expressed genes obtained in the individual dataset
analyses showing that there were more upregulated genes than
downregulated genes, which could be due to increase immune
modulation in response to the infection.

In the active TB versus LTBI comparison, GSE28623 had
the largest number of differentially regulated genes while
GSE19439/GSE19444 had the smallest number of differentially
expressed genes as shown in Table 2A. Comparing active TB
with uninfected controls, the same datasets had the smallest and
the largest number of differentially regulated genes, respectively,

TABLE 1 | Summary of datasets included in the study.

GEO
accession

number

Year Platform Country Age HC Latent
TB

Active
TB

Comments and (ref)

1 GSE19439 2010 Illumina GPL6947 UK Adults 12 17 13 Batch corrected and merge
datasets from same study and
site Berry et al., 2010

2 GSE19444 2010 Illumina GPL6947 UK Adults 12 21 21

3 GSE19442 2010 Illumina GPL6947 South Africa Adults NA 31 20 Berry et al., 2010

4 GSE25534 2010 Agilent GPL1708 South Africa Adults 9 34 33 Maertzdorf et al., 2011b

5 GSE28623 2011 Agilent GPL4133 Gambia Adults 37 25 46

6 GSE34608 2012 Agilent GPL6480 Germany Adults 18 NA 8 Excluded; low correlation with
other datasets Maertzdorf
et al., 2012

7 GSE37250 2013 Illumina GPL10558 South Africa/ Malawi Adults NA 167 195 Kaforou et al., 2013

8 GSE56153 2012 Illumina GPL6883 Indonesia Adults 18 NA 18 Ottenhoff et al., 2012

9 GSE73408 2016 Affymetrix GPL11532 USA Adults NA 35 35 Walter et al., 2016

10 GSE39939 2014 Illumina GPL10558 Kenya children NA 14 79 Anderson et al., 2014

11 GSE39940 2014 Illumina GPL10558 South Africa/ Malawi children NA 54 111 Anderson et al., 2014

12 GSE41055 2013 Affymetrix GLP5175 Venezuela children 9 9 9 Verhagen et al., 2013

TB, tuberculosis; NA, not available; GEO, Gene Expression omnibus. The year column shows the year the study was done, the platform column is microarray platform
used for arraying the samples, country column shows the countries from which the samples were collected, age column is the age category for the patient, and the
comment and (ref) column contains the reference and comments where possible if the dataset was remove or not and what other process was done on the datasets.
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FIGURE 1 | Analysis workflow and exploratory analysis. (A) Summary of the analysis workflow from data acquisition to pathway analysis; a detailed analysis
workflow can be found in the Supplementary Material. (B) Hierarchical clustering of the top 1000 most variable gene probes largely clustering active TB from
controls (uninfected controls and latently infected individuals). Pairwise comparison of FCs of different datasets can be found in Supplementary Figure S2
indicating the outlier dataset (GSE34608).

TABLE 2 | Number of differentially expressed genes from individual dataset analysis.

GSE19439/ GSE19444 GSE19442 GSE25534 GSE28623 GSE37250 GSE73408

Up Down Up Down Up Down Up Down Up Down Up Down

(A) Active TB versus latent TB

1.5 FC 246 122 433 244 292 167 695 466 348 173 256 175

2.0 FC 51 7 98 19 57 5 162 34 73 10 43 4

GSE19439/GSE19444 GSE25534 GSE28623 GSE56153

Up Down Up Down Up Down Up Down

(B) Active TB versus uninfected controls

1.5 FC 241 106 685 800 695 466 813 657

2.0 FC 69 4 128 94 162 34 192 169

GSE39940 GSE39939 GSE41055

Up Down Up Down Up Down

(C) Children active TB versus latent TB

1.5 FC 535 343 451 422 114 16

2.0 FC 116 28 101 67 9 4

as shown in Table 2B. In active TB versus LTBI, only 81
genes were differentially expressed across all datasets at 1.5-
fold change cut-off and 66 genes were differentially regulated
across all datasets in active TB versus uninfected controls
(Table 3). This outcome underscores the magnitude of variability
in transcriptional responses in these patient population studies
and which could be due to several factors including sample

preparation, array processing, and circulating endemic pathogens
in different geographical locations. Therefore, to account for
different factors affecting different datasets, a combined meta-
analysis based on a rank estimate with permutation was used to
identify consistently differentially expressed genes.

Quantitatively children developed more differentially
expressed genes compared to adults as shown in Table 2C.
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TABLE 3 | Genes differentially regulated across all studies in the study specific
analyses.

Comparison Genes significantly expressed across all
individual analysis

TB versus LTBI CARD16, GBP4, GBP5, BATF2, ANKRD22,
MAPK14, DUSP3, SAMD9L, FBXO6, GBP1,
FER1L3, GZMK, HP, IFIT3, FAM102A, CARD17,
FAM26F, NELL2, LAP3, PLSCR1, Septin 4, RAB20,
NLRC4, RTP4, SERPING1, TLR5, C1QB, AQP10,
RSAD2, TIFA, EPSTI1, DHRS9, LHFPL2, KLRG1,
CD96, TRIM22, IFITM3, HPSE, IFI44L, IRAK3,
SLC26A8, ADM, DEFA4, EBI2, S1PR1, C19orf59,
ZNF438, GK, CD274, GYG1, ANXA3, CLEC4D,
JAK2, KCNJ15, LIMK2, LMNB1, MMP9, GPR84,
LRRN3, SIPA1L2, SORT1, CEACAM1, BLK, NOD2,
BLR1, SLC22A4, BMX, SMARCD3, TNFAIP6,
WARS, DYSF, HIST2H2BE, PARP9, KREMEN1,
FCRLA, SIGLEC5, GPR109B, PSTPIP2, CD2,
AIM2, P2RY14

TB versus CON CARD16, GBP4, GBP5, BATF2, ANKRD22,
MAPK14, DUSP3, SAMD9L, FBXO6, GBP1,
FER1L3, GZMK, HP, IFIT3, FAM102A, CARD17,
FAM26F, NELL2, LAP3, PLSCR1, Septin 4, RAB20,
NLRC4, RTP4, SERPING1, TLR5, C1QB, AQP10,
RSAD2, TIFA, EPSTI1, MYL9, OLFM4, TNFSF13B,
VAMP5, MTHFD2, PIK3IP1, ANKRD9, MSRB2,
PASK, GBP2, IFI27, IFIT2, IFIT1, IL1B, IL7R, IL15,
ITGA2B, NAIP, OSM, BANK1, TMEM140, PRKCH,
RPS4Y1, S100A12, IFIH1, STAT1, XK, SLC38A1,
CAMP, CASP1, MARCO, TNFRSF25, TNFSF10,
IL18RAP, UBE2L6

Red and italicized are regulated in both comparisons.

