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Abstract: The development of cancer is a multistep and complex process involving interactions
between tumor cells and the tumor microenvironment (TME). C-X-C chemokine ligand 13 (CXCL13)
and its receptor, CXCR5, make crucial contributions to this process by triggering intracellular signal-
ing cascades in malignant cells and modulating the sophisticated TME in an autocrine or paracrine
fashion. The CXCL13/CXCR5 axis has a dominant role in B cell recruitment and tertiary lymphoid
structure formation, which activate immune responses against some tumors. In most cancer types, the
CXCL13/CXCR5 axis mediates pro-neoplastic immune reactions by recruiting suppressive immune
cells into tumor tissues. Tobacco smoke and haze (smohaze) and the carcinogen benzo(a)pyrene
induce the secretion of CXCL13 by lung epithelial cells, which contributes to environmental lung
carcinogenesis. Interestingly, the knockout of CXCL13 inhibits benzo(a)pyrene-induced lung can-
cer and azoxymethane/dextran sodium sulfate-induced colorectal cancer in mice. Thus, a better
understanding of the context-dependent functions of the CXCL13/CXCR5 axis in tumor tissue and
the TME is required to design an efficient immune-based therapy. In this review, we summarize the
molecular events and TME alterations caused by CXCL13/CXCR5 and briefly discuss the potentials
of agents targeting this axis in different malignant tumors.

Keywords: C-X-C chemokine ligand 13 (CXCL13); C-X-C chemokine receptor type 5 (CXCR5); cancer;
tumor microenvironment

1. Introduction

Chemokines are a family of chemotactic cytokines with small molecular weights
(8–14 kDa) [1]. Chemokines are classified into four groups according to the position of the
first two cysteines closest to the amino terminus: C, CC, CXC, and CX3C [2]. Chemokines
exert their functions by binding to their receptors, which are seven-transmembrane guanine-
protein-coupled receptors (GPCRs) [3]. Chemokines have important roles in regulating
lymphoid tissue development, immune homeostasis, and inflammatory responses by
directing the migration of leukocytes into the injured or infected tissues [2]. A complex
chemokine-chemokine receptor signaling network is critical to the tumor microenvironment
(TME), which makes pivotal contributions to tumor cell proliferation, migration, invasion,
angiogenesis, and evasion of anti-tumor immunity, facilitating tumor initiation, progression,
and metastasis [4–8].

Chemokines and their receptors also modulate lymphocyte populations in the TME,
thus inducing resistance to immune checkpoint inhibitors that exhibit remarkable efficacies
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on a proportion of patients with many cancer types [9,10]. Inconsistent with these observa-
tions, targeting chemokine receptors with neutralizing antibodies endow a more sensitized
phenotype and enhance responses to immune checkpoint blockades [11,12].

2. CXCL13/CXCR5 and Immune Homeostasis
2.1. CXCL13/CXCR5: Genes and Proteins

C-X-C chemokine ligand 13 (CXCL13), also known as B-cell attracting chemokine 1
(BCA-1) or B-lymphocyte chemoattractant (BLC), was originally identified as a homeostatic
chemokine to attract B cells, a minority of T cells, and macrophages [13]. The human
CXCL13 gene localizes on chromosome 4q21 and encodes CXCL13 protein, which has
109 amino acids, a molecular mass of 12,664 Da, and a crystal structure as below (Figure 1A).
The receptor of CXCL13 is the C-X-C chemokine receptor type 5 (CXCR5), which is also
named Burkitt’s lymphoma receptor 1 (BLR1) and is defined as a member of the superfamily
of seven-transmembrane GPCRs (Figure 1B). CXCR5 has two transcripts, both localized on
the cell membrane [14], and is expressed by follicular helper T cells (Tfh) [15], circulating
CD4+ T cells [16], B cells [17], CD68+ macrophages [18], and tumor cells. Moreover, FANCA-
mediated CXCR5 neddylation is involved in targeting the receptor to the cell membrane,
and CXCR5 neddylation stimulates cell migration and motility [19].
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Figure 1. Crystal structure of CXCL13 and CXCR5. (A). Illustration of the CXCL13 monomer 
(UniProKB-O43927) showing domain hits with deep coloration. (B). Illustration of the CXCR5 mon-
omer (UniProKB-P32302) showing seven transmembrane helixes and domain hits (deeply colored). 
Structural models were obtained from SWISS-MODEL (http://swissmodel.expasy.org/repository/. 
accessed on 15 April 2021). 

2.2. CXCL13/CXCR5 Axis 
The precise mechanism of how the CXCR5 receptor responds to CXCL13 and medi-

ates signaling activation has not been fully elucidated. Evidence has demonstrated that 
CXCR5 interacts with cytosolic and membrane proteins to form heterodimers and hetero-
trimers, respectively [20–22]. CXCR5 couples to cytosolic α, β, and γ subunits of G pro-
teins to form heterotrimeric guanine nucleotide-binding proteins [20]. After CXCL13 
binds to CXCR5, G proteins dissociate from CXCR5, dividing into Gα and Gβγ, which stim-
ulate different downstream molecules and subsequently trigger specific intracellular sig-
nal transduction pathways [20,23]. The intracellular domains, and probably the trans-
membrane-spanning domains of CXCR5, are required to activate G proteins [24,25]. 
CXCR5 can also form heterodimers with membrane proteins, such as CXCR4 and Epstein–

Figure 1. Crystal structure of CXCL13 and CXCR5. (A). Illustration of the CXCL13 monomer
(UniProKB-O43927) showing domain hits with deep coloration. (B). Illustration of the CXCR5
monomer (UniProKB-P32302) showing seven transmembrane helixes and domain hits (deeply
colored). Structural models were obtained from SWISS-MODEL (http://swissmodel.expasy.org/
repository/. accessed on 15 April 2021).

2.2. CXCL13/CXCR5 Axis

The precise mechanism of how the CXCR5 receptor responds to CXCL13 and mediates
signaling activation has not been fully elucidated. Evidence has demonstrated that CXCR5
interacts with cytosolic and membrane proteins to form heterodimers and heterotrimers,
respectively [20–22]. CXCR5 couples to cytosolic α, β, and γ subunits of G proteins to form
heterotrimeric guanine nucleotide-binding proteins [20]. After CXCL13 binds to CXCR5,
G proteins dissociate from CXCR5, dividing into Gα and Gβγ, which stimulate different
downstream molecules and subsequently trigger specific intracellular signal transduction
pathways [20,23]. The intracellular domains, and probably the transmembrane-spanning
domains of CXCR5, are required to activate G proteins [24,25]. CXCR5 can also form
heterodimers with membrane proteins, such as CXCR4 and Epstein–Barr virus-induced

http://swissmodel.expasy.org/repository/
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receptor 2 (EBI2) [20,22]. The EBI2/CXCR5 heterodimer lowers the affinity of CXCL13 for
CXCR5 and reduces the activation of G proteins, potentially contributing to the alteration
of the CXCR5 binding pocket by heterodimer formation [22].

