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Abstract

Aim: To assess the potential of supervised machine-learning techniques to identify clinical

variables for predicting short-term and long-term glycated haemoglobin (HbA1c) response

after insulin treatment initiation in patients with type 2 diabetes mellitus (T2DM).

Materials and methods: We included patients with T2DM from the Groningen Initia-

tive to Analyse Type 2 diabetes Treatment (GIANTT) database who started insulin

treatment between 2007 and 2013 and had a minimum follow-up of 2 years. Short-

and long-term responses at 6 (±2) and 24 (±2) months after insulin initiation, respec-

tively, were assessed. Patients were defined as good responders if they had a decrease

in HbA1c ≥ 5 mmol/mol or reached the recommended level of HbA1c ≤ 53 mmol/mol.

Twenty-four baseline clinical variables were used for the analysis and an elastic net

regularization technique was used for variable selection. The performance of three tra-

ditional machine-learning algorithms was compared for the prediction of short- and

long-term responses and the area under the receiver-operating characteristic curve

(AUC) was used to assess the performance of the prediction models.

Results: The elastic net regularization-based generalized linear model, which included

baseline HbA1c and estimated glomerular filtration rate, correctly classified short-

and long-term HbA1c response after treatment initiation, with AUCs of 0.80 (95% CI

0.78–0.83) and 0.81 (95% CI 0.79–0.84), respectively, and outperformed the other

machine-learning algorithms. Using baseline HbA1c alone, an AUC = 0.71 (95% CI

0.65–0.73) and 0.72 (95% CI 0.66–0.75) was obtained for predicting short-term and

long-term response, respectively.

Conclusions: Machine-learning algorithm performed well in the prediction of an indi-

vidual's short-term and long-term HbA1c response using baseline clinical variables.
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1 | INTRODUCTION

When oral therapies fail to control blood glucose levels or cause

severe side effects in patients with type 2 diabetes mellitus (T2DM),

insulin therapy is recommended.1 Approximately 15% to 24% of

patients with T2DM receive insulin treatment.2-4 Large variability in

response to insulin treatment is seen, resulting partly from differences

in demographic, genetic, clinical and psychosocial characteristics.5-11

Notably, suboptimal blood glucose levels could lead to higher risks of

cardiovascular complications and mortality.12

In clinical settings, identification of variables that can predict a

patient's individual response to insulin could help tailor treatment.

Previous studies have established prediction models for glycated

haemoglobin (HbA1c) response to insulin using univariate and multi-

variate analysis of several demographic and clinical variables.6-9,13

Amongst others, age, body mass index (BMI) and baseline HbA1c

appeared to influence HbA1c response after insulin treatment initia-

tion. Prediction models based on such traditional regression analyses,

however, have limited utility for clinical decision-making because they

do not personalize the prediction to the individual. Similarly, studies

that identify clinical characteristics of patients that are associated with

distinct HbA1c trajectories in patients with T2DM over the course of

insulin treatment via unsupervised clustering algorithms cannot suffi-

ciently guide clinical decision-making.14-18 Such studies lead to incon-

sistent groupings of patients, suggesting that cluster analysis driven

by outcome patterns is not helpful in predicting HbA1c responses

using clinical variables at baseline. There is a need for a more individu-

alized approach to support clinical decision-making and to guide per-

sonalized treatment for patients with T2DM in need of additional

treatment.

Over the last few decades, machine-learning algorithms have been

actively used for developing clinical decision support systems.19,20

Machine-learning algorithms can automatically identify important clin-

ical variables to predict a clinical outcome at individual patient level. In

the present study, our primary aims were to assess the performance

of supervised machine-learning-based clinical decision support tools

to predict short- and long-term HbA1c response after insulin initiation

in patients with T2DM and to identify clinical variables that can influ-

ence a patient's HbA1c response. The proposed supervised learning

approach in this study provides a quantitative probability measure of

HbA1c response for an individual patient. Our secondary aim was to

identify and characterize subgroups of patients with different HbA1c

responses after insulin initiation using the predictions made for indi-

viduals by machine-learning algorithms.

