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ABSTRACT
High throughput single-cell RNA-seq has been successfully implemented to dissect the cellular and
molecular features underlying hematopoiesis. However, an elaborate and comprehensive transcriptome
reference of the whole blood system is lacking. Here, we profiled the transcriptomes of 7551 human blood
cells representing 32 immunophenotypic cell types, including hematopoietic stem cells, progenitors and
mature blood cells derived from 21 healthy donors. With high sequencing depth and coverage, we
constructed a single-cell transcriptional atlas of blood cells (ABC) on the basis of both protein-coding genes
and long noncoding RNAs (lncRNAs), and showed a high consistence between them. Notably, putative
lncRNAs and transcription factors regulating hematopoietic cell differentiation were identified. While
common transcription factor regulatory networks were activated in neutrophils and monocytes, lymphoid
cells dramatically changed their regulatory networks during differentiation. Furthermore, we showed a
subset of nucleated erythrocytes actively expressing immune signals, suggesting the existence of erythroid
precursors with immune functions. Finally, a web portal offering transcriptome browsing and blood cell
type prediction has been established.Thus, our work provides a transcriptional map of human blood cells at
single-cell resolution, thereby offering a comprehensive reference for the exploration of physiological and
pathological hematopoiesis.
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INTRODUCTION
The hematopoietic system, mainly derived from
a pool of hematopoietic stem/progenitor cells
(HSPCs), continuously generates erythrocytes/
megakaryocytes, myeloid cells and lymphocytes
and plays vital roles throughout the whole human
lifespan. Dysregulation of hematopoiesis may give
rise to various diseases such as immunodeficiency
and blood cancers [1–3]. In recent years, single-
cell sequencing techniques have facilitated the
exploration of cellular and molecular heterogeneity
during hematopoietic cell differentiation [4].
Research investigating hematopoietic progenitor

cells has highlighted the differentiation hierar-
chy of early hematopoiesis [5–7]. In contrast,
lineage−CD34+CD38− cells have been shown
to be a transcriptional continuum of low-primed
undifferentiated hematopoietic stem and progenitor
cells [8]. Although these studies have considerably
advanced our perception of hematopoiesis, a sys-
tematic view of hematopoietic cell differentiation
based onmultiple individuals andblood cell types by
deep single-cell RNA sequencing has been lacking.

LncRNAs function as crucial regulators during
hematopoietic cell differentiation and development
[9], including hematopoietic stem cell (HSC)
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differentiation, erythropoiesis and the develop-
ment of B and T lymphocytes [10–13]. Recently,
lncRNAs were comprehensively defined at the
single-cell level and displayed highly lineage-specific
and dynamic expression during human HSPC dif-
ferentiation [14]. The single-cell lncRNA landscape
of embryonic hematopoietic stem cells was also
profiled and lncRNA (H19) was recognized to be
pivotal for HSC emergence [15]. Nevertheless, the
full repertoire of lncRNAs in human blood cells has
not been elucidated.

In this study, we constructed a comprehensive
transcriptome reference of human blood cells (that
is atlas of blood cells, ABC), by performing deep
sequencing of over 7000 single cells, representing
32 immunophenotypic cell types from 21 healthy
donors. The hematopoietic hierarchy was dissected
based on both protein-coding genes and lncRNAs.
Of note, we elaborated the dynamic regulatory
networks and differentiation trajectories for HSPCs
and each lineage.Thiswork contributes to a compre-
hensive understanding of the molecular dynamics
during lineage differentiation, and provides valuable
transcriptome references for hematopoiesis under
both homeostasis and disease.