However, it is noteworthy that the amplitude of the per gene
fold change differences between adults and children was
comparable. High variability is also notable in the childhood
studies with dataset GSE41055 yielding the smallest number
of differentially regulated genes with only nine upregulated
and four downregulated genes at a twofold change cut-off.
The two African datasets had similar numbers of differentially
expressed genes. Overall, there were more upregulated genes
than downregulated genes (Table 2) in both adults and children.

Meta-Analysis Identified High
Confidence Differentially Expressed
Genes Across Datasets
The analysis of individual studies is subject to study design
and technical biases that affect reproducibility or relevance.
Therefore, to identify with high confidence genes that were
reproducibly regulated across different datasets, differentially
expressed genes from the meta-analysis were compared with
genes from the individual dataset specific analyses. Figure 2A
shows heatmaps of the fold changes of significant genes
(adjusted p-values < 0.05) obtained from the meta-analysis
for each phenotypic comparison made and those obtained
from independently analyzing each of the datasets. As expected
from a meta-analysis, it can be seen that many genes with
notable fold changes in individual studies lose this characteristic
in meta-analysis (where the influence of individual studies

is reduced by size-based weighting and in context of all
studies), thereby reducing the count of false positive results
and increasing the number of high confidence genes with
differential expression. Only five genes were identified as
high confidence in LTBI versus uninfected controls further
highlighting the gene expression similarities between these two
groups (Supplementary Table S1). Active TB versus LTBI had
374 differentially expressed genes which were identified with
high confidence while active TB versus uninfected controls had
332 genes. Active TB versus LTBI in children had more high
confidence genes (415 genes) compared to adult TB (374 genes)
(Figure 2B and Supplementary Table S1). Eight genes were
identified by meta-analysis alone in adults with active TB versus
uninfected controls and not in any individual dataset specific
analysis. These are CMPK2, FCGR1A, HSPA1B, LOC440607,
CCL3L1, LOC649853, LOC653980, and CCL4L2. In summary,
while the meta-analysis failed to identify many new differentially
expressed compared to the individual studies analyses, a highly
robust high confident set of expression signals was developed
with small number of previously undisclosed markers. Most
notably, meta-analysis significantly reduced the number of false
positive results, eliminating genes with low reproducibility in
differential expression across studies. For all subsequent pathway
analyses, we focused on these high confidence sets of genes.

Overlap Between Childhood and Adult
Meta-Analyses Detected Genes and
Previously Identified Diagnostic
Signatures
Given that several studies have identified gene signatures
potentially useable for novel TB diagnosis, we next compared
differentially expressed genes (FC cut-off 1.5, adjusted
p-values < 0.05) from the meta-analysis with gene signatures
identified by previous studies. Berry et al. (2010) identified 380
transcripts (312 genes) as a TB diagnostic signature of which, only
55% (172 genes) were identified by the meta-analysis while the
remaining 140 genes were not (Figure 3A). Kaforou et al. (2013)
describe 27 transcripts (25 genes) as a classifier to diagnose adult
TB, of which only 16 genes (64%) were confirmed as significant
by the meta-analysis (Figure 3B). Another 51 transcripts (50
gene) signature was identified by Walter et al. (2016) and only
14% (Kaforou et al., 2013) of these genes were identified as
confirmatory markers (Figure 3C). Finally, in the childhood TB
diagnostic signature (42 transcript; 40 genes; Anderson et al.,
2014), 33% (14 genes) were identified by the meta-analysis
while the remaining 26 were not (Figure 3D). This reveals a
disquietingly marked low confirmatory rate for the existing
published expression signatures that range at best from 64% to as
low as 14% identity. Our results thus identify those “unreliable”
diagnostic signature markers that are likely a consequence of the
heterogeneity and high variability of expression in the different
populations. However, it is conceivable that the low concordance
could be due to the differences in the fold change set for the
meta-analysis (FC 1.5) in comparison to those set by the different
studies. In Kaforou et al. (2013) and Anderson et al. (2014), the
fold change was set to log2 0.5 (1.4 linear fold change), and in

Frontiers in Genetics | www.frontiersin.org 6 October 2018 | Volume 9 | Article 457

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00457 October 1, 2018 Time: 14:38 # 7

Bah et al. Meta-Analysis of Host Systemic Response to Tuberculosis

FIGURE 2 | Meta-analysis identified highly robust confidence genes. (A) Heatmaps showing fold changes of differential expression obtained from meta-analysis
using the RankProd and individual dataset specific analysis. (B) Venn diagrams comparing genes obtained from meta-analysis and individual dataset specific
analysis to identify high confidence genes. HC, high confidence genes, which are consistently identified by both the meta-analysis and individual dataset specific
approaches. TB, tuberculosis; LTBI, latent TB infection; CON, uninfected controls. Fold change cut-off 1.5, p-value < 0.05.

Walter et al. (2016), 1.2 linear fold change was set during feature
selection.