2 | MATERIALS AND METHODS

2.1 | Data source

Data were collected from the Groningen Initiative to Analyse Type

2 diabetes Treatment (GIANTT) database (https://www.giantt.nl).21

This longitudinal database contains routinely collected data of

patients with T2DM extracted from the electronic medical records of

general practices in the northern Netherlands.22 The dynamic nature

of the database allows the inclusion of newly diagnosed patients or

patients with T2DM newly registered in a participating general prac-

tice, for example, after moving into the area. Patients were excluded

when they moved out of the area, were no longer treated in primary

care or died. The GIANTT database includes prescription data, medical

history, results of routine laboratory tests and physical examinations

from >50 000 patients diagnosed with T2DM. Medical history con-

tains diagnoses, as documented in the electronic medical records by

means of the International Classification of Primary Care or short text

descriptions that were manually coded. The GIANTT data collection

and mapping procedures have been validated,22 and used in more

than 40 previous studies.

2.2 | Population inclusion criteria

Details of patient inclusion and exclusion criteria were published in a

previous study using the same dataset.18 In short, for the present

study, patients were eligible for inclusion if all of the following criteria

applied: (a) they were prescribed insulin for the first time between

January 1, 2007 and December 31, 2013; (b) they had an HbA1c mea-

surement at insulin initiation and at 6- (±2) and 24- (±2) month follow-

up; (c) they had at least one HbA1c measurement within 365 days

preceding insulin initiation; and (d) they had at least one insulin pre-

scription within 365 days before each follow-up HbA1c measurement

to ensure no discontinuation in the follow-up period.

2.3 | 3 baseline clinical variables

We used a set of 24 baseline clinical variables previously identified as

possibly relevant and available in the GIANTT database.18 This

included continuous variables (age, HbA1c, total cholesterol, triglycer-

ides, HDL cholesterol, LDL cholesterol, systolic blood pressure [SBP],

albumin-to-creatinine ratio [ACR], estimated glomerular filtration rate

[eGFR], BMI) and categorical variables (sex, diabetes duration

[≥2 years], micro/macro-albuminuria, smoking status, metformin use,

sulphonylurea use, acarbose use, thiazolidine use, dipeptidyl

peptidase-4 [DPP-4] inhibitor use, repaglinide use, history of cardio-

vascular disease, peripheral vascular disease, malignancy, and psycho-

logical conditions). Full details on these variables have been described

elsewhere18 and are also provided in File S1.

2.4 | Patient outcome

The primary outcome measure for this study was decrease in HbA1c

level after insulin treatment initiation in the short term (6 ± 2 months)

and long term (24 ± 2 months). Patients were identified as good

responders if there was a reduction in HbA1c of at least 5 mmol/mol

compared to baseline or if they reached an HbA1c level of

≤53 mmol/mol. If the reduction was <5 mmol/mol or HbA1c failed to

reach the level of 53 mmol/mol, patients were defined as poor

responders. The HbA1c level of 53 mmol/mol was the lowest

NAGARAJ ET AL. 2705

https://www.giantt.nl


recommended target level for patients with T2DM in the Netherlands

at the time of the study.1

2.5 | Statistical analysis and cross-validation

2.5.1 | Missing data

First, missing variables (excluding HbA1c as this was used in defining

the outcome) in the raw baseline data were imputed using a multiple

imputation by chained equations algorithm23 (triglyceride: 3%; total

cholesterol: 3.7%; LDL cholesterol: 3.1%; SBP: 24%; ACR: 14%; eGFR:

1.43%; BMI: 29%). Using imputed clinical variables, we used an elastic

net regularization technique24 for important variable selection, and

trained machine-learning algorithms to predict the probability of

HbA1c response after insulin treatment initiation. It should be noted

that several variables were correlated; for example, “total cholesterol”

and “triglycerides, HDL cholesterol and LDL-cholesterol,” and “ACR”

and “micro−/macroalbuminuria.” The elastic net regularization

technique is ideal for this application where data consist of multiple

highly correlated variables. The elastic net regularization technique

will assign large weight to the variable that has more discriminative

ability to distinguish between two groups.