RESULTS
Human hematopoietic transcriptome
reference
To establish a comprehensive transcriptome ref-
erence of the human blood system, we profiled
the transcriptomes of bone marrow and peripheral
blood derived hematopoietic cells from 21 healthy
adult donors, by combining fluorescence activated
cell sorting (FACS)of single cells for 32well-defined
cell types and a Single-Cell Tagged Reverse Tran-
scription RNA Sequencing (STRT-seq) strategy
(Methods). Specifically, we harvested bone marrow
derived progenitors and differentiated cells (includ-
ing CD34+ HSPCs, B cells, NK cells, T cells, mono-
cytes, neutrophils and erythrocytes), together with
peripheral blood derived differentiated cells includ-
ing regulatory B, naive B, memory B, cytotoxic NK,
cytokine NK and T cells (Supplementary Fig. 1). In
total, 7551 single cells were profiled to construct the
transcriptional atlas of human hematopoietic cells
(Fig. 1A and Supplementary Fig. 2A). By limiting
the number of single cells mixed in each library and
increasing the sequencing depth, we were able to
detect on average ∼3000 protein-coding genes per
single cell. This high quality of transcriptome data
ensured an accurate construction of the hematopoi-
etic hierarchy with more gene expression details.
HSPCs and monocytes expressed the highest

number of genes, whereas NK cells, T cells and
neutrophils were relatively transcriptionally quies-
cent (Fig. 1B). Notably, compared with the data
generated using 10X Genomics sequencing of bone
marrowderivednucleated cells [7], our data enabled
detection of more genes and transcription factors
for in-depth analysis (P values< 2.2e−16, Wilcoxon
test, Fig. 1C), and were particularly superior in
detecting low-abundance genes (Supplementary
Fig. 2B).

We first integrated the single-cell transcrip-
tome profiles of all hematopoietic cells, followed
by dimension reduction and visualization by
uniform manifold approximation and projection
(UMAP). The overall differentiation trajectory
of hematopoiesis was revealed by starting from
HSPCs and branching toward lymphocytes (B cells,
NK cells and T cells), myeloid cells (monocytes and
neutrophils) and erythrocytes. In contrast to B cells,
monocytes anderythrocytes,we found thatNKcells,
T cells and neutrophils lacked a continuous tran-
scriptional transition from progenitors to differenti-
ated cells, suggesting that these cells might acquire
dramatic shifts in gene expression during matura-
tion, or that there existed transition populations not
captured by the known surface markers (Fig. 1D
and Supplementary Fig. 2C). We observed that
AVP was specifically expressed in HSCs and MPPs.
CD79B, GZMH and CCR7, respectively, exhibited
high specificity and expression in B cells, NK cells
and T cells, while SPI1 and GATA1 were highly ex-
pressed in neutrophil/monocytes and erythrocytes,
respectively (Fig. 1E), verifying well-known marker
genes related to hematopoiesis in each cell type. By
deep sequencing of multiple classical hematopoietic
populations from more than 20 healthy donors,
our single-cell transcriptional atlas of human
blood cells provides valuable transcriptome ref-
erences for studies of human physiological and
pathological hematopoiesis.

Regulatory networks underlie
hematopoietic differentiation
To resolve the transcription factor regulatory
networks (regulons) that underlie hematopoietic
differentiation, regulon activity scores (RASs) were
calculated for transcription factors in all single cells
using SCENIC [16], which were then submitted
to construct the regulatory atlas of human blood
cells. We observed that the overall differentiation
trajectory of hematopoiesis revealed by regulons
coincided with that revealed by single-cell tran-
scriptomes (Fig. 2A). In addition, SPRING [17]
was used to visualize the hematopoietic hierarchy

Page 2 of 11



Natl Sci Rev, 2021, Vol. 8, nwaa180

E

A CB

D

UMAP1

U
M

AP
2

Erythrocyte

Monocyte

HSPC

NK

T

B

Neutrophil

PB

BM

...

AGCT

Healthy donors
(n=21)

FACS
sorting

Cell types
(n=32)

Atlas of blood cells

HSC
MPP

MLP

LMPP

GMP

BNK

CMP

NKB

MEP

EryNeuMoT
(7) (4) (2) (6) (4)

STRT-seq

AVP CCR7

GATA1 GZMH

CD79B

SPI1

UMAP1

U
M

AP
2

Relative expression

Low High

8

6

ABC
HCA

G
en

es
 (×

10
3 ) 

2

4
2715

1081

Tr
an

sc
rip

tio
n 

fa
ct

or
s 

(×
10

2 ) 