2.3. Physiological Functions of CXCL13/CXCR5

CXCL13 is abundantly expressed on follicular helper T cells (Tfh), follicular dendritic
cells (FDCs), and stromal cells in the follicles of secondary lymphoid organs (SLOs) and is
essential for the development of the B cell zones of SLOs [13,26–28]. SLOs, which include
the spleen, lymph nodes, and Peyer’s patches, coordinate antigen-specific primary immune
responses via promoting the interactions between antigen-presenting cells and lympho-
cytes. CXCR5 is expressed by mature B lymphocytes [29], a subpopulation of follicular B
helper T cells [30,31], and antigen-bearing dendritic cells (DCs) [32], which control their
migration into SLOs towards the gradient of CXCL13 [26,33–35]. CXCR5 regulates Burkitt’s
lymphoma (BL) lymphomagenesis, B cell differentiation, and migration [25,29,34].

CXCL13 and CXCR5 are required to maintain SLO architecture [26,34,36], whereas
deficiencies in CXCL13 [26] and CXCR5 [34] result in the abnormal development of lymph
nodes and Peyer’s patches. Consistently blocking the CXCL13/CXCR5 axis inhibits the
migration and localization of B cells to lymphoid follicles, which are also called B cell zones
in SLOs [13,26,27,34]. CXCL13/CXCR5 signaling enhances B cell receptor (BCR)-triggered
B cell activation by shaping cell dynamics [37]. Proline-rich tyrosine kinase (Pyk2) and
focal adhesion kinase (FAK) are required for CXCL13-induced chemotaxis of B-2 cells into
the lymph follicles and B cells in the marginal zone (MZ), since both the Pyk2 inhibitor and
FAK inhibitor suppress CXCL13-induced migration of B-2 cells and MZ B cells (B cells in
marginal zone) [38].

In response to CXCL13 secreted by Tfh, FDCs, or marginal reticular cells (MRC), and
peripheral CXCR5+ B cells are recruited into the lymphoid follicles or germinal center (GC)
in the SLOs through high endothelial venules (HEVs) (Figure 2). In the lymphoid follicles, a
positive feedback loop mediated by CXCL13 boosts follicle development and sustains SLOs
homeostasis. On one hand, CXCL13 secreted by FDCs upregulates membrane lymphotoxin
α1β2 (LTαβ) on B cells. On the other hand, LTαβ interacts with the lymphotoxin-β recep-
tor (LTβR) on FDCs and triggers FDC development, mutation, and CXCL13 production
(Figure 2). In GCs, the expression of LTαβ on B cells is independent of CXCL13 [26]. In the
GCs of Peyer’s patches, the formyl peptide receptor (FPR) expressed on FDCs interacts
with its endogenous ligands LL-37, promoting the generation of CXCL13 and B cell activa-
tors, and subsequently activates B cells [39]. LL-37-mediated FPR-2 signaling in follicular
dendritic cells contributes to B cell activation. The CXCL13/CXCR5 axis also connects Tfh
cells with B cells. These CXCR5-expressing Tfh cells migrate to the lymphoid follicles under
the chemotaxis of CXCL13, where they subsequently initiate GC formation, BCR affinity
maturation, and B cell differentiation into antibody-producing plasma cells and memory
cells by providing costimulatory receptors and cytokines (Figure 2) [40–42]. Although most
B cells in SLOs are B-2 cells, CXCL13 also recruits B-1 cells into the body cavity, which
triggers early immune defense by producing the low-affinity antibody IgM [43,44]. Overall,
the CXCL13/CXCR5 axis is essential for SLO structure and immunity responses.
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Figure 2. Roles of the CXCL13/CXCR5 axis in secondary lymphoid organs. CXCL13, secreted by follicular helper T cells
(Tfh), follicular dendritic cells (FDCs), and marginal reticular cells (MRC), recruits peripheral CXCR5+ B cells into the B
cell zone or germinal center (GC) through high endothelial venules (HEVs). In the B cell zone, CXCL13 enhances follicle
development and sustains secondary lymphoid organ homeostasis by a positive-feedback loop with B cells and FDC [26].
CXCR5+ Tfh migrate into B cell zones, initiating GC formation and B cell receptor (BCR) affinity maturation and promoting
the differentiation of B cells into antibody-producing plasma cells and memory cells [40–42].

3. CXCL13/CXCR5 and Non-Cancerous Diseases

CXCL13 signaling is involved in multiple diseases and exhibits context-dependent
effects in inflammatory conditions and tumor tissues. Generally, the tertiary lymphoid
structure (TLS) will develop in non-lymphoid tissues within or near the pathological sites
when an organism suffers from disorders, including persistent infection, autoimmune
disease, chronic obstructive pulmonary disease (COPD), and cancer (Figure 3) [45,46].
Structurally, TLSs have B cell zones, T cell zones, GCs, and HEVs.
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Figure 3. Roles of the CXCL13/CXCR5 axis in the tertiary lymphoid structure (TLS). CXCL13 is aberrantly expressed
in the TLS. CXCL13 attracts CXCR5+ Tfh and B cells to the B cell zone or GC, potentiating B cell maturation and TLS
formation [47,48]. In TLS, B cells’ secret immunoglobulins activate T cells or directly target cancer cells [15,49]. Tfh,
follicular helper T cells; FDC, follicular dendritic cells; GC, germinal center; HEV, high endothelial venules; TBM, tingible
body macrophages.

CXCL13 is aberrantly expressed and acts as the main orchestrator in TLSs [24,45,47,50–54].
After viral infection, type I interferon is produced and can induce CXCL13 production
in a population of lung fibroblasts, driving CXCR5-dependent recruitment of B cells and
initiating ectopic germinal center formation [55]. Primary pulmonary fibroblast-secreted
CXCL13 induces the formation of inducible bronchus-associated lymphoid tissue (iBALT),
which drives immune responses to fungal stimulation within the lungs [47]. In one fatal and
irreversible interstitial lung disease, idiopathic pulmonary fibrosis, CXCL13 is produced by
CD68- and CD206-positive alveolar macrophages, and the serum CXCL13 concentration
predicts the progression and severity of the disease [56]. In the lungs of mice and patients
bearing COPD induced by chronic cigarette smoke exposure, CXCL13 is elevated in the
lymphoid follicles and mediates the formation of TLS, resulting in chronic inflammation in
bronchoalveolar lavage and destruction of alveolar walls [45].

In the synovial tissues of rheumatoid arthritis, CXCL13 is produced by PD-
1hiCXCR5−CD4+ T cells [57]. CXCL13 is also a key regulator of B cell recruitment
to the cerebrospinal fluid in acute Lyme neuroborreliosis [58]. CXCL13 participates in
TLS formation in some autoimmune diseases, such as primary Sjögren’s syndrome [59,60],
systemic lupus erythematosus, myasthenia gravis [61], and atherosclerosis [62], but not
in rheumatoid arthritis [63] or acute Lyme neuroborreliosis [64]. CXCL13 is also highly
produced during adipogenesis, and has been shown to be a differentiation- and hypoxia-
induced adipocytokine that exacerbates the inflammatory phenotype of adipocytes through
the induction of the pleckstrin homology (PH) domain leucine-rich repeat protein Ser/Thr
specific phosphatase family 1 (PHLPP1), which regulates AKT activation [65,66].