2.5.2 | HbA1c response prediction system

Figure 1 shows the architecture of the proposed HbA1c response pre-

diction system. We compared the performance of three commonly

used traditional machine-learning algorithms: (a) an elastic net

regularization-based generalized linear model,24 (b) a support vector

machine25 and (c) random forests26 to predict HbA1c responses. We

evaluated the prediction performance of the machine-learning models

using a leave-one-subject-out (LOSO) cross-validation technique, that

is, we divided the data into N folds. In each fold, we used data from

N-1 subjects for training the prediction model and the remaining

unseen left-out data for testing. In each fold, variables in the training

F IGURE 1 Architecture of the
proposed supervised machine
learning based HbA1c response
prediction system. LT, long-term;
MICE, multiple imputation by chained
equations; ST, short-term

F IGURE 2 Flow chart illustrating
patient inclusion and exclusion criteria
used in this study to select patients
for the final analysis. GIANTT,
Groningen initiative to analyse type
2 diabetes treatment; HbA1c, glycated
haemoglobin
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set were standardized (by subtracting the mean and dividing by the

standard deviation), and the testing set predictors were standardized

with respect to the mean and standard deviation of the training set

before using them for classification. Since the training set contained

an unequal number of sample points from the two groups (responder

and non-responder), this created a group imbalance problem which

could severely bias the performance of the model. For this reason, we

created a balanced training set (in every iteration) by selecting random

samples from each group corresponding to the length of the smallest

group (which varies during each iteration). We further divided this

LOSO cross-validation into inner and outer validation. Inner cross-

validation was performed on the training set to estimate optimal

model parameters and discriminant predictors using a feature selec-

tion method. Outer cross-validation was performed on the training

set to estimate model performance. Details are provided in the next

sections.

2.5.3 | Inner cross-validation for training the
classifier model

The elastic net regularization algorithm requires tuning of the so-called

hyperparameters, α = ridge coefficient, and λ = amount of regularization,

before testing on the testing set. While α controls the number of vari-

ables to be included in the analysis, λ adjusts the amount of coefficient

shrinkage (or variable weights). The weights (or relative importance) of

individual variables provided by elastic net regularization during training

were used for selecting important predictors (variable selection). In each

internal cross-validation loop, we optimized the number of predictors and

hyperparameters (using grid search) to be included in the final model. We

used fivefold cross-validation on the training set (ie, using 80% training

set) to obtain these parameters. The optimal set of predictors and param-

eters that provided maximum average area under the receiver-operating

characteristic curve (AUC) over the fivefold training set was used to train

the final prediction model on the whole training set.

TABLE 1 Groupwise comparison of baseline characteristics of patients

Clinical variables All Group 1 Group 2 Group 3 Group 4

Total number of patients, n (%) 1188 (100) 558 (47) 36 (3) 558 (47) 36 (3)

Agea, years 66.10 (12.1) 65.2(12.5) 56.1(10) 67.4(11.6) 69.6(11.1)

Women, % 639 (54) 290 (52) 18 (50) 309 (55.4) 22 (61.1)

DMD, n (%) 1026 (86.4) 460 (82.4) 32 (88.9) 501 (89.8) 33 (91.6)

HbA1ca, mmol/Mol 64.7 (16.4) 76.1 (17.2) 61.8 (0.9) 57.4 (2.1) 62.2 (1.6)

Total cholesterol*, mmol/L 4.4 (1.0) 4.4(1.0) 4.2 (1.3) 4.4 (1.1) 4.6 (1.2)

Triglycerides, mmol/L 1.9 (1.1) 1.9 (1.1) 1.6 (0.7) 1.9 (1.1) 2.1 (1.2)

HDL cholesterol, mmol/L 1.2 (0.3) 1.2 (0.3) 1.0 (0.3) 1.2 (0.3) 1.3 (0.4)