ABC
HCA

2

4

6

8

262

92

**** ****

G
en

es
 (×

10
3 ) 

8

2

6

4

HSC
MPP

CMP
MEP

LM
PP

MLPBNK
GMP

Pro-
B
Pre-

B

Immatu
re B

Regu
lato

ry B
Naiv

e B

Mem
ory

 B
Plas

ma
CLPNKP

Cyto
tox

ic N
K

Cyto
kin

e N
K
CD4T

CD8T
hM

DP
cM

OP

Pre-
mono

cyt
e

Clas
sic

al m
ono

cyt
e

Inte
rmedi

ate
 mono

cyt
e

Non-
cla

ssi
cal

 mono
cyt

e

Pro-
myel

ocy
te

Myel
ocy

te

Meta
-myel

ocy
te

Matu
re n

eut
rop

hil

Eryth
roc

yte

Sequencing

Figure 1. Transcriptome reference of human blood cells. (A) Scheme of the experimental design. (B) Box plot shows the detected gene number for
32 immunophenotypic cell types. Colors indicate cell types. (C) Atlas of Blood Cells (ABC) detects more genes and transcription factors than the bone
marrow samples from Human Cell Atlas (HCA) (P values < 2.2e−16, Wilcoxon test). (D) Transcriptional atlas of 7551 human hematopoietic cells by
UMAP. Colors indicate cell populations and arrows show the differentiation trajectories of lymphoid, neutrophil/monocyte and erythroid lineages.
(E) UMAP displays of transcription activities for hematopoiesis-related genes (AVP, CD79B, GZMH, CCR7, SPI1 and GATA1, respectively, for HSPCs,
B cells, NK cells, T cells, neutrophil/monocytes and erythrocytes).

deduced from regulons and recapitulate the trajec-
tory of lineage branches (Supplementary Fig. 3A).
Single cells were distributed according to their cell
types instead of according to the donors, suggesting
no batch effects or individual diversities in terms of
regulons related to hematopoiesis. Hematopoietic
cells were grouped into 20 regulatory clusters by
unsupervised clustering, termed as C1 to C20
hereafter, and each showed activation of highly
specific sets of regulons (Fig. 2B). In particular,
HOX genes were activated and co-regulated in
C1/C2, which were mainly composed of HSPCs.
TCF4, EBF1 and LEF1 showed high activities in C3
to C7 representing B cells, PRDM1 and XBP1 were
activated in plasma cells, while GATA3 and TBX21
were activated in NK/T cells. CEBP and SPI1 ex-
hibited high activities in the neutrophil/monocyte

lineage, while GATA1 and KLF1 were activated in
the erythroid lineage (Fig. 2C and Supplementary
Fig. 3B). Remarkably, monocytes and neutrophils
shared the majority of regulons unique to myeloid
lineage, while lymphocytes were preferentially regu-
lated by cell type specific sub-networks highlighted
by the regulon shifts during B cell maturation
(Fig. 2C).

We next identified 23 novel regulons activated in
each lineage by comparing with previously reported
canonical transcription factors. To further confirm
the regulatory functions of novel transcription
factors, gene ontology (GO) enrichment and
motif analysis of their target genes were performed
accordingly. We found that enriched GO terms
for BBX, REL, CREM, CREB3L2 and GLIS1 were
associated with the activation/differentiation of
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Figure 2. Transcription factor regulatory networks underlie hematopoiesis. (A) UMAP displays the distributions of 32 immunophenotypic cell types
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lymphocytes (Fig. 2D). RXRA, STAT2, STAT6,
TFF3, TFEC, EGR3, OLIG2, VDR, VENTX and
ZXDA were targeting neutrophil/granulocyte
related genes, while FOXO3, NFIX, KLF3, MXI1,
GMEB2,GTF3C2,SREBF1 andGADD45A targeted
genes were highly related to biological processes
such as erythrocyte/oxygen/iron ion (Supplemen-
tary Fig. 3C and D). Additionally, the enriched
sequences on the promoter region of target genes
for transcription factors likeCREM,TFF3 andNFIX
were consistentwith their annotatedmotifs, suggest-
ing that these newly identified transcription factors
might regulate hematopoiesis in cooperating with
canonical networks (Fig. 2D and Supplementary
Fig. 3C and D).