Common Predictive Pathway Biology
Response to Active Tuberculosis
Outputs of the meta-analyses can be further used to inform high
confidence pathway analysis of active TB versus LTBI. Here,
genes upregulated in both adults and children were enriched with
pathways associated with innate immune responses including
type I IFN alpha/beta signaling, TLR signaling, cytokine
signaling, and numerous metabolic transporters and enzymes.
Notably complement activation (C1QB, C1QC, CR1, PROS1),
defensin (SLPI, DEFA1, A3, and A4) and antimicrobial factors
(S100A12, LCN2, DDX60L, LTF, TRRD9, ADM, APOBEC3A),
and inflammasome activation (IL18R1, IL18RAP, CARD16
and 17, NLRC4, AIM2, NAIP, CASP1) were all significantly
upregulated (Figure 4B). TLR2 signaling was the most prominent
TLR pathway and included its interaction with TLR1 and TLR6

cascade signaling (Figure 4B). Other notable pattern recognition
receptors equally regulated in adults and children included TLR5,
Ly96, PGLYRP-1, and importantly CLEC4D and E that recognize
the mycobacterial cell wall glycolipid trehalose 6,6′-dimycolate.
Previously unrecognized innate immune pathways were also
upregulated, in particular OLM4, WNT signaling involving
KREMEN1, LRRK2, and TSH23 and apparent alternative
immunosuppressive macrophage markers including ARG1,
MS4ALA and related atypical chemokine receptors CCRL2.
Further upregulated immune suppressive signaling includes
IRAK3, SIGLEC5, SLPI, PSTPIP2, PIK3AP1, and the lymphoid
co-inhibitory molecule CD274 (PD-L1).

In connection with the upregulation of multiple inhibitory
pathways, genes significantly downregulated in both adult and
childhood TB were predominantly enriched with pathways
including chemokine receptor binding, Ca2+ signaling, B-cell
(CD79A and B, BLR1, EBI2, VPREB3, ID3, FCRLA, FAIM3,
FCGBP, CCR7) and T-cell (BACH2, CD6, CD5, BCL11B, TCL1A,
TCF7, CCR7, LEF1), and T/NK cell functions that showed
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FIGURE 3 | Comparison of meta-analysis to identified gene signatures. Genes
significantly differentially regulated (fold change > 1.5) from the meta-analysis
were compared to gene signatures identified by different studies as shown.
(A–C) Comparison of individual diagnostics signature markers to genes from
meta-analysis of adult active TB versus LTBI. (D) Comparison of the childhood
TB signatures to childhood active TB versus LTBI.

significant suppression of the CD3 zeta (CD247)-EPHA4/NCR3
axis, CD96, UBASH3A, GZMK, and critically IL7R that when
suppressed leads to severe immunodeficiency (Figure 4A).

Thus, a common pathogenic predictive pathway biology
response underpins TB across different ages and populations. In
active TB, this comprises an upregulation of the inflammatory
innate arm of the immune system (encompassing a marked
inflammasome type I IFN-TLR2 axis, complement activation,
and antimicrobial factors) and which is concomitant with
immunosuppressive downregulation of the adaptive immune
arm (encompassing predominantly B and T cell signaling and
effector functions).

Correlation Between Active TB Versus
LTBI to Active TB Versus Uninfected
Controls
Individuals with LTBI and uninfected controls showed similar
expression profiles and could not be distinctly clustered based
on the 1000 most variable genes (Figure 1B). We therefore
compared differentially expressed genes between active TB versus
LTBI and those from active TB versus uninfected individuals
to identify phenotype specific gene sets. There was a good
correlation of fold changes obtained from the two comparisons
(Figure 5A) and a good overlap between differentially expressed
genes at 1.5-fold change cut-off (adjusted p-value < 0.05)
while some genes were only expressed on either of the
comparisons. Two hundred and sixteen genes were common

to both comparisons, 124 genes differentially expressed only in
active TB versus healthy controls, and 158 only expressed in
active TB versus LTBI as shown in Figure 5B. In summary,
this suggests as expected that the lack of specific clustering of
differentially expressed genes in either comparison is indicative
of a less immune activated status in latent TB in comparison with
active TB. However, it is also notable there are limited set of genes
specific to latent TB phenotype and point to a subtle yet detectable
difference.

Comparison Between Childhood and
Adult TB Host Responses
Childhood and adult TB clinical features and manifestations
differ; in adults, the infection is largely restricted to the
lungs while in children the infection can often disseminate to
other parts of the body (Alcaïs et al., 2005) and hence could
result in vastly different host systemic transcriptional responses.
Therefore, we compared adult and childhood TB host systemic
transcriptional responses and unexpectedly found good overlap
of differentially expressed genes between them with a smaller
subset of genes specific to either adults or children. Figure 5C
shows there was a good correlation of fold changes obtained from
adult and childhood active TB versus LTBI. However, some genes
exhibit higher fold changes in adults and vice versa as shown
in Figure 5C. At a 1.5 FC cut-off, 206 genes were differentially
expressed in both adult and childhood TB, 168 differentially
expressed only in adults, and more genes (209 genes) were
differentially expressed only in childhood TB (Figures 5C,D) and
their associated pathways are shown in Figure 6. In summary,
we observed that childhood TB has about 20% more systemic
differentially expressed genes than adults but shared the same
differential pattern (representing over 55%) of the differential
expressed genes in adult TB.

Nevertheless, genes could be identified that were significantly
upregulated only in adult TB represented an extension of the
common pathways noted above associated with innate immune
inflammatory response including an increased number of IFN
regulated genes (PML, CXCL10, IFITM1, IRF7, OAS1, IFITM4P,
ISG15, IFI35, STAT1, SOCS1, DUSP3), TLR4, TLR7/8, and TLR9
signaling cascades, and a further augmented significance for the
first regulated step of the glycolytic pathway (HK3).

The adult selective downregulated gene signatures accentuate
the suppressed adaptive immune pathways including T-cell
cytotoxic granulysin molecule (GNLY) against TB, TCR
alpha/beta or gamma delta signaling (in particular CD2, EOMES,
TRA, CD8A, TRBV5-4, ZAP70, SKAP1, CD3D, TARP, FGFB2,
RASGRP1, DYRK2, EVL, SH2D1A, ITK, MATK), B-cell functions
(BANK1, CD19, BLK, FAM129C, MS4A1, FCRL3, EBF1, SPIB,
RASGRP1, SH2D1A, FCRL2). NK/T-cell co-inhibitory molecules
KLRG, KLRB1, and cytokine IL32; suppression of TGFbeta
inhibitory-molecule TGFBR3 (Supplementary Figure S7).