CXCL13 is upregulated by Helicobacter suis, the most prevalent non-Helicobacter pylori
species colonizing the stomach of humans suffering from gastric disease [67]. CXCL13
is also induced in Helicobacter-related chronic gastritis and is involved in the formation
of lymphoid follicles and the gastric lymphomas of mucosa-associated lymphoid tissue
types [68,69]. In non-alcoholic fatty liver disease (NAFLD), repressed expression of CXCL13
may ameliorate steatosis-related inflammation [70]. CXCL13 drives spinal astrocyte acti-
vation and neuropathic pain via CXCR5 [71], and is critical to preserve motor neurons in
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amyotrophic lateral sclerosis [72]. Further understanding of the regulations and functions
of the CXCL13/CXCR5 axis will aid the rational design of therapeutics for these diseases.

4. CXCL13/CXCR5 and Cancer

The CXCL13/CXCR5 axis is involved in the regulation of cancer cell survival, apopto-
sis, proliferation, differentiation, migration, invasion, and adaptive immunity, and shows
dichotomic anti- and pro-tumor functions in the TME [21,50,73–78] (Figure 4). CXCL13 and
CXCR5 have important roles in cancer (Figure 5) and represent potential markers to predict
the response to immune checkpoint therapy [51,79–81]. These molecules may also serve as
novel targets for the development of preventive and/or therapeutic agents for cancer.
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Figure 4. Illustration of the underlying mechanisms of the CXCL13/CXCR5 axis in cell fate determination. The
CXCL13/CXCR5 axis triggers multiple intracellular signal transduction pathways. After CXCL13 binds to CXCR5, G pro-
teins dissociate from CXCR5, dividing into Gα and Gβγ, thereby inducing different downstream molecular events [20,23].
CXCL13 promotes osteogenic differentiation by inhibiting miRNA-23a, inducing ALP activity, and calcium node for-
mation [82]. Upregulation of MMPs, N-cadherin, Vimentin, Slug, and Snail, and downregulation of E-cadherin un-
der CXCL13 treatment enhances tumor cell migration [18,83]. The CXCL13/CXCR5 axis activates PI3K/Akt, integrin-
β3/Src/Paxillin/FAK, and the DOCK/JNK pathway to induce cell survival, invasion, and proliferation, respectively [73].
CXCL13 increases the phosphorylation of c-Myc and c-Jun, and upregulates the transcriptional regulator NFATc3, which
binds to the promoter region of RANKL and elevates the expression of RANKL [74,84]. ALP, alkaline phosphatase; Ca,
calcium; MMPs: matrix metalloproteinase; BAD, Bcl-2 agonist of cell death; FAK, focal adhesion kinase; DOCK2, dedicator
of cytokinesis 2; JNK, c-Jun kinase; RANKL, receptor activator of NF-kB ligand.
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4.1. CXCL13 Sources within the Tumor and the Tumor Microenvironment
4.1.1. CXCL13: Cellular Sources within TME

CXCL13 is secreted by multiple populations of cells within the TME, including stromal
cells, endothelial cells, lymphocytes, and tumor cells. FDC, a considerable stromal cell pop-
ulation, is the major producer of CXCL13 in the GCs [85,86]. Cancer-associated fibroblasts
can convert to myofibroblasts and secrete CXCL13 into the TME upon hypoxia and TGF-β
stimulation [87]. CXCL13 is also produced by human bone marrow endothelial (HBME)
cells [88], Tfh that have infiltrated into tumor tissues [89], PD1+ CD8+ T cells [90], the TGFβ-
dependent CD103+CD8+ tumor-infiltrating T-cell (TIL) subpopulation [91], neoplastic T
cells [85], and several types of tumor cells.

4.1.2. CXCL13: Production under Carcinogen Stimulation

Environmental carcinogens can induce the production of CXCL13. Studies showed
that the expression of CXCL13 at both the mRNA and protein levels was increased in B
cell areas of lymphoid follicles in the lungs of cigarette smoke (CS)-exposed mice, and the
CS-induced upregulation of CXCL13 was confirmed in patients with COPD. Interestingly,
CS-induced formation of pulmonary lymphoid follicles was blocked by anti-CXCL13
antibodies in mice, and the absence of tertiary lymphoid organs (TLOs) in bronchoalveolar
lavage alleviated the inflammatory response and destruction of the alveolar walls but did
not impact the remodeling of the airway wall [45].

CXCL13 plays a critical role in environmental carcinogenesis. Wang et al. [18] screened
for abnormal inflammatory factors in patients with non-small cell lung cancers (NSCLCs)
from Xuanwei city in China’s Yunnan Province, where the wide use of smoky coal resulted
in severe household air pollution, and found that CXCL13 was substantially upregu-
lated in 63 (90%) of 70 Yuanwei patients with NSCLC. In NSCLC patients from control
regions where smoky coal was not used, CXCL13 was overexpressed in 44/71 (62%) of
smoker patients and 27/60 (45%) of non-smoker patients [18]. Benzo(a)pyrene (BaP), a
polycyclic aromatic hydrocarbon (PAH) carcinogen found in tobacco smoking and haze
(smohaze) [92], can be metabolically activated by the production of BaP-7,8-diol-9,10-
epoxides (BPDEs). BPDE reacts with DNA to form adducts at N2 of deoxyguanosine
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(BPDE-N2-deoxyguanosine), which induces mainly G→T genomic mutations to promote
carcinogenesis [93]. We found that BaP induced the production of CXCL13 by lung ep-
ithelial cells in vitro and in vivo. Consistent with these observations, CXCL13 was shown
to be elevated in serum samples of current and former smokers and was associated with
lung cancer risk [94]. CXCL13 induces the production of secreted phosphoprotein 1
(SPP1 or osteopontin) by macrophages to activate β-catenin and induce an epithelial-to-
mesenchymal transition (EMT) phenotype (Figure 6). Deficiency in CXCL13 or CXCR5
significantly suppressed BaP-induced lung cancer in mice, indicating that CXCL13 plays
a key role in smohaze carcinogen-induced lung cancers [18,92]. CXCL13 is also upregu-
lated in human colorectal cancer and is secreted by dendritic cells [95]. The carcinogen
azoxymethane, which is catalyzed into methylazoxymethanol to induce G→A genomic
mutations, induces colorectal cancer in vivo. Interestingly, knockout of CXCL13 inhibits
azoxymethane/dextran sodium sulfate-induced colorectal cancer in mice [95]. These data
suggest a crucial role for the CXCL13-CXCR5 axis in cancers induced by environmental
factors and could be a novel target for the development of preventive and therapeutic
agents to combat related cancers.
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4.2. CXCL13/CXCR5 and Cancer Hallmarks
4.2.1. CXCL13 and Cell Proliferation

CXCL13 binds specifically to CXCR5, which couples with MEK/ERK to induce cell
proliferation [96]. In clear cell renal cell carcinoma (ccRCC) cells, CXCL13 promotes prolif-
eration by binding to CXCR5 and subsequently activating the PI3K/AKT/mTOR signaling
pathway [97]. The PI3K/AKT pathway also plays a key role in the CXCL13/CXCR5
axis, promoting colon cancer growth and invasion [98,99]. The CXCL13/CXCR5 axis
promotes the proliferation and invasion of prostate cancer (PCa) cells by activating JNK,
ERK, SRC/FAK, PI3K, and Akt [73,96,100]. CXCL13 also promotes the proliferation of
androgen-responsive LNCaP PCa cells in a JNK-dependent, DOCK2-independent manner,
whereas in androgen-independent PC3 cells, CXCL13-induced proliferation is dependent
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on DOCK2 [73,100,101]. CXCL13/CXCR5 also promotes cell cycle progression from the G1
to the S phase in PCa cells by the inactivation of CDKN1B and the activation of Cdk2 [73].
In addition, CXCL13 is involved in the progression of breast cancer cells through the
CXCR5/ERK pathway [102]. Therefore, the CXCL13/CXCR5 axis plays a key role in
regulating the proliferation of many cancer cells and could be a valuable therapeutic target.