Landscapes of long non-coding RNAs
lncRNAs play crucial roles in hematopoietic
differentiation and development. However, the
expression spectrum of lncRNAs in hematopoietic
cells at single-cell resolution has not been reported.
Therefore, we sought to construct a transcriptional
atlas of 7192 human blood cells based on lncRNAs
by taking advantageof our deep sequencingdatasets.
On average, over 1700 lncRNAs were detected for
32 immunophenotypic cell types referred to the
genome annotation from the NONCODE database
[18].Coincidentwith protein-coding genes,HSPCs
and monocytes expressed the highest number of
lncRNAs, whereas NK cells, T cells and neutrophils
expressed the lowest number of lncRNAs (Fig. 3A).
We showed that the hematopoietic differentiation
trajectory reconstructed by only using lncRNAs
was highly consistent with that revealed by protein-
coding genes (Fig. 3B and Supplementary Fig. 4A).
To further dissect the transcriptional heterogeneity,
differentially expressed genes (DEGs) were cal-
culated between any two immunophenotypic cell
types for both protein-coding genes and lncRNAs.
The normalized number of DEGs showed high
agreement between lncRNAs and protein-coding
genes (Fig. 3C). These results implicated that the
dynamics of lncRNAs were capable of depicting the
global hematopoietic hierarchy.

Next, we identified signature protein-coding
genes and lncRNAs for each immunophenotypic cell
type.We found that signature lncRNAs tended to as-
sociate with their adjacent signature protein-coding
genes for more differentiated cell types, in contrast
to progenitors (Fig. 3D). However, distal signature
lncRNAs did not show significant change tendency
during differentiation relative to adjacent signature
lncRNAs (Supplementary Fig. 4B). Moreover,
signature lncRNAs showed higher PhastCons con-

servation scores (from UCSC 100-way) and higher
cell specificity (based on Jensen-Shannon Diver-
gence, JSD) compared to background estimations
(P values<2.2e−16, Wilcoxon test) (Fig. 3E and F),
suggesting their potential functional roles. To fur-
ther exploit the function of signature lncRNAs, their
neighboring protein-coding genes with distances
less than 5kb were scanned along the genome.
Protein-coding genes near signature lncRNAs sig-
nificantly overlapped with hematopoietic signatures
[7,8] (Supplementary Fig. 4C). In particular, lncR-
NAs (NONHSAG031143.2, NONHSAG073805.1,
NONHSAG069091.1, NONHSAG108638.1,
NONHSAG008235.2 and NONHSAG103763.2)
adjacent to hematopoietic signatures (AVP,CD79B,
GZMH, CCR7, SPI1 and GATA1) were specifically
highly expressed inHSPCs, B cells, NK cells, T cells,
neutrophil/monocytes and erythrocytes, respec-
tively (Fig. 3G). Altogether, lncRNAs specifically
expressed in hematopoietic cells were identified at
the single-cell level, and they tended to co-express
with their adjacent signature protein-coding genes
for more differentiated cells.