Signature sets differentially upregulated only in childhood
TB were notably replete of IFN regulated genes but enriched
with other immune pathways including elevation of alternative
antimicrobial defense mechanisms (H2AFJ, HISTIH2BG, and
CTSG) and multi-functional IL27 that blocks IL-17 and IRF1
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FIGURE 4 | Biological pathways enriched in both adult and childhood tuberculosis (active TB versus LTBI). High confidence genes differentially expressed (1.5-fold
change and adjusted p-value < 0.05) in both adults and children were analyzed with InnateDB to identify enriched pathways. (A) Pathways downregulated and (B)
pathways upregulated in active tuberculosis.

signaling as well as counter T-reg functions, platelet adhesion,
and metabolic pathways involved in transport of glucose and
other sugars, erythrocytes uptake of carbon dioxide and release
of oxygen and cell surface interactions at the vascular wall. There
is a significant increase in pathways associated with metal ion
homeostasis including SELENBP1, MT2A, STEAP4, S100P, and
cell adhesion and interactions (notable markers are GCA, ESAM,
GPR97, COL17A1, and PSG3). There are concurrent blockade
and stimulatory pathways for IFN/MDA5 activity involving
the RIOK3 kinase and DDX60 pathways, respectively. While
inhibitory pathways for B-cell activation (via SAMSN1) and
leukotriene-B (Bruchfeld et al., 2015; degraded by CYP4F3)
for polymorphonuclear leucocyte chemoattractant activity are
unchecked, elevation of PSG9 that promotes T-reg functions is
countered via increased IL27.

Notable downregulated genes specific for childhood TB are
enriched with pathways mainly involved in stimulation of
T/B cells (CD40L, CD7, ICOS, FCER2, PTPRCAP, ADAM23),
dendritic cell development (FLT3LG), alternative promoters of
inflammation (CD248 and EDAR), and inhibition of neutrophil
degranulation by ADORA3. Moreover, there is a significant
suppression of IL23a that heterodimerizes with IL12B to
activate the JAK-STAT-IFNG axis, and the OLIG2-SIGLEC8
eosinophil-axis is low in active but high in latent TB. Further
eukaryotic translation such as translation initiation, elongation

and termination, metabolism of proteins, amino acid transport,
and gene expression as further shown in Supplementary
Figure S7.

In summary, a comparison between adult and childhood
TB shows that over a third of the confirmatory response is
shared across the different populations while the other third,
significant genes are exclusively significant for either children or
adult responses. Unexpectedly, our findings reveal a differential
yet plastic response, showing a more significant qualitative and
quantitative contribution of both type I and II IFN responses
in adults over children and the use of different but functionally
similar co-inhibitory molecules underscored by the upregulation
of HLA-G and PDCDILG2 (PD-L2) in children and adults,
respectively.

Active Tuberculosis Patients Present
With Higher Proportions of Innate
Immune Cells and Lower Proportions of
Adaptive Immune Cells Compared to
Controls
Whole blood is made up of different innate and adaptive immune
cellular components which can change in response to internal
and external challenges, such as inflammatory and infectious
diseases including TB. As such, it could be expected that some
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FIGURE 5 | Comparisons of adult active TB versus LTBI and controls and childhood versus adult TB. (A) Correlation between adult active TB versus latent TB and
active TB versus uninfected controls. (B) Number of genes common between active TB versus latent and active TB versus uninfected controls. (C) Correlation of
fold changes obtained in active versus latent TB in children and adults. (D) Overlap of differentially expressed genes in adult and childhood TB.

FIGURE 6 | Pathways associated with gene specific to (A) active TB versus latent TB and (B) active TB versus control. Long fold change cut-off at 1.5 and p-value
of <0.05.
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immune cellular components will be different between people
with active TB and LTBI and uninfected controls and could
contribute to observed gene signatures. Therefore, we performed
whole blood cell deconvolution to determine differences in cell
proportions in active TB, LTBI, and uninfected controls using
the CellMix package (Gaujoux and Seoighe, 2013). There were
higher proportions of innate immune cells in active TB compared
to both latently infected and uninfected individuals. Specifically,
proportions of neutrophils and monocytes were significantly
higher in active TB compared to controls whereas T-helper
(CD4) cells and B cells were higher in controls compared to
active TB patients. Figure 7A and Supplementary Figure S5
show differences in cell proportions between active TB and
LTBI in adults and Figure 7B shows cell proportion differences
between active TB and uninfected controls. Resting natural killer
(NK) cells were significantly lower in active TB patients while
the proportions of activate NK cells were significantly higher
in active TB patients. No significant differences in immune
cell proportions were observed between LTBI and uninfected
controls.

Similar observations were made in childhood TB; children
with active TB had higher proportions of neutrophils and other
innate immune cells while the proportions of B and T-cells
were lower compared to latently infected children. However,
significant differences in cell proportions were not observed in
the childhood TB dataset collected from the Warao Amerindian
children in Venezuela as shown in Figure 8 and Supplementary
Figure S6.

In summary, this analysis suggests that active TB patients have
significantly higher proportions of innate immune cells and lower
proportions of adaptive immune cells compared to controls.
These alterations in cell proportions are in good agreement with
alterations observed at the molecular functional pathway level
involved in the pathogenesis of TB.

Modulation of Co-inhibitory and
Co-stimulatory Signaling Molecules in
Tuberculosis
To understand further the relationship between cellular and
molecular pathway biology responses, we next investigated
the modulation of host co-inhibitory and stimulatory immune
signaling molecules in TB. CD 27 (CD27), CD274, and
suppressor of cytokine signaling 3 (SOCS3) were upregulated
while LILRA5 and TNFRSF25 were downregulated, respectively,
in both adult and childhood TB (Figure 9). CD27 is required
for generation and maintenance of long-term memory by
transducing the signal to activate the NF-kB and MAPK8/JNK,
CD274 encodes an immune inhibitory signal expressed in
immune cells including T and B-cells, which inhibit T cell
activation and cytokine production and SOSC3 also negatively
regulates immune signaling through inhibition of JAK2 kinase.
LILRA5 and TNFRSF25, which were downregulated, are also
important in signal transduction and generation of a strong
immune response.