4.2.2. CXCL13 and Cell Apoptosis

The CXCL13/CXCR5 axis plays an important role in cell homeostasis, as well as
helping leukemic cells escape apoptosis by regulating chemokine-induced signaling [103].
In breast cancer cells, the decrease in CXCL13 leads to the decreased expression of CXCR5,
p-ERK/ERK, and cyclin D1 as well as the increased expression of cleaved Casp-9, which
is an initiator caspase protease for apoptosis [104]. Moreover, CXCL13/CXCR5 has been
demonstrated to induce significant resistance to TNF-α-mediated apoptosis in B cell lineage
acute and chronic lymphocytic leukemia (B-ALL and B-CLL) [105,106]. CXCL13 regulates
the phosphorylation of Bcl-2 (at Serine 70), Bcl-xL (at Serine 62), and BAD (at Serine 112
and 136) in PC3 cells to exert anti-apoptotic effects [73]. CXCR5 may be involved in
the protection of retinal pigment epithelium (RPE) and retinal cells from aging-related
photoreceptor apoptosis [107]. These data demonstrate that the CXCL13/CXCR5 axis can
confer the evasion of apoptosis in cancer cells by modulating p-ERK/ERK, TNF-α, Casp-9,
and other signal pathways.

4.2.3. CXCL13 and Cancer Stem Cell (CSC)

Cancer stem cell (CSC) is a type of tumor cell with the abilities of self-renewal, dif-
ferentiation, and high drug resistance [108]. IL30 overproduction by prostate cancer stem
cell-like cells promotes tumor initiation and development, which involves increased prolif-
eration, vascularization, and myeloid cell recruitment. Moreover, it promotes stem cell-like
cell dissemination to lymph nodes and bone marrow by upregulating the CXCR5/CXCL13
axis [109]. CXCL13 recruits B cells to prostate tumors to promote castrate-resistant cancer
progression by producing lymphotoxin, which activates an IκB kinase α (IKKα)-BMI1
module in prostate cancer stem cells [110]. The role of the CXCL13/CXCR5 pathway in the
cancer stem cells of other malignancies remains to be investigated.

4.2.4. CXCL13 and Drug Resistance

CXCL13/CXCR5 plays an essential role in drug resistance. In multiple myeloma
(MM), CXCL13 secreted by mesenchymal stem cells (MSCs) confers resistance to borte-
zomib to MM cells [111]. In 5-fluorouracil (5-Fu)-resistant colorectal cancer patients, serum
CXCL13 is elevated, and a high CXCL13 concentration is associated with a worse clinical
outcome [112]. CXCL13 is significantly increased in diffuse large B-cell lymphoma resis-
tance to chemotherapy and is involved in tumor progression [113]. CXCR5 is overexpressed
in mantle cell lymphoma (MCL), where it mediates MCL-stromal cell adhesion and drug
resistance. The drug resistance of MCL is associated with increased expression of B-cell
activation factor (BAFF), which induces the expression of CXCL13 [114].

4.2.5. CXCL13/CXCR5 in the Tumor Microenvironment

The CXCL13/CXCR5 axis may have different roles in the TME. In leukemia, prostate,
lung, pancreatic, colon, and gastric cancers, CXCL13 exhibits pro-cancer effects by recruit-
ing B cells [86,87,115,116], CD68+ macrophages [18], regulatory B cells (Bregs) [117,118],
Treg [119], and CD40+ MDSCs [120], shaping an immune-suppressive TME to trigger
tumorigenesis and tumor progression (Figure 7A). A few reports regarding breast and lung
cancers have shown that the CXC13/CXCR5 axis attracts B cells and Tfh [89,90] to shape
the TLS in the peritumoral or tumor sites (Figure 7B), which is associated with adaptive
anti-tumor humoral responses and predicting responses to PD-1 blockade therapy.
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Figure 7. Roles of the CXCL13/CXCR5 axis in the tumor microenvironment (TME). (A). The CXCL13/CXCR5 axis plays
a crucial role in shaping a complex TME by recruiting multiple types of lymphocytes to beget pro-tumor or anti-tumor
immunity reactions. In the context of pro-neoplastic reactions, the CXCL13/CXCR5 axis attracts B cells to induce tumor
progression, regeneration, and invasion [86,87,115,118], or recruits CD68+ macrophages [18], Breg [117,118], Treg [119],
and CD40+ MDSC [120] to trigger migration, expansion and tumorigenesis, immune suppression, and immune escape,
respectively. (B). In the circumstance of anti-tumor reactions, the CXC13/CXCR5 axis recruits B cells and Tfh [89,90] to
format TLS in the peritumoral or tumor sites, which is associated with adaptive anti-tumor humoral responses and predicting
the response to PD-1 blockade therapy. Additionally, lymphocytes directly or indirectly dampen tumors by the upregulation
of CXCL13 and/or CXCR5 [15,121]. CLL, chronic lymphocytic leukemia; LTαβ, lymphotoxin α1β2; LTβR, lymphotoxin-β
receptor; CAF, cancer-associated fibroblasts; CAMF, cancer-associated myofibroblasts; HIF-1, hypoxia-inducible factor 1;
TGFβ, transforming growth factor-β; HBME, human bone marrow endothelial; IL, interleukin; BaP, benzo(a)pyrene; AhR,
Aryl hydrocarbon receptor; SPP1, secreted phosphoprotein 1; PDAC, pancreatic ductal adenocarcinoma; Breg, regulatory B
cells; HDC, histidine decarboxylase; Treg, regulatory T cells; MDSC, myeloid-derived suppressor cells; Tfh, follicular helper
T cells; NK cell, natural killer cell.

Increasing evidence indicates that the CXCL13/CXCR5 axis influences lymphocyte
infiltration in the TME by regulating cell interactions [96]. CXCL13 plays a key role
in the microenvironment of diffuse large B-cell lymphoma (DLBCL) [113]. In NSCLC,
intratumoral CD8+ T lymphocyte populations with a high level of PD-1 (PD-1T) express
higher levels of CXCL13 and secrete more CXCL13 than CD8+ T cells with intermediate
(PD-1N) and no PD-1 expression (PD-1−). These PD-1T tumor-infiltrating lymphocytes play
an active role in the recruitment of immune subsets to the TME via the secretion of CXCL13
and show predictive potential for response to PD-1 blockades [90]. NSCLC patients also
have higher levels of serum CXCL13 as compared to healthy controls. Upon CXCL13
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stimulation, NSCLC cells with a high level of CXCR5 expression exhibit a pro-migratory
phenotype [96]. In prostate cancer, CXCL13/CXCR5 interactions promote the progression
of tumor cells, including proliferation and metastasis, which are triggered by multiple
signaling cascades, such as ERK, PI3K/Akt, stress-activated protein kinase (SAPK)/c-Jun
kinase (JNK), Rac, and protein kinase C epsilon (PKCε)/nuclear factor kappa B (NF-
κB) [100,101,122,123]. Intratumoral CXCL13+ CD8+ T cells orchestrate immune-evasive
actions, which consist of increased regulated Tregs and exhausted cytotoxic T cells in
gastric cancer [124]. These intratumoral CXCL13+ CD8+ T cells are associated with poor
clinical outcomes and a decreasing response to chemotherapy. CXCL13/CXCR5-mediated
recruitment of CD40+ myeloid-derived suppressor cells (MDSCs) might induce the immune
escape of gastric tumors through inhibiting recruitment of T cells in the TME [120]. Recently,
Cabrita et al. [51] found that the coexistence of tumor-associated CD8+ T cells and CD20+

B cells improved survival in patients with metastatic melanomas; immunofluorescence
staining of CXCR5 and CXCL13 in combination with CD20 showed the formation of TLSs
in these CD8+ CD20+ tumors.