Elaborate atlas for each hematopoietic
cell population
We next aimed to precisely dissect the differentia-
tion trajectory and characteristics for each particular
cell population such as HSPCs, B cells, NK cells,
T cells, monocytes, neutrophils and erythrocytes
[19]. The batch effects and individual diversi-
ties were corrected well for each cell population
(Supplementary Fig. 5A). Considering that the
immune role of CD71+ erythrocytes was reported
in previous research [20], first, to illuminate the
sub-clusters of continuously sorted erythrocytes,
cells from different donors were integrated and
followed by dimension reduction and visualization
byUMAP.Notably, within the erythroid lineage, we
found that Ery/Gra1 and Ery/Gra2 showed highly
expressed genes associated with neutrophil and
monocyte/dendritic (MD) signatures (Fig. 4A and
Supplementary Fig. 5B and C). GO terms of specif-
ically expressed genes in Ery/Gra1 and Ery/Gra2
were enriched on neutrophil-related, phagocytosis
and inflammatory responses, alongwith antigenpro-
cessing andpresentation, further implying the innate
and adaptive immune function of these two erythro-
cyte subsets (Fig. 4B). Additionally, pseudotime
analysis showed that Ery/Gra2 was separated from
other erythrocyte clusters because of its unique ex-
pression of immune signals, for instance VCAN and
S100A9 (Fig. 4C and D). The differentiation trajec-
tory also reflected that Ery/Gra1 andEry/Gra2were
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Figure 3. Reconstruction of hematopoietic hierarchy by using lncRNAs. (A) Box plot shows the detected lncRNA number for 32 immunophenotypic
cell types. Colors indicate cell types. (B) Transcriptional atlas of 7192 human hematopoietic cells based on lncRNAs by UMAP. (C) Heat map shows
the scaled DEG numbers between 32 immunophenotypic cell types based on protein-coding genes (the lower triangle) and lncRNAs (the upper
triangle). (D) Bar plot shows the proportion of signature lncRNAs adjacent to signature protein-coding genes for each immunophenotypic cell
type. (E and F) Signature lncRNAs show higher PhastCons conservation scores (E) and higher cell specificity (F) (P values < 2.2e−16, Wilcoxon test).
(G) UMAP displays of transcription activities for hematopoiesis-related lncRNAs such asNONHSAG031143.2,NONHSAG073805.1,NONHSAG069091.1,
NONHSAG108638.1, NONHSAG008235.2 and NONHSAG103763.2 (respectively adjacent to AVP, CD79B, GZMH, CCR7, SPI1 and GATA1).

unipotent erythroid progenitors and did not
differentiate into granulocytes (Supplementary
Fig. 5D). Furthermore, we found that CD74+

nucleated erythrocytes mainly contributed to
Ery/Gra1 and Ery/Gra2 clusters (Fig. 4D).

Subsequently, the differentiation trajectories
and functional diversities for HSPCs, B cells, NK
cells, T cells, monocytes and neutrophils were also
elaborated. It was noted that intermediate progen-
itor clusters such as HSC/MPP2, Pre-B/Regulatory
B, NKP and hMDP/cMoP were more heteroge-
neous by transcriptome analysis (Supplementary
Fig. 6A). As expected, the differentiation trajectory
of HSPCs was highlighted by the branching of
progenitors including lymphoid, myeloid and
erythroid/megakaryocyte lineages (Fig. 4E and
Supplementary Fig. 5E). Memory B and plasma
(cytotoxic NK and cytokine NK) were distributed
on two different branches by pseudotime analysis,
better reflecting the differentiation trajectory of
B and NK cell populations (Fig. 4F and G and
Supplementary Fig. 5G and H). Regarding T
cell populations, both CD4 T and CD8 T cells
could be classified into three clusters, respectively
corresponding to naive T, memory T and effector
T cells. By contrast, CD4 naive T and memory
T cells ordered together while CD8 memory T and
effector T cells were closely adjacent to each other
(Fig. 4H and I and Supplementary Fig. 5I and J).
Sub-clusters for monocytes and neutrophils were
profiled and further revealed their differentiation tra-
jectories (Fig. 4J and K and Supplementary Fig. 5K
and L). In addition, pseudotime analysis based on
lncRNAs displayed that lncRNAs could reflect the
differentiation trajectories comparable to protein-
coding genes (Supplementary Fig. 7). Next, signa-
ture genes of each transcriptional cluster were re-
vealed to further support the annotationof bloodcell
types (Supplementary Fig. 6B, Supplementary Ta-
ble 1). AVP and CRHBP were specifically expressed
in HSC/MPPs. CD79A, CD79B and VPREB1/3 ex-
hibited high specificity and expression in B cells and
their progenitors. NKG7 and GZMK were highly
expressed in both NK cells and T cells, while LYZ
and S100A6/8/9were highly expressed in both neu-
trophils and monocytes (Supplementary Fig. 6B).
Finally, we found that the cell cycle was activated
during HSPC differentiation, while inactivated

during blood cell maturation (Fig. 4L). In conclu-
sion, we elaborated the differentiation atlas of each
cell population and observed the immune activation
of nucleated erythrocytes.