Only two co-stimulatory genes; PDCD1LG2 and CD2 were up
and downregulated, respectively, exclusively in adults (Figure 7).

CD2 is a cell surface receptor important for antigen presentation
and PDCD1LG2 encodes a programmed cell death 1 ligand 2.

More immune stimulatory molecules were modulated in
childhood TB; four upregulated (HLA-G, LILRA6, IL1RN, and
IL1R2) and five downregulated (CD40LG, HLA-DOB, CD28, and
HLA-DQB1). HLA-G encodes histocompatibility antigen, class
1G and LILRA6 encodes for leukocyte immunoglobulin like
receptor 6, both of which are important immune regulators
of interaction between lymphoid and non-lymphoid cells.
Importantly, HLA-G is known to play a critical role for
suppressing maternal immunity in fetal development. IL1RN
encodes an IL1 receptor antagonist that inhibits IL1 mediated
signaling during the immune response and IL1R2 is a decoy
receptor which binds to IL1 alpha/beta inhibiting its activity
with its ligand. CD40LG is a CD40 ligand expressed on the
surface of T cells and involved in the regulation of B cell
function. HLA-DOB and HLA-DQB1 are members of the major
histocompatibility complex important for antigen processing and
presentation. CD28 is also expressed on the surface of T cells
and important for T-cell proliferation, cytokine production, and
Th2 cell development. Overall this data indicate upregulation
of inhibitory immune signaling molecules and downregulation
of co-stimulatory signaling molecules important for immune
signaling during active TB.

DISCUSSION

In the present study, we used a systematic meta-analysis approach
to comprehensively reanalyze publicly available microarray
datasets to identify high confidence differentially regulated
signatures in adult and childhood TB across multiple continents
and a spectrum of circulating endemic pathogens and HIV
infection status. Compared to the individual analyses of each
dataset, the meta-analysis provided increased power to detect
only a limited number of differentially regulated genes but
most critically identified high confidence differentially regulated
gene sets, reducing a large number of false positive markers
detected in the individual study analyses. This demonstrated a
small overlap of potential biomarkers across multiple studies
conducted in different geographical locations, and which agrees
with another very recently published meta-analysis of TB
(Sambarey et al., 2017). In adults with active TB versus LTBI,
374 genes were differentially regulated and in active TB versus
uninfected controls, 332 genes were differentially regulated.
As observed in previous studies, the expression profiles of
latently infected individuals and non-infected controls were very
similar (Maertzdorf et al., 2011a) but critically identifying for
the first time five significantly latent specific biomakers. When
we compared genes regulated in active TB versus LTBI or
active TB versus uninfected controls, there was a good overlap
(216 genes). By contrast, 124 genes and 158 genes were only
regulated in active TB versus uninfected controls and active
TB versus LTBI, respectively. This therefore clearly indicates
a much-reduced immune altered state in latent TB but which
retains a minimal detectable systemic response. In relation to
age, childhood TB developed a more differentially regulated
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FIGURE 7 | Difference in Immune cell proportions in adult tuberculosis. Gene expression signals were used to deconvolute cell proprtions in whole blood collected
from TB and controls using the CellMix package. The median for each cell component per clinical phenotype was determined. Median cell proportions from controls
were substracted from medians from active TB. (A) Immune cell proportion difference between active TB and latent TB. (B) Difference in active TB and uninfected
controls. Red asterisks indicate those that are siginificant (p < 0.05) based on a Student’s t-test.
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FIGURE 8 | Immune cell proportions in childhood TB. Immune cell proportions were deconvoluted from whole blood based on gene expression using CellMix.
Median cell proportions of latent TB patients were subtracted from the median proportions from active TB for each cell in each study. Red asterisks indicate
significant differences based on Student’s t-test.

genes (415) than to adult active TB versus LTBI of which
approximately half (206) were also significant in adults, revealing
a common core pathogenic network response as well as the
anticipated differences in response to TB in adults and children
that likely relate to the different clinical manifestations (Alcaïs
et al., 2005).

A comparison of confirmatory differentially regulated genes
with previously identified TB diagnostic signatures (Berry et al.,
2010; Kaforou et al., 2013; Anderson et al., 2014) showed a
low confirmatory rate (ranging from 14 to 64%) as shown
in Figure 3. While this could be possibly explained by the
different fold change cut-off set used in the independent
studies, the meta-analysis approach reduces false positives
and therefore the low correspondence most probably reflects
the underlying heterogeneity and overall poor reproducibility
for those markers. This highlights the urgent need for
potential diagnostic markers to be validated across different
and larger patient sample size populations, and critically the
standardization of statistical methods and significant cut-offs
across studies.

Pathway analyses indicated that genes up and downregulated
in both adult and childhood TB were enriched with innate and
adaptive immune response pathways, respectively, suggesting
strong upregulation of innate inflammatory immune responses
and downregulation of adaptive responses, which corroborates
previous findings (Berry et al., 2010; Maertzdorf et al., 2011a).
Adults show more IFN driven innate immune pathways and
downregulated adaptive pathways. On the other hand, childhood
specific upregulated genes were associated with inflammasome
IL1RN–IL1R2 suppression axis, glucose transport, CO2
and O2 release, and cell surface interaction pathways while

downregulated genes were associated with mRNA translation,
protein metabolism, and amino acid transport. Indeed,
recent studies have indicated that M. tuberculosis imports
host amino acids and relies on them to thrive in the host
(Gouzy et al., 2014). Most importantly, in childhood TB,
the immune inhibitory molecules, IL1RN and IL1R2 which
inhibit functional IL1 signaling and molecules involved in
generation of an adaptive immune response (CD40LG, HAL-
DOB, CD28) that were downregulated is consistent with
emerging evidence linking the cross talk between IL1 and
type 1 IFN to TB and which provide potential targets for host
directed therapy (Mayer-Barber et al., 2014). This could explain
the observation that children have less pronounced adaptive
immune responses to TB compared to adults, potentially
resulting in disseminated forms of the diseases seen more
frequently in childhood TB. Our findings further highlight
the differences between adult and childhood TB and most
critically a previously unrecognized potential of using the same
common host signature for novel diagnostics in both adult and
childhood TB.