LDL cholesterol, mmol/L 2.4 (0.9) 2.5(0.9) 2.3(1.0) 2.4(1.0) 2.4(0.9)

SBPa, mmHg 142 (19.4) 141.6 (20.4) 134.5 (14.9) 141.1 (18.5) 153.3 (19.7)

ACR, μg/mg 5.3 (16.1) 4.2 (12.2) 3.2 (7.8) 6.8 (22.0) 3.6 (8.6)

eGFRa, mL/min/1.73 m2 73.4 (22.2) 76.6 (21.3) 92.4 (15.6) 69.5 (22.3) 63.3 (20.7)

BMI, kg/m2 30.6 (5.4) 30.8(5.4) 30.2(5.7) 30.1(5.2) 35.0(9.4)

Micro/macroalbuminuria, n (%) 248 (21) 117 (21) 5 (13.9) 112 (20.1) 9 (25)

Smoker, n (%)* 147 (12.4) 69 (12.4) 9 (25) 67 (12) 2 (5.6)

Metformin, n (%) 773 (65.1) 390 (69.9) 20 (55.6) 347 (62.2) 16 (44.4)

Sulphonylureas, n (%) 769 (64.7) 371 (66.5) 22 (61.1) 350 (62.7) 26 (72.2)

Acarbose, n (%) 3 (0.3) 1 (0.2) 0 (0) 2 (0.4) 0 (0)

Thiazolidines, n (%) 113 (9.5) 27 (4.8) 0 (0) 70 (12.5) 16 (44.4)

DPP-4 inhibitors, n (%) 57 (4.8) 34 (6.1) 2 (5.6) 21 (3.8) 0 (0)

Other GLDs, n (%) 3 (0.2) 2 (0.4) 0 (0) 0 (0) 1 (2.8)

CV morbidity, n (%) 279 (23.5) 122 (21.9) 3 (8.3) 149 (26.7) 5 (13.9)

Peripheral vascular morbidity, n (%) 161(13.5) 68 (12.2) 1 (2.8) 84 (15.1) 8 (22.2)

Malignancy, n (%) 117 (9.8) 46 (8.2) 3 (8.3) 66 (11.8) 2 (5.6)

Psychological conditions, n(%) 83 (7) 48 (8.6) 1 (2.8) 30 (5.4) 4 (11.1)

Note: Group 1, short-term and long-term responders; Group 2, short-term responders; Group 3, no change in response; Group 4, long-term responders.

Note: Values are reported as mean (±SD) unless stated otherwise.

Abbreviations: BMI, body mass index; CV, cardiovascular, albumin-creatinine ratio; DMD, diabetes mellitus duration (≥2 years); DPP-4, dipeptidyl

peptidase-4; eGFR, estimated glomerular filtration rate; SBP, systolic blood pressure; T2DM, type 2 diabetes mellitus.
aSignificant differences (P < .05).
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2.5.4 | Outer cross-validation for testing the
prediction model

The final trained prediction model with optimal parameters in the

internal cross-validation loop was used to obtain the probability of

good HbA1c response on the testing data. We then obtained the average

performance across N-folds to evaluate the model performance. Thus, by

training the prediction model using only the training set (inner cross-vali-

dation) and testing it on the independent testing set (outer cross-valida-

tion), the proposed method using LOSO cross-validation provides nearly

unbiased estimates on new testing data.27

Two separate prediction models were developed to predict short-

term and long-term HbA1c response for a given patient. The

predicted output by each model was converted to posterior probabili-

ties via logit transformation, resulting in two probability scores

assigned for each patient. To identify subgroups of patients predicted

by the model with different HbA1c responses after insulin initiation,

we stratified the entire population by the median probability output

of the short-term as well as the long-term model, resulting in four sub-

groups. Baseline characteristics were described for each subgroup and

ANOVA, followed by post hoc testing with the Tukey honest signifi-

cant difference test to assess differences in these characteristics

between the groups. The Kruskal–Wallis test was used for non-

normally distributed variables. All tests were two-sided with an α

value = .05. There was no a priori power analysis to guide sample size

in data collection.