A web portal for expression data
browsing and blood cell type prediction
A user-friendly web interface for browsing and pre-
diction features has been designed to provide access
to the single-cell transcriptome data of human blood
cells (http://scrna.sklehabc.com/). The browser
page was intended for querying the expression of
interested genes in 32 immunophenotypic cell types
and 43 transcriptional clusters (Supplementary
Fig. 8A). This study enabled users to predict the
cell types of hematopoietic cells by implementing
two approaches (Scmap [21] and Seurat [22]) and
visualize them in the hematopoietic atlas (Sup-
plementary Fig. 8B). We evaluated the prediction
power using different single-cell datasets. First, 87%
of single cells in our dataset could be correctly anno-
tated. Notably, closely related cell clusters, such as
HSPC populations, could also be precisely discrim-
inated (accuracies of most clusters exceeded 90%)
by our website (Supplementary Fig. 8C). Next,
hematopoietic cells downloaded from the studies of
Velten et al. [8] andPellin et al. [6]were projected to
our atlas of blood cells (ABC); most cell types could
be correctly matched. Of note, we observed that im-
mature myeloid progenitor 1 (Im1) and immature
myeloid progenitor 2 (Im2) cells were annotated to
HSC/MPP, LMPP and G2M, suggesting a higher
resolution annotation of these cells (Supplementary
Fig. 8D). Additionally, HSC, MPP and CMP
from Pellin et al. were assigned to HSC/MPP2,
in agreement with the fact that a low number of
HSCs could be harvested by a wider and continuous
gating of progenitor cells (Supplementary Fig. 8E).
These results indicated that we could better define
the cell types by implementing a comprehensive
transcriptome reference of human blood cells.

DISCUSSION
In summary, we established a comprehensive tran-
scriptome reference of the human blood system by
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Figure 4. Immune activation of CD74+ nucleated erythrocytes and elaborate atlas for other hematopoietic cell populations. (A) UMAP displays the
transcriptional clusters for erythrocytes. Colors correspond to cell clusters. (B) Heat map shows the relative expression of the top 50 signature genes
for each cluster. Significantly enriched biological processes for corresponding clusters are presented on the right. (C) The differentiation trajectory of
erythrocytes by pseudotime analysis using Monocle3. (D) UMAP displays of transcription activities for surface markers and signature genes related
to erythroid and granulocyte lineages. (E–K) UMAP displays of the transcriptional clusters (on the left by Seurat) and differentiation trajectory (on the
right by Monocle3) for HSPCs (E), B cells (F), NK cells (G), CD4 T cells (H), CD8 T cells (I), monocytes (J) and neutrophils (K). Colors correspond to cell
clusters. (L) Percentages of single cells in S and G2M phase for each cell population by line chart.

combining FACS sorting of 32 immunophenotypi-
cally distinct cell types and deep single-cell RNA se-
quencing. Both gene expression signatures and tran-
scription factor regulatory networks were defined in
each cell type. We provided a new angle of lncRNAs
for depicting the whole hematopoietic differentia-
tion at single-cell resolution.The in-depth transcrip-
tome data further enabled the discovery of immune
activation of nucleated erythrocyte subsets. Finally,
we offered an interactive web interface for accessing
the atlas data and utilities for cell type prediction.

A growing body of studies has demonstrated
that lncRNAs play crucial roles in physiological
and pathological processes. Here, we showed
that lncRNAs were competitive and consistent
with protein-coding genes in distinguishing cell
populations. lncRNAs specifically expressed in
hematopoietic cells were identified, and their
adjacent protein-coding genes were enriched with
canonical hematopoietic signatures, implying their
potential roles in hematopoietic differentiation. Ad-
ditionally, signature lncRNAs preferentially orches-
trated their adjacent signature protein-coding genes
formore differentiated cell types, although thismust
be further validated by experiments.However, genes
adjacent to signature lncRNAs were more general
and stochastic for hematopoietic progenitors. This
phenomenon supported thepoint that stemandpro-
genitor cells exhibited more transcriptomic stochas-
ticity [23]. These results provided novel clues for
studies of lncRNA biology in human hematopoietic
cells.