Furthermore, whole blood deconvolution indicated high
proportions of neutrophils in active TB compare to latently
infected individuals and uninfected individuals which is reflective
of observed pathway biology. This corroborates previous studies
indicating the important role of neutrophils in TB, previously
identified as major contributors to observed gene expression
signatures (Martineau et al., 2007; Berry et al., 2010; Eum
et al., 2010; Mcnab et al., 2011). This meta-analysis which
combined studies from different locations further strengthens
evidence for the important contribution of neutrophils in TB.
Proportions of monocytes and activated NK cells were also higher
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FIGURE 9 | Immune cell signaling molecules modulated in tuberculosis. Significantly regulated immune cells stimulatory and inhibitory molecules obtained from
tuberculosis in the meta-analysis (fold change > 1.5 adjusted p-value < 0.05). (A) Molecules modulated in both adults and childhood tuberculosis. (B) Molecules
modulated only in childhood tuberculosis. (C) Molecules modulated only in adult tuberculosis.

in active TB compared to controls, and NK cells have been
shown to play an important role in combating mycobacterial
infections (Allen et al., 2015; Choreño Parra et al., 2017).
However, proportions of resting NK cells were lower in active
TB compared to LTBI individuals and uninfected controls
which agrees with previous studies (Kee et al., 2012). On the
other hand, proportions of T and B cells which make up
the adaptive arm of the immune system were downregulated,
which corroborated results observed in the pathway analysis.
This is in line with recent studies showing that patients with
active TB have reduced frequency of circulating B cell and T
cell responses and higher in successfully TB treated individuals
compared to patients recently diagnosed with TB (Joosten et al.,
2016).

CONCLUSION

By using meta-analysis to re-analyze publicly available
microarray datasets, we identified with high confidence
signature genes differentially expressed across studies removing
a large number of false positive markers. Most importantly, from
translational perspective, we reveal a previously unrecognized
potential of using a common host immune-metabolic signature
network as a novel diagnostical tool for use in both adult and
childhood TB. We believe that the use of the confirmatory
expression signatures identified here will help in guiding
optimized diagnostic, prognostic, and therapeutic monitoring
modalities for TB patients, but which will still necessitate high
quality prospective randomized trials to assess clinical efficacy.

Frontiers in Genetics | www.frontiersin.org 14 October 2018 | Volume 9 | Article 457

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00457 October 1, 2018 Time: 14:38 # 15

Bah et al. Meta-Analysis of Host Systemic Response to Tuberculosis

ETHICS STATEMENT

This was meta-analysis of already existing publicly available
online dataset from gene expression data repositories.

AUTHOR CONTRIBUTIONS

SB and PG conceived and designed the study. SB conducted the
analyses. TF and PD helped with analysis. SB, BK, and PG wrote
the manuscript.

FUNDING

SB was supported by joint doctoral scholarship from MRCG
and Darwin Trust Scholarship award (Edinburgh) and his
postdoctoral fellowship was supported by the Wellcome Trust

DELTAS through WACCBIP (DEL-15-007: Awandare). These
studies were in part supported by MRC (G0701289) and Welsh
government and EU ERDF funds to PG.

ACKNOWLEDGMENTS

The authors wish to thank the staff of the Division of
Infection and Pathway Medicine and MRCG training and staff
development and Darwin Trust Scholarship award (Edinburgh)
for supporting SB during his Ph.D. studies.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2018.00457/full#supplementary-material

REFERENCES
Abbas, A. R., Baldwin, D., Ma, Y., Ouyang, W., Gurney, A., Martin, F., et al. (2005).

Immune response in silico (IRIS): immune-specific genes identified from a
compendium of microarray expression data. Genes Immun. 6, 319–331.

Alcaïs, A., Fieschi, C., Abel, L., and Casanova, J.-L. (2005). Tuberculosis in children
and adults: two distinct genetic diseases. J Exp Med. 202, 1617–1621.

Allen, M., Bailey, C., Cahatol, I., Dodge, L., Yim, J., Kassissa, C., et al. (2015).
Mechanisms of control of Mycobacterium tuberculosis by NK cells: role of
glutathione. Front. Immunol. 6:508. doi: 10.3389/fimmu.2015.00508

Anderson, S. T., Kaforou, M., Brent, A. J., Wright, V. J., Banwell, C. M.,
Chagaluka, G., et al. (2014). Diagnosis of childhood tuberculosis and host
RNA expression in Africa. N. Engl. J. Med. 370, 1712–1723. doi: 10.1056/
NEJMoa1303657

Berry, M. P. R., Graham, C. M., McNab, F. W., Xu, Z., Bloch, S. A. A.,
Oni, T., et al. (2010). An interferon-inducible neutrophil-driven blood
transcriptional signature in human tuberculosis. Nature 466, 973–977. doi:
10.1038/nature09247

Bloom, C. I., Graham, C. M., Berry, M. P. R., Wilkinson, K. A., Oni, T., Rozakeas, F.,
et al. (2012). detectable changes in the blood transcriptome are present after
two weeks of antituberculosis therapy. PLoS One 7:e46191. doi: 10.1371/journal.
pone.0046191

Bruchfeld, J., Correia-Neves, M., and Källenius, G. (2015). Tuberculosis and
HIV Coinfection. Cold Spring Harb. Perspect. Med. 5:a017871. doi: 10.1101/
cshperspect.a017871

Choreño Parra, J. A., Martínez Zúñiga, N., Jiménez Zamudio, L. A., Jiménez
Álvarez, L. A., Salinas Lara, C., and Zúñiga, J. (2017). Memory of natural killer
cells: a new chance against Mycobacterium tuberculosis? Front. Immunol. 8:967.
doi: 10.3389/fimmu.2017.00967

Colditz, G. A., Brewer, T. F., Berkey, C. S., Wilson, M. E., Burdick, E., Fineberg,
H. V., et al. (1994). Efficacy of BCG vaccine in the prevention of tuberculosis.
Meta-analysis of the published literature. JAMA 271, 698–702.