2.6 | Performance metric

We used the AUC as the performance metric to evaluate the perfor-

mance of the proposed system. This metric provides an estimate of

how well the model can differentiate between two groups (good

responders vs poor responders). The higher the AUC, the better the

model performance: AUC = 1 indicated the best performance and

AUC = 0.5 corresponded to random performance. An AUC ≥0.8 was

considered good performance. We compared the AUC of different

models with a prediction model including only the baseline HbA1c. All

of the coding and analyses were performed using the MATLAB 2018a

scripting language (Natick, Massachusetts). All results are reported as

mean (±95% CI) unless stated otherwise. Bootstrapping with 1000

samples was used to estimate the 95% CI.

3 | RESULTS

In total, data from 1188 patients satisfying all inclusion and exclusion

criteria were used in this study (Figure 2). The majority of patients

(3341 patients) were excluded because their follow-up period was too

F IGURE 3 Heatmap illustrating the
of set of clinical variables selected

(in columns) by the elastic net
regularization techniques across different
leave one out iterations (in rows) for A,
short-term and B, long-term HbA1c
response prediction, respectively. The
colour bar indicates the weightage
assigned by elastic net to discriminate
between responders and non-responders.
Higher intensity in the colormap indicates
variables that are more robustly
informative (selected more consistently
across different iterations of model
training). ACR, albumin-to-creatinine
ratio; AU, acarbose use; BMI, body mass
index; CV, history of cardiovascular
disease; DMD, type 2 diabetes melitus
duration (≥2 years); DPP-4, dipeptidyl-
peptidase-4-inhibitors use; eGFR,
estimated glomerular filtration rate, GLD,
other oral glucose-lowering drugs use;
HbA1c, glycated haemoglobin; HDL, HDL
cholesterol; MA, micro/macro-
albuminuria; MU, metformin use; ML,
malignancy; PSC, psychological
conditions PV, peripheral vascular
disease; SBP, systolic blood pressure; TC,
total cholesterol; TG, triglycerides; LDL,
LDL cholesterol; SM, smoking status; SU,
sulphonylurea use; TZD, thiazolidines use
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short. The patients had a mean age of 66 years, 54% were women,

and 86% had a diabetes duration of ≥2 years (Table 1).

3.1 | HbA1c response prediction

The elastic net regularization-based generalized linear model identi-

fied short- and long-term HbA1c responders with an AUC = 0.80

(95% CI 0.78–0.83) and 0.81 (95% CI 0.79–0.84), sensitivity = 0.81

(95% CI 0.75–0.86) and 0.81 (95% CI 0.76–0.88), specificity = 0.67

(95% CI 0.61–0.78) and 0.65 (95% CI 0.60–0.78), respectively (see

File S1 for additional metrics). The performance of the generalized lin-

ear model outperformed the other two machine-learning algorithms

(support vector machine: AUC = 0.75 [95% CI 0.71–0.78] and 0.77

[95% CI 0.73–0.79] and random forests: AUC = 0.76 [95% CI

0.68–0.78] and 0.79 [95% CI 0.69–0.81]) in predicting short-term and

long-term responses, respectively. Using baseline HbA1c alone, we

obtained an AUC = 0.71 (95% CI 0.65–0.73) and 0.72 (95% CI

0.66–0.75) for predicting short- and long-term response, respectively.

3.2 | Important predictive variables

Different variables identified by the elastic net regularization to predict

short-term and long-term responders are shown in Figure 3. The following

variables were selected as important for short-term prediction (reported

as K
1188 ×100 %, where K= total number of times a given variable was

selected in different iterations): baseline HbA1c (100%); thiazolidine

use (100%); eGFR (99.7%); and HDL cholesterol (98.3%). For long-

term outcome prediction, baseline HbA1c (100%), smoking status

(98.9%) and eGFR (86.5%) were selected as important predictors.