4.2.6. CXCL13 and Angiogenesis

Angiogenesis is a distinguishable characteristic of successful tumor growth in all solid
tumors, and CXC chemokines are pleiotropic in their ability to regulate tumor-associated an-
giogenesis, as well as cancer cell metastases [125]. Chronic hypoxia increases the expression
of CXCL13 in adipocytes [65] and promotes the metastasis of prostate cancer by increasing
the expression of CXCL13 in tumor myofibroblasts [87]. Fibroblast growth factor-2 (FGF2)
is a member of the family of the heparin-binding FGF growth factors with pro-angiogenic
activity. CXCL13 inhibits FGF2-induced chemotaxis and proliferation, as well as the sur-
vival of endothelial cells, acting as an angiostatic chemokine [126]. CXCL13/CXCR5 axis
also facilitates angiogenesis during rheumatoid arthritis progression [127].

4.2.7. CXCL13 and Immunometabolic Responses

An integrated immunometabolic response during negative energy balance is required
for host survival, and the impacts of nutritional status on immune responses remain to be
determined. Recent studies have shown that temporary fasting significantly reduces the
number of lymphocytes in Peyer’s patches, whose cellular composition is conspicuously
altered after resuming feeding, with the numbers seemingly restored. In this process,
nutritional signals are necessary to maintain CXCL13 expression by stromal cells [128].
Fasting reduces the numbers of circulating monocytes, as well as monocyte metabolic
and inflammatory activity, while hepatic energy-sensing regulates homeostatic monocyte
numbers via CCL2 production [129]. However, the potential roles CXCL13 plays in cancer
metabolism remain to be investigated.

4.2.8. CXCL13 and Cancer Metastasis

More than 90% of cancer deaths are attributed to metastasis. The intricate interactions
of a chemokine and its receptor play an essential role in tumor metastasis. CXCL13/CXCR5
also participates in the metastasis of multiple cancers. CXCL13 enhances cancer metastasis
signaling in an autocrine or paracrine manner, since it is secreted by tumor cells or other
cell types, such as stromal cells and lymphocytes. In a murine prostate cancer model,
which exhibits PKCε overexpression and Pten deficiency, the release of CXCL13 by tumor
cells was upregulated in a non-canonical NF-κB pathway, boosting tumor cells’ migratory
properties [122]. CXCL13 facilitates breast cancer cell line migratory activity via the nuclear
factor kappa-B ligand (RANKL)-Src pathway, which mediates the upregulation of EMT
regulators and matrix metalloproteinase-9 (MMP9) [83,130]. CXCL13, also secreted by
stromal cells, upregulates the expression of RANKL on stromal cells, promoting tumor
cell migration and lymph node metastasis via the RANK-RANKL pathway [131]. CXCL13
mediates distal metastasis of colon cancer by increasing the secretion of MMP13 and
the activation of the PI3K/Akt pathway [132]. A further study showed that polarized
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M2 macrophages mediate premetastatic niche formation and facilitate colorectal cancer
liver metastasis by forming a positive-feedback loop of CXCL13/CXCR5/NFκB/p65/miR-
934 [133]. On the other hand, CXCL13 recruits CXCR5+ CD68+ macrophages secreting SPP1,
which triggers tumor cell migration through the EMT pathway in lung cancer [18]. The
endpoint of facilitating metastasis may arouse enthusiasm in pursuing CXCL13/CXCR5 as
a potential target for cancer therapy.

4.3. Regulation of CXCL13 in Tumors

A series of studies have shed new light on the regulation of CXCL13 and CXCR5 in tu-
mors. RelA, a subunit of the NF-κB family [134], directly binds to the CXCL13 promoter and
positively regulates the transcription of CXCL13, while nuclear factor erythroid 2-related
factor 2 (NRF2) acts as a negative transcriptional regulator of this chemokine [135]. CXCR5
was positively regulated by RelA and negatively by p53 [135,136], and nuclear raf-1 kinase
regulates the CXCR5 promoter by associating with NFATc3 [137]. P53 homologues, p63 and
p73 [138], utilize the same mechanism by which the activity of NFκB is attenuated to reduce
the expression of CXCR5 [139]. The aryl hydrocarbon receptor (AhR), a ligand-activated
transcription factor, is translocated to the nucleus under BaP stimulation and binds to the
xenobiotic-responsive element (XRE) in the promoter of CXCL13, positively regulating
the transcription of CXCL13 (Figure 6) [18]. Another transcription regulator, interferon
regulatory factor 5 (IRF5), directly targets CXCL13 by binding to its promoter and upreg-
ulating CXCL13 expression [17]. CXCL13 is also identified as a downstream target gene
of the transcription factor androgen receptor (AR) [140]. In addition, oncoprotein PKCε
overexpression with tumor suppressor Pten deficiency boosts the expression of CXCL13
individually and synergistically through the non-canonical NF-κB pathway [122]. In a
murine KrasG12D Hif1α knockout model with LSL-Kras+/G12D and Pdx1-cre with interleukin-
1β (IL-1β) overexpression, the increase in CXCL13 levels depends on the combination of
HIF1α and Kras, as well as the cooperation of IL-1β and Kras [117,118]. However, the
mechanisms of CXCL13 upregulation in both murine models have not been elucidated.

5. CXCL13/CXCR5 in Several Cancer Types

Mounting evidence demonstrates a high concentration of CXCL13 and/or high ex-
pression of CXCR5 in tumor tissues or tumor cell lines. The CXCL13/CXCR5 axis in both
hematological malignancies and solid tumors mediates multiple intracellular signal cascade
reactions and yields various phenotypes responding to the signaling pathways. In addition,
the CXCL13/CXCR5 axis also potentiates the crosstalk between tumor cells and lympho-
cytes or non-lymphocytes, shaping a complex TME. The roles of the CXCL13/CXCR5 axis
participating in the malignant tumors are context-dependent, including pro-tumor and
anti-tumor activities (Figure 7). On one hand, CXCL13 attracts immunosuppressive cells to
mediate immune suppression or evasion, leading to tumor progression, while on the other
hand, the CXCL13/CXCR5 axis elicits tumoricidal immunity signaling to escape tumor
immunosurveillance in some cancer types [54,89,141] (Table 1).
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Table 1. Therapeutic targets associated with the CXCL13/CXCR5 axis in malignancies and the tumor microenvironment.

Target Cancer
Type Function Approach In Vivo or

In Vitro Outcome Refs.