We thoroughly constructed the differentiation
trajectories (with no functional validations) and
further defined the signature genes associated
with HSPCs, B cells, NK cells, T cells, monocytes,
neutrophils and erythrocytes. Notably, we observed
a small part of nucleated erythrocytes unexpectedly
expressing signatures related to innate immune
(neutrophil, phagocytosis and inflammatory re-
sponse) and adaptive immune (antigen processing
and presentation) reactions. It has been reported
that nucleated erythrocytes of human cord blood
suppressed the production of inflammatory cy-
tokines from monocytes in a lipopolysaccharide
(LPS)-mimicked system, to avoid a vigorous innate
immune reaction [24]. Our results from adult bone
marrow further confirmed the mediator roles of

nucleated erythrocytes in immune responses. Addi-
tionally, immune roles of CD71+ erythrocytes were
observed in previous research [20]. Furthermore, by
means of single-cell RNA-seq technology, we found
that only a small part of CD71+ erythrocytes (that
is, CD74+ erythrocytes) expressed the signature
related to immune response.

Our work paves the way for an in-depth under-
standing of hematopoiesis. The transcription atlas
of human blood cells provides a valuable reference
for guiding exploration of human physiological and
pathological hematopoiesis.

METHODS
Sources of donors
Human blood cells including CD34+ HSPCs,
B cells, NK cells, T cells, monocytes, neutrophils
and erythrocytes, were derived from the bone
marrow and peripheral blood (only regulatory B,
naive B, memory B, cytotoxic NK, cytokine NK
and T cells were derived from peripheral blood) of
21healthy adult donors.All experimentswere imple-
mented in accordance with the protocols approved
by the institutional ethics review boards from the
Institute of Hematology and Blood Diseases Hos-
pital, Chinese Academy of Medical Sciences and
Peking Union Medical College. Written informed
consents were acquired before sample collection.
Donors for CD34+ HSPCs were enrolled fromQilu
Hospital of Shangdong University and the Institute
ofHematology and BloodDiseaseHospital. Donors
for B cells, NK cells, T cells, monocytes, neutrophils
and erythrocytes were obtained from the Institute
of Hematology and Blood Disease Hospital.

Processing of single-cell RNA-seq data
Raw reads of STAT-seq were first split based on
the cell-specific barcode sequences attached in
read2, and UMI sequence in read2 was integrated
into the paired read1 by Python scripts. Then, the
template switch oligo (TSO) sequence, the polyA
tail sequence and the low-quality reads (N > 10%)
were discarded for each separated single cell using
Cutadapt (version 1.18) [25]. Subsequently, we
aligned the trimmed reads to human reference
genome (hg38 from Ensembl) by Hisat2 (version
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2.0.3-beta) [26]. Uniquely mapped reads were
calculated through htseq-count (version 0.9.1)
[27], based on the genome annotations from
Ensembl (release 84, hg38) for protein-coding
genes and from NONCODE (version v5.0, hg38)
[18] for lncRNAs. Finally, the read count of a given
gene was quantified by the total number of distinct
UMIs, and the raw UMIs of protein-coding genes
were normalized by log2(TPM/10 + 1) (TPM:
transcripts per million) for downstream analysis.
To filter low-quality single cells, mapping rates
under 10% for HSPCs/monocytes, under 5% for
B cells/NK cells/neutrophils/erythrocytes and un-
der 2.5% for T cells were discarded. Simultaneously,
we only retained the cells where more than 1000
protein-coding genes/500 lncRNAs were detected,
resulting in 7551 cells for protein-coding genes and
7192 cells for lncRNAs [28–31].

DATA AVAILABILITY
The single-cell RNA sequencing data reported in
this study are deposited in NCBI’s Gene Expression
Omnibus (GEO) with the accession numbers
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data and custom code are available from the
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