3.3 | Subgroups of distinct HbA1c responders

Figure 4 shows the mean trajectory (with 95% CI) of HbA1c values

over 24 months after insulin treatment initiation for each subgroup

with different short- and long-term HbA1c responses predicted by

the elastic net regularization-based generalized linear model. At

baseline, age, HbA1c level, total cholesterol, SBP, eGFR and smoking

status were significantly different among the four groups (Table 1).

Group 1 (short- and long-term responders), which included 558 (47%)

of the 1188 patients, had relatively high HbA1c at baseline when

compared to the other groups. Patients in this group responded sub-

stantially to the insulin treatment within 6 months and maintained suffi-

cient response until 24 months. Group 2 (short-term responders),

which included 36 patients (3%), was younger, with relatively low initial

HbA1c, low total cholesterol, low SBP, and high eGFR levels and more

smokers at baseline. Patients in this group responded sufficiently to

insulin treatment within 6 months but did not show sufficient response

(Δ HbA1c < 5 mmol/mol) after 6 months. Group 3 (no change in

response) included 558 (47%) patients and had the lowest HbA1c levels

at baseline. Patients in this subgroup did not show a sufficient decrease

in HbA1c throughout the 24 months of insulin treatment. Group

4 (long-term responders), which included 36 (3.8%) patients, was older,

with higher total cholesterol, higher SBP, and lower eGFR levels com-

pared with the other groups. After insulin treatment initiation, patients

in this group did not show a sufficient initial decrease in HbA1c but

showed better response after 6 months.

4 | DISCUSSION

We developed a novel supervised machine-learning framework to

predict short-term and long-term HbA1c response in patients with

T2DM after insulin treatment initiation using multiple demographic

and baseline clinical variables. The proposed system based on an elas-

tic net regularization-based generalized linear model correctly classi-

fied short- and long-term insulin treatment responders with good

performance (AUC ≥0.80). Baseline HbA1c, eGFR, smoking and use of

specific oral glucose-regulating drugs were identified as the most

important factors. In addition, subgroups with different predicted

short- and long-term responses differed in age, baseline HbA1c,

eGFR, total cholesterol and SBP levels.

Several previous studies have looked at variables for predicting

HbA1c response in patients with T2DM initiating metformin or

F IGURE 4 Comparison of glycated
haemoglobin (HbA1c; mmol/Mol) levels
in four groups against time predicted by
the elastic net regularization-based
generalized linear model. The graph
shows mean values with 95% confidence
interval. The time axis is divided into
6-month intervals. Here group 1, short-
and long-term responders; group
2, short-term responders; group 3, no
change in response; group 4, long-term
responders. To obtain distinct subgroups
of patients, we obtained a median
probability outputs of the generalized
linear model. HbA1c, glycated
haemoglobin
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sulphonylurea derivatives (detailed analysis and description of these

studies can be found in the review article by Martono et al13). In these

studies, baseline HbA1c, age, BMI and duration of diabetes were

found to be important predictors of HbA1c response. Consistent with

these findings, the present study showed that baseline HbA1c is impor-

tant for predicting both short- and long-term HbA1c response after

insulin initiation. We identified a substantial group of patients who

already had relatively low HbA1c levels at insulin initiation which

remained stable over time. Although these patients did not reach target

HbA1c levels and did not show sufficient response as defined in the

present study, they seem relatively well treated. It is possible that these

patients switched to insulin to reduce the adverse effects of oral treat-

ment. We also identified a substantial group of patients with elevated

HbA1c levels at baseline who responded rapidly to the treatment and

remained stable during the course of the treatment. We observed that

smoking status had a significant effect on the prediction performance

of the long-term HbA1c response. The small group of younger patients

with sufficient short-term response without further long-term improve-

ments included a higher percentage of smokers. It might be that

smoking status is a proxy for being less adherent to treatment,28,29 but

it can also be associated with insulin resistance.30 Finally, the use of

thiazolidines or repaglinide at baseline was predictive of short-term

response. These were mostly used by patients in the smaller group of

older patients which showed poor short-term but a good long-term

response. It is likely that these patients had switched from thiazolidines

or repaglinide to insulin, and may have been on too-low insulin dosing

schemes in the first months of treatment. It could also be that use of

these drugs is a proxy for clinical complexity.