CXCL13 Prostate
cancer

Induction of prostate cancer
cell proliferation and migration

siRNA and shRNA;
antibody In vivo; in vitro Inhibiting tumor

growth and metastasis [122]

CXCL13 Prostate
cancer

Chemotaxis B cells into
regressing tumor Antibody In vivo

Preventing B-cell
recruitment into tumor

under castration
[115]

CXCL13 Breast
cancer

Activating CXCR5/ERK
pathway Polyclonal antibody In vivo; in vitro

Attenuating tumor
volume and growth;
inhibiting tumor cell

proliferation and
promoting its apoptosis

[102,104]

CXCL13 Breast
cancer

Enhancing the production of
RANKL on tumor cells and

the interaction between ILC3
and stromal cells

Antibody In vivo Attenuating lymph
node metastasis [131]

CXCL13 Lung
cancer

Promotion of cell
proliferation; inducing
the production of SPP1

by microphage

Cxcl13−/− mice In vivo Decreasing the volume
of BaP-induced tumor [18]

CXCL13 PDAC Homing B cell into
tumor lesions Antibody Mice harbored

KrasG12D PDEC
Reducing the growth
of orthotopic tumor [116]

CXCL13 Colon
cancer

Induction 5-Fu resistance
and association with a

worse outcome
siRNA In vitro Reducing 5-Fu

resistance [112]

CXCR5 CLL
CXCR5+ leukemia

B cells recruited by
CXCL13 to encounter
proliferation stimuli

Cxcr5−/−

Eµ-Tcl1 mice In vivo Attenuating tumor
cell proliferation [86]

CXCR5 Prostate
cancer

Induction of prostate
cancer cells proliferation

and migration
siRNA and shRNA In vivo; in vitro Inhibiting tumor

growth and metastasis [122]

CXCR5 Lung
cancer

CXCR5+ CD68+

macrophages producing
SPP1 to promote

EMT process
Cxcr5−/− mice In vivo Decreasing the volume

of BaP-induced tumor [18]

CXCR5 OSCC
Induction RANKL
expression under

CXCL13/CXCR5 axis
Antibody In vitro Inhibiting the

expression of RANKL [74]

TGFβR Prostate
cancer

Activating CXCL13-
expressing myofibroblasts SB-431542 In vivo

Blocking the initiation
of castration-resistant

prostate cancer
[87]

NFATc3 OSCC

Nuclear translocation
mediated by CXCL13/
CXCR5 axis to bind to

RANKL promoter region

siRNA In vitro Preventing
RANKL expression [74]

Myofibroblasts Prostate
cancer

Induction of
CXCL13 expression

Immunodepletion;
phosphodiesterase 5 In vivo

Blocking the initiation
of castration-resistant

prostate cancer
[87]

ILC3, RORγt+ innate lymphoid cell group 3; SPP1, secreted phosphoprotein 1; BaP, benzo(a)pyrene; PDAC, pancreatic ductal adenocarci-
noma; PDEC, pancreatic ductal epithelial cells; 5-Fu, 5-Fluorouracil; CLL, chronic lymphocytic leukemia; EMT, epithelial to mesenchymal
transition; OSCC, oral squamous cell carcinomas; RANKL, RANK ligand; TGFβR, TGFβ receptor; NFATc3, nuclear factor of activated T cells.

5.1. Chronic Lymphocytic Leukemia and Lymphoid Neoplasms
5.1.1. Chronic Lymphocytic Leukemia

Chronic lymphocytic leukemia (CLL) is the most frequently diagnosed subtype of
leukemia in adults and is a lymphoproliferative disorder that is characterized by the ex-
pansion of monoclonal, mature CD5+ CD23+ B cells in the peripheral blood, secondary
lymphoid tissues, and bone marrow. Most CLL tumor cells are inert and arrested in
the G0/G1 of the cell cycle, and there is only a small proliferative compartment; how-
ever, the progressive accumulation of malignant cells will ultimately lead to symptomatic
disease [142,143]. CLL patients express high levels of membrane CXCR5 on leukemic
cells and have an elevated serum concentration of CXCL13 when compared with healthy
donors [142,143]. In the murine Eµ-Tcl1 model of CLL, the CXCR5-expressing malignant
B cells are trafficked to GC light zones of B cell follicles in SLOs, where leukemic B cells
contact FDCs [86]. Leukemic B cell-associated LTαβ activates LTβR on the FDCs [26,144],
which maintains FDC development and structure. Reciprocally, FDCs secrete CXCL13,
leading to the potentiation of the CXCL13/CXCR5 axis-mediated malignant B cell attraction



Life 2021, 11, 1282 14 of 27

and proliferation of leukemic B cells [86]. This crosstalk is repressed by the inhibition of the
LTαβ-LTβR or CXCL13/CXCR5 signaling cascades, resulting in attenuation of CLL pro-
gression [86]. In addition to potentiating tumor-stromal cell crosstalk, the CXCL13/CXCR5
axis exerts intracellular signaling cascade reactions, which are conducive to malignant cell
survival and resistance to apoptosis. When stimulated with CXCL13, CLL B cells commit to
actin polymerization, CXCR5 endocytosis, and the activation of p44/p42 mitogen-activated
protein kinase (MAPK) [143]. CXCL13, as well as other homeostatic chemokines, including
CXCL12, CCL21, and CCL19, make crucial contributions to B-CLL cell survival through
phosphorylating MAPK extracellular signal-regulated kinase (ERK)1/2, p90RSK, and pro-
tein kinase B (Akt), and inhibiting phosphorylation of the downstream effectors GSK3α/β
and FOXO3a [103]. The malignant B cells from CLL or acute lymphocytic leukemia (ALL)
patients take advantage of the CXCR5/CXCL13 axis and the CCR7/CCL19 axis for re-
sistance to TNFα-induced apoptosis via upregulation of paternally expressed gene 10
(PEG10) and subsequent stabilization of caspase-3 and caspase-8 [105]. Taken together, the
CXCL13/CXCR5 axis assists B-CLL cell migration, localization, survival, and expansion in
the microenvironment of SLOs.

5.1.2. Lymphoid Neoplasms

Lymphoid neoplasms, characterized by the malignant clonal proliferation of lym-
phocytes, such as mature B cells, T cells, and natural killer (NK) cells, are classified as
Hodgkin’s lymphoma (HL) and non-Hodgkin’s lymphoma (NHL), according to mor-
phologic and immunologic characteristics [145,146]. Most lymphoid neoplasms are not
remediable and eventually relapse after conventional treatment, a phenomenon in which
the interaction between malignant lymphocytic cells and resident stromal cells exert a dom-
inant influence [142]. The CXCL13/CXCR5 axis plays pivotal roles in the dissemination
and accumulation of malignant lymphocytic cells and in shaping such a tumor-stromal
cell microenvironment interaction network [147–149]. The expression level of CXCL13 and
CXCR5 are dramatically elevated in NHL [150–154]. A plethora of functional evidence has
demonstrated that CXCL13 and/or CXCR5 participate in the pathogenesis of lymphoma,
including mantle cell lymphoma (MCL) [155], follicular lymphoma (FL) [156], diffuse large
B-cell lymphoma (DLBCL) [156], primary intraocular lymphoma (PIOL) [157], primary
central nervous system lymphoma (PCNSL) [158–160], extranodal natural killer (NK)/T-
cell lymphoma (ENKTL) [161], and angioimmunoblastic T-cell lymphoma (AITL) [162,163].
Not only do the CXCL13+ and/or CXCR5+ malignant lymphocytes (B cells and Tfh cells)
promote the accumulation and proliferation of lymphoma cells, but so do the CXCL13+

FDC and circulating CXCR5+ CD4+ T cells [16,85]. CXCL13 is also involved in lympho-
proliferative disorders and lymphoid follicular formation in cutaneous B-cell lymphoma
(CBCL) [164,165] and H. pylori-induced gastric mucosa-associated lymphoid tissue (MALT)
lymphomas [68,69]. Due to the function of CXCL13 in lymphoma, mounting studies have
demonstrated that CXCL13 serves as a useful marker for the diagnosis and prognosis of
PCNSL [158], AITL [162,163], MCL [155], PIOL [157], and ENKTL [161].