Cooper, A. M. (2009). Cell-mediated immune responses in tuberculosis.
Annu. Rev. Immunol. 27, 393–422. doi: 10.1146/annurev.immunol.021908.
132703

Dunkelberger, J. R., and Song, W. (2010). Complement and its role in innate and
adaptive immune responses. Cell Res. 20, 34–50. doi: 10.1038/cr.2009.139

Dwivedi, V. P., Bhattacharya, D., Chatterjee, S., Prasad, D. V. R.,
Chattopadhyay, D., Van Kaer, L., et al. (2012). Mycobacterium tuberculosis
directs T helper 2 cell differentiation by inducing interleukin-1β production in
dendritic cells. J. Biol. Chem. 28, 33656–33663.

Eum, S. Y., Kong, J. H., Hong, M. S., Lee, Y. J., Kim, J. H., Hwang, S. H., et al.
(2010). Neutrophils are the predominant infected phagocytic cells in the airways
of patients with active pulmonary TB. Chest 137, 122–128. doi: 10.1378/chest.
09-0903

Gaujoux, R., and Seoighe, C. (2013). CellMix: a comprehensive toolbox for
gene expression deconvolution. Bioinformatics 29, 2211–2212. doi: 10.1093/
bioinformatics/btt351

Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudoit, S.,
et al. (2004). Bioconductor: open software development for computational
biology and bioinformatics. Genome Biol. 5:R80.

Gouzy, A., Poquet, Y., and Neyrolles, O. (2014). Amino acid capture and utilization
within the Mycobacterium tuberculosis phagosome. Future Microbiol. 9, 631–
637. doi: 10.2217/fmb.14.28

Hong, F., Breitling, R., McEntee, C. W., Wittner, B. S., Nemhauser, J. L., and
Chory, J. (2006). RankProd: a bioconductor package for detecting differentially
expressed genes in meta-analysis. Bioinformatics 22, 2825–2827.

Joosten, S. A., van Meijgaarden, K. E., del Nonno, F., Baiocchini, A.,
Petrone, L., Vanini, V., et al. (2016). Patients with tuberculosis have a
dysfunctional circulating b-cell compartment, which normalizes following
successful treatment. PLoS Pathog. 12:e1005687. doi: 10.1371/journal.ppat.
1005687

Kaforou, M., Wright, V. J., Oni, T., French, N., Anderson, S. T., Bangani, N.,
et al. (2013). Detection of tuberculosis in HIV-infected and -uninfected African
adults using whole blood RNA expression signatures: a case-control study. PLoS
Med. 10:e1001538. doi: 10.1371/journal.pmed.1001538

Karonga Prevention Trial Group. (1996). Randomised controlled trial of single
BCG, repeated BCG, or combined BCG and killed Mycobacterium leprae
vaccine for prevention of leprosy and tuberculosis in Malawi, Karonga
Prevention Trial Group. Lancet 348, 17–24.

Kauffmann, A., Gentleman, R., and Huber, W. (2009). Array quality metrics - A
bioconductor package for quality assessment of microarray data. Bioinformatics
25, 415–416. doi: 10.1093/bioinformatics/btn647

Kee, S. J., Kwon, Y. S., Park, Y. W., Cho, Y. N., Lee, S. J., Kim, T. J., et al. (2012).
Dysfunction of natural killer T cells in patients with active Mycobacterium
tuberculosis infection. Infect Immun. 80, 2100–2108. doi: 10.1128/IAI.06018-11

Lowe, D. M., Redford, P. S., Wilkinson, R. J., O’Garra, A., and Martineau, A. R.
(2012). Neutrophils in tuberculosis: friend or foe? Trends Immunol. 33, 14–25.
doi: 10.1016/j.it.2011.10.003

Maertzdorf, J., Ota, M., Repsilber, D., Mollenkopf, H. J., Weiner, J., Hill, P. C.,
et al. (2011a). Functional correlations of pathogenesis-driven gene expression
signatures in tuberculosis. PLoS One 6:e26938. doi: 10.1371/journal.pone.
0026938

Maertzdorf, J., Repsilber, D., Parida, S. K., Stanley, K., Roberts, T., Black, G., et al.
(2011b). Human gene expression profiles of susceptibility and resistance in
tuberculosis. Genes Immun. 12, 15–22. doi: 10.1038/gene.2010.51

Maertzdorf, J., Weiner, J., Mollenkopf, H.-J., Network, T., Bauer, T., Prasse, A.,
et al. (2012). Common patterns and disease-related signatures in tuberculosis
and sarcoidosis. Proc Natl Acad Sci. U.S.A. 109, 7853–7858. doi: 10.1073/pnas.
1121072109

Frontiers in Genetics | www.frontiersin.org 15 October 2018 | Volume 9 | Article 457

https://www.frontiersin.org/articles/10.3389/fgene.2018.00457/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2018.00457/full#supplementary-material
https://doi.org/10.3389/fimmu.2015.00508
https://doi.org/10.1056/NEJMoa1303657
https://doi.org/10.1056/NEJMoa1303657
https://doi.org/10.1038/nature09247
https://doi.org/10.1038/nature09247
https://doi.org/10.1371/journal.pone.0046191
https://doi.org/10.1371/journal.pone.0046191
https://doi.org/10.1101/cshperspect.a017871
https://doi.org/10.1101/cshperspect.a017871
https://doi.org/10.3389/fimmu.2017.00967
https://doi.org/10.1146/annurev.immunol.021908.132703
https://doi.org/10.1146/annurev.immunol.021908.132703
https://doi.org/10.1038/cr.2009.139
https://doi.org/10.1378/chest.09-0903
https://doi.org/10.1378/chest.09-0903
https://doi.org/10.1093/bioinformatics/btt351
https://doi.org/10.1093/bioinformatics/btt351
https://doi.org/10.2217/fmb.14.28
https://doi.org/10.1371/journal.ppat.1005687
https://doi.org/10.1371/journal.ppat.1005687
https://doi.org/10.1371/journal.pmed.1001538
https://doi.org/10.1093/bioinformatics/btn647
https://doi.org/10.1128/IAI.06018-11
https://doi.org/10.1016/j.it.2011.10.003
https://doi.org/10.1371/journal.pone.0026938
https://doi.org/10.1371/journal.pone.0026938
https://doi.org/10.1038/gene.2010.51
https://doi.org/10.1073/pnas.1121072109
https://doi.org/10.1073/pnas.1121072109
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00457 October 1, 2018 Time: 14:38 # 16

Bah et al. Meta-Analysis of Host Systemic Response to Tuberculosis

Martineau, A. R., Newton, S. M., Wilkinson, K. A., Kampmann, B., Hall, B. M.,
Nawroly, N., et al. (2007). Neutrophil-mediated innate immune resistance to
mycobacteria. J. Clin. Invest. 117, 1988–1994.