Prior studies conducted in the Netherlands17,18 have looked at identi-

fying distinct trajectories of HbA1c response over time after insulin treat-

ment initiation using an unsupervised latent class growth modelling

algorithm.31 A study by Mast et al17 identified four different subgroups

on a database obtained from a centrally organized care system. The

majority of patients (89%) had stable HbA1c trajectories over time after

insulin treatment initiation. This group was similar in age and baseline

HbA1c levels to group 3 in the present study, showing stable HbA1c

levels. A recent study by Sidorenkov et al,18 using the same GIANTT data

as used in the present study, identified three distinct subgroups, where

the majority of patients (84%) showed a short-term response followed by

stable HbA1c trajectories. This group was also similar in age and baseline

HbA1c levels to group 3 in the present study.

To the best of our knowledge, this is the first study using a super-

vised machine-learning technique to predict short- and long-term

HbA1c response in patients with T2DM based on a clinical outcome

definition. The proposed supervised machine-learning framework may

lead to clinical tools which provide a probability estimate of patient

response to insulin treatment at baseline (before initiation) using clini-

cal data available from the medical record. It is important to note that

the model does not assume causality. The clinical utility of the pro-

posed method is multifold. It provides clinicians with the ability to

integrate multiple variables to predict both short-term and long-term

HbA1c response. Identifying patients who are likely to respond to

insulin only in the long term may assist clinicians to monitor and

uptitrate insulin dosage earlier in these patients. Similarly, identifying

patients who are likely to respond only in the short term may require

closer monitoring of patient adherence as well as the need for

uptitration. This provides the first step towards a more personalized

treatment where insulin treatment decisions are supported by

machine-learning algorithms based on individual patient predictors. A

clinician can integrate such clinical data-based predictions with addi-

tional information about patient preferences or risks for adverse

events when making decisions about insulin initiation.

Despite promising results (AUC ≥0.8), the present HbA1c

response prediction system is not yet ready for clinical use. A strength

of the present study is the use of LOSO cross-validation (mimicking a

real clinical scenario) to develop the proposed patient response pre-

diction system and subgroup identification. This provides a nearly

unbiased estimate of the generalization error on new patient testing

data. Several limitations need to be addressed in future work before

deployment of the HbA1c response prediction system. First, the

majority of patients in the present study were of western European

ethnicity (2% non-Europeans) and the results might not be generaliz-

able to the general population. Second, we look at HbA1c response

after insulin initiation using observational data, while the response

may be attributable to other factors, such as insulin dosing and regi-

men, other medication changes, medication adherence, and lifestyle

(eg, physical activity and diet). We had no data available to report on

these factors. Third, we developed two separate models for short-

and long-term prediction because of the limited dataset. A substantial

number of patients in the GIANTT database were excluded from the

analyses because they had insufficient follow-up or lacked an HbA1c

measurement before insulin initiation. This is a consequence of using

medical record data from a dynamic cohort. This can have an impact

on prediction performance, although it is difficult to say to what

extent. Validation of the proposed model on another dataset is there-

fore necessary to confirm the findings. In the future, we plan to

develop a single multi-label machine-learning model using a large

dataset from several sources. This should also include more recent

data, because the use of newer agents, such as glucagon-like peptide-

1 receptor agonists in combination with insulin may have increased.

For now, our results provide important proof-of-concept results to

guide future investigations leveraging the potential of machine learn-

ing in predicting drug response.

In conclusion, we show that a supervised machine-learning algo-

rithm performed well in predicting short- and long-term HbA1c

response after insulin initiation in patients with T2DM. This provides

the first step towards guided personalized treatment where insulin

treatment decisions are supported by machine-learning-based predic-

tions using individual patient clinical variables.
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