5.2. Lung Cancer

Chronic inflammation provides a favorable context for lung carcinogenesis [166].
CXCL13 has a higher concentration in the serum of NSCLC patients who have had a
history of smoking, as compared with those with COPD [167]. The elevated level of
CXCL13 in the serum serves as a risk factor for the progression of the early stages of lung
adenocarcinoma [94,168]. In NSCLC cells, a study showed that the expression of CXCR5
in the nucleus is higher than that in the cell membrane [169]. CXCL13 could be used to
determine the origin of squamous cell lung cancer in patients with head and neck squamous
cell carcinoma (HNSCC), where a risk for lung metastasis exists [170]. Consistently, NCI-
H1915 cells with a higher level of CXCR5 expression show more potential to migrate in
response to CXCL13 compared to SW-1271 cells with a lower level of CXCR5 [169]. The
CXCL13/CXCR5 axis is associated with polycyclic aromatic hydrocarbon(PAH)-induced
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lung carcinogenesis [18]. Both normal lung epithelial (16HBE) and lung adenocarcinoma
(A549) cells show upregulated CXCL13 in a dose- and time-dependent manner when
the cells are treated with BaP [18]. Moreover, in the NOD/SCID mice bearing A549-
Luc-CXCL13 cells, CXCL13 recruits CXCR5+ CD68+ macrophages to the TME, where
macrophages produce secreted phosphoprotein 1 (SPP1) to promote cell migration and
tumor progression. Interestingly, deficiency in CXCL13 or CXCR5 significantly inhibits
BaP-induced lung cancer in mice, indicating the critical role of this axis in environmental
lung carcinogenesis [18].

Anti-tumor activity of the CXCL13/CXCR5 axis has also been reported, which is
shown to be able to promote the formation of TLSs and is linked to improved survival of
lung cancer patients [15,54,171]. CXCL13, produced by PD1+ CD8+ T cells, mediates the
immune cells recruited to TLSs. As a result, the TLS is infiltrated by CXCR5+ CD4+ T cells,
CD4+ Bcl6+ Tfh cells, and B cells [90]. Another study reported that the level of IL-21, IL-10,
and CXCL13 are upregulated in PD-1+ CXCR5+ CD4 T cells in the GCs, which promotes
CD8+ T cells to produce IFN-γ, induces the proliferation of B cells, and potentiates B cells
to produce IgM and IgG, forming an anti-tumor immunity microenvironment [15]. Fur-
thermore, the overexpression of CXCR5 on intratumoral natural killer (NK) cells has been
speculated to be involved in their migration in the tumor site, where NK cells participate in
tumor immunosurveillance [121]. Although CXCL13 mediates the recruitment of immune
cells to the TLS in the intra- and extra-tumor regions, the specific functions and molecular
mechanisms of these cells still need to be further investigated.

5.3. Prostate Cancer

Prostate cancer (PC) represents a leading cause of cancer-related mortality among
men due to its metastasis [172]. Chemokines and homologous receptors play a crucial
role in the initiation and progression of metastasis in PC. Extensive studies have reported
that the CXCL13/CXCR5 axis mediates PC cell migration, invasion, cell adhesion, and
anti-apoptosis functions through regulating the intracellular signaling networks in an
autocrine or paracrine fashion and forming an oncogenic microenvironment, which consists
of multiple cell types, such as inflammatory cells and PC cells. In PC tissues and cell
lines, the expression level of CXCR5 is notably increased and positively related to the
progression of PC [173]. CXCR5 mediates PC-cell survival and metastasis under CXCL13
stimulation by coupling with specific G protein subunits [20]. CXCL13, highly expressed
in PC tissues, is upregulated by AR and mediates PC genesis and development [140].
PKCε overexpression with a Pten deficiency upregulates the release of CXCL13, leading
to tumorigenesis and metastasis of PC through the CXCL13/CXCR5 axis in an autocrine
manner [122]. Based on antibody microarray analysis, the molecular mechanisms of the
CXCL13/CXCR5 axis participating in PC cell proliferation and motility mainly include
the PI3K/Akt/cyclin-dependent kinases (Cdk)1/2-Cdk inhibitor 1B (CDKN1B), stress-
activated protein kinase (SAPK)/c-Jun kinase (JNK), Src/Erk1/2, and integrin β3-FAK/Src-
Paxillin (PXN) pathways [73,100,101,140]. However, the potential of drug targets exploiting
these mechanisms to better treat PC require further validation.

CXCL13 also has an essential role in configuring a complex TME. Although patients
initially benefit from the treatment of androgen ablation, the responses are transient with
a duration of 12–18 months when they progress to castration-resistant (CR) PC [174–176].
Under androgen ablation therapy, regressing PC is accompanied by cell death and hypoxia,
which activates cancer-associated myofibroblasts (CAMF) to secrete CXCL13 by inducing
HIF-1 activation and TGF-β expression [87]. CXCL13 expressed by myofibroblasts mediates
B-cell recruitment into the TME [115].In JH

−/−mice lacking mature B cells, the emergence
and expansion of castration resistant prostate cancer (CRPC) after androgen ablation relies
on B cells, rather than T cells, and the CRPC microenvironment is subsequently infiltrated
by B cells [115]. The inflammation-responsive IκB kinase (IKK) β in B cells mediates
LTαβ secretion [115]. The interaction between LTαβ and LTβR on PC cells triggers the
IKKa-E2F1-BMI1 pathway, which regulates the regeneration of oncogenic prostate stem
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cells [177,178] and phosphorylates STAT3, an anti-apoptosis and oncogenic transcription
factor [179], as a result of the reconstruction of PC cells, accelerating the emergence of
CRPC [87,115]. Apart from the recruitment of tumor-infiltrating B cells, CXCL13, expressed
by interleukin-6 (IL-6)-treated human bone marrow endothelial (HBME) cells, mediates
PC-cell invasion, adhesion to HBME cells, and αvβ3-integrin clustering [88].

5.4. Breast Cancer

CXCL13 was found to be overexpressed in breast cancer and in the peripheral blood
of patients with breast cancer [180,181]. The CXCL13/CXCR5 axis shows anti-tumor and
pro-tumor functions. One study showed that the CXCL13/CXCR5 axis was a good prog-
nostic marker for breast cancer [17,180]. The CXCL13/CXCR5 axis is related to improved
outcomes of human epidermal growth factor receptor 2 (HER2)-positive breast cancer [182].
Another study demonstrated that CXCL13, which is regulated by interferon regulatory
factor 5 (IRF5), mediates CXCR5+ B cells and T cells homing to tumors, thereby eliciting an
anti-tumor immune response [17,183]. Infiltrated CD4+ Tfh cells express CXCL13, which
has been speculated to initiate GC formation and enhance TLS development by homing
immune cells to peritumoral or tumor sites [89,184]. In addition, these CXCL13-producing
Tfh cells reverse Treg-mediated immune suppression and present adaptive anti-tumor
humoral responses [89].