Mayer-Barber, K. D., Andrade, B. B., Oland, S. D., Amaral, E. P., Barber, D. L.,
Gonzales, J., et al. (2014). Host-directed therapy of tuberculosis based on
interleukin-1 and type I interferon crosstalk. Nature 511, 99–103. doi: 10.1038/
nature13489

Mcnab, F. W., Berry, M. P., Graham, C. M., Bloch, S. A., Oni, T., Wilkinson, K. A.,
et al. (2011). Programmed death ligand 1 is over-expressed by neutrophils in
the blood of patients with active tuberculosis. Eur. J. Immunol. 41, 1941–1947.
doi: 10.1002/eji.201141421

Ottenhoff, T. H. M., Dass, R. H., Yang, N., Zhang, M. M., Wong, H. E. E.,
Sahiratmadja, E., et al. (2012). Genome-wide expression profiling identifies
type 1 interferon response pathways in active tuberculosis. PLoS One 7:e45839.
doi: 10.1371/journal.pone.0045839

R Development Core Team (2011). R: A Language and Environment
for Statistical Computing. Vienna: R Foundation for Statistical
Computing, 409.

Sambarey, A., Devaprasad, A., Baloni, P., Mishra, M., Mohan, A., Tyagi, P.,
et al. (2017). Meta-analysis of host response networks identifies a common
core in tuberculosis. NPJ Syst. Biol. Appl. 3:4. doi: 10.1038/s41540-017-
0005-4

Tientcheu, L. D., Maertzdorf, J., Weiner, J., Adetifa, I. M., Mollenkopf, H.-
J., Sutherland, J. S., et al. (2015). Differential transcriptomic and metabolic
profiles of M. africanum- and M. tuberculosis-infected patients after, but
not before, drug treatment. Genes Immun. 16, 347–355. doi: 10.1038/gene.
2015.21

Verhagen, L. M., Zomer, A., Maes, M., Villalba, J. A., del Nogal, B., Eleveld, M.,
et al. (2013). A predictive signature gene set for discriminating active from
latent tuberculosis in Warao Amerindian children. BMC Genomics 14:74. doi:
10.1186/1471-2164-14-74

Walter, N. D., Miller, M. A., Vasquez, J., Weiner, M., Chapman, A., Engle, M.,
et al. (2016). Blood transcriptional biomarkers for active tuberculosis among
patients in the United States: a case-control study with systematic cross-
classifier evaluation. J. Clin. Microbiol. 54, 274–282. doi: 10.1128/JCM.019
90-15

Wang, Z., Arat, S., Magid-Slav, M., and Brown, J. R. (2018). Meta-analysis of human
gene expression in response to Mycobacterium tuberculosis infection reveals
potential therapeutic targets. BMC Syst. Biol. 12:3. doi: 10.1186/s12918-017-
0524-z

WHO (2015). Global Tuberculosis Report 2015. Available at: http://apps.who.int/
iris/bitstream/10665/191102/1/9789241565059_eng.pdf?ua=1

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Bah, Forster, Dickinson, Kampmann and Ghazal. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Genetics | www.frontiersin.org 16 October 2018 | Volume 9 | Article 457

https://doi.org/10.1038/nature13489
https://doi.org/10.1038/nature13489
https://doi.org/10.1002/eji.201141421
https://doi.org/10.1371/journal.pone.0045839
https://doi.org/10.1038/s41540-017-0005-4
https://doi.org/10.1038/s41540-017-0005-4
https://doi.org/10.1038/gene.2015.21
https://doi.org/10.1038/gene.2015.21
https://doi.org/10.1186/1471-2164-14-74
https://doi.org/10.1186/1471-2164-14-74
https://doi.org/10.1128/JCM.01990-15
https://doi.org/10.1128/JCM.01990-15
https://doi.org/10.1186/s12918-017-0524-z
https://doi.org/10.1186/s12918-017-0524-z
http://apps.who.int/iris/bitstream/10665/191102/1/9789241565059_eng.pdf?ua=1
http://apps.who.int/iris/bitstream/10665/191102/1/9789241565059_eng.pdf?ua=1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	Meta-Analysis Identification of Highly Robust and Differential Immune-Metabolic Signatures of Systemic Host Response to Acute and Latent Tuberculosis in Children and Adults
	Introduction
	Materials and Methods
	Data Acquisition
	Quality Control, Filtering, and Summarization
	Differential Expression Statistical Analysis
	Whole Blood Cellular Deconvolution
	Pathway Analysis

	Results
	Data Curation, Quality Control, and Analysis Workflow
	Host Systemic Perturbation in Active Tuberculosis: Re-analysis of Individual Studies
	Meta-Analysis Identified High Confidence Differentially Expressed Genes Across Datasets
	Overlap Between Childhood and Adult Meta-Analyses Detected Genes and Previously Identified Diagnostic Signatures
	Common Predictive Pathway Biology Response to Active Tuberculosis
	Correlation Between Active TB Versus LTBI to Active TB Versus Uninfected Controls
	Comparison Between Childhood and Adult TB Host Responses
	Active Tuberculosis Patients Present With Higher Proportions of Innate Immune Cells and Lower Proportions of Adaptive Immune Cells Compared to Controls
	Modulation of Co-inhibitory and Co-stimulatory Signaling Molecules in Tuberculosis

	Discussion
	Conclusion
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