However, a large number of studies have demonstrated that the CXCL13/CXCR5 axis
is closely associated with breast cancer growth and lymph node metastasis [83,102,136,185].
Breast cancer cell lines undergoing CXCL13 stimulation overexpress EMT regulators and
MMP9 via the nuclear factor kappa-B ligand (RANKL)-Src pathway, which is critical for
breast cancer cell progression and migration [83,130]. Breast cancer cells expressing CCL21
also recruit RORγt+ innate lymphoid cell group 3 (ILC3) to the TME, where ILC3 stimulates
stromal cells to secrete CXCL13 [131]. CXCL13, in turn, potentiates the interaction between
ILC3 and stromal cells, resulting in the increased production of RANKL on stromal cells,
which promotes tumor cell migration and lymph node metastasis by the RANK-RANKL
pathway [131]. After treatment with an anti-CXCL13 antibody, the levels of transforming
growth factor beta-1 (TGF-β1), interleukin-1 (IL-1), tumor necrosis factor (TNF), p-Erk/Erk,
and cyclin D1 in MDA-MB-231 cells were obviously decreased, whereas cleaved caspase-9
was increased, leading to growth inhibition and apoptosis induction of MDA-MB-231
cells [104]. Moreover, in a female BALB/c mouse model of breast cancer, an anti-CXCL13
antibody reduced tumor growth by impairing the CXCR5/Erk pathway and inducing tu-
mor cell apoptosis [102]. A recent study showed that CXCL13 expression is increased in the
sera of breast cancer patients with brain metastases [186], though the role and mechanism
of action of the CXCL13/CXCR5 axis in cancer metastasis remain to be elucidated.

5.5. Pancreatic Cancer

In pancreatic cancer, CXCL13 signaling participates in the establishment of the pro-
oncogenic microenvironment by recruiting tumor-associated B cells [116–118]. The murine
KrasG12DHif1αKO model of pancreatic cancer exhibits an abundant expression of CCL19,
CCL20, CCL21, CXCL12, and CXCL13, all of which mediate Breg migration and infiltra-
tion into tumor tissue to promote pancreatic tumorigenesis [118]. In KrasG12D-harboring
pancreatic ductal adenocarcinoma (PDAC), CXCL13 expression by stromal fibroblasts
enhances the infiltration of IL-35 producing B cells into the TME, which potentiates the
expansion of pancreatic cancer cells [116]. Recently, the pro-tumor role of B cells in the
PDAC has been further complemented. In the PDAC mouse model of LSL-Kras+/G12D

and Pdx1-cre with IL-1β overexpression, the combination of IL-1β stimulation with Kras
mutation mediates the upregulation of CXCL13 expression and the expansion of Breg and
PD-L1+ B cells, which play an immune-suppressive role in inhibiting CD8+ T cell activity,
in addition to facilitating pancreatic tumorigenesis [117]. These studies indicated that the
concentration of CXCL13 might serve as a potential marker for B-cell amplification in
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PDAC, and immunotherapy that targets CXCL13 signaling, or B cells, might enhance the
therapeutic efficacy.

5.6. Colorectal Cancer

In colorectal or colon cancer, the CXCL13/CXCR5 axis mediates the pathogenesis,
development, and distal metastasis of tumor cells through upregulating the expression
and secretion of MMP13, as well as activating the PI3K/Akt pathway [98,125,187,188]. The
CXCL13/CXCR5 axis is also involved in the colorectal TME. The CXCL13/CXCR5 axis in
histidine decarboxylase (HDC+) granulocytic myeloid cells promotes Foxp3 expression,
Stat3 phosphorylation, and Treg proliferation, as a result of immune suppression and
tumorigenesis [119]. CXCL13 is critical to colorectal cancer pathogenesis, because CXCL13
deficiency and the blockade of CXCL13 signaling ameliorates disease progression. CXCL13
promotes intestinal tumorigenesis through the activation of the AKT signaling pathway
in a CXCR5-dependent manner. Translocation of the intestinal microbiota drives CXCL13
production in DCs through the activation of NF-κB signaling, and inhibition of micro-
biota translocation decreases CXCL13 production and suppresses intestinal tumorigenesis.
The carcinogen azoxymethane/dextran sodium sulfate induces colorectal cancer in mice,
whereas knockout of CXCL13 significantly inhibits the induction of colorectal tumori-
genesis in vivo by these carcinogens [95]. These results show that the CXCL13-CXCR5
axis is involved in the crosstalk between chemokines and cell growth during the devel-
opment of colorectal carcinogenesis, which provides a therapeutic strategy for targeting
CXCL13/CXCR5 in the future clinical treatment of colorectal cancer.

5.7. Oral Squamous Cell Carcinoma

The CXCL13/CXCR5 axis makes prominent contributions to oral squamous cell
carcinoma (OSCC) invasion of bone/osteolysis [74,84,189]. Overexpression of CXCL13 in
the stromal/preosteoblast cells significantly increases the phosphorylation of c-Myc and
c-Jun and upregulates the transcriptional regulator NFATc3 [74,84]. Phosphorylated c-Myc
(p-C-Myc), p-c-Jun, and NFATc3 bind to the RANKL promoter region and upregulate the
expression of RANKL, which participates in osteoclastogenesis and OSCC invasion of
the bone [74,84]. Inversely, oral cancer-associated TLSs with upregulation of CXCL13 are
linked to the extended survival of oral cancer patients, indicating the roles of TLSs as a
prognostic marker and immune treatment for oral cancer [190].

5.8. CXCL13 and Other Cancers

CXCL13 abounds in the serum and tumor tissue of patients with gastric cancer
and serves as a prognostic marker for patients under postoperative adjuvant chemother-
apy [14,76,191–193]. The CXCL13/CXCR5 axis drives CD40+ MDSC migration to gastric
cancer, leading to immune escape and tumor progression [120]. CXCL13+ CD8+ T cells
mediate immune evasion with increased Treg cells and exhausted cytotoxic T cells [124].
High infiltration of CXCL13+ CD8+ T cells in tumor tissue is associated with poor clinical
outcomes for the patients, and elimination of these cells could be helpful for gastric can-
cer immunotherapy. CXCL13 has been reported to be increased in the serum of patients
with hepatocellular carcinoma (HCC) [194,195]. CXCL13 potentiates the progression of
HCC by activating the Wnt/β-catenin pathway and promoting IL-12, IL-17, and IgG4
production [194]. The CXCL13/CXCR5 axis has also been reported in the initiation and
progression of other solid tumors, such as renal cell carcinoma, neuroblastoma, thyroid
cancer, osteosarcoma, ovarian cancer, and melanoma. Taken together, CXCL13 and CXCR5
usually act as oncogenic cascades in the promotion of tumor cell survival, proliferation,
migration, and invasion, and represent therapeutic targets for the development of novel
anti-cancer drugs.
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6. Therapeutic Potentials of CXCL13/CXCR5 Axis in Cancer
6.1. Therapeutic Effect of Cancer Cells in Targeting CXCL13/CXCR5 or the Downstream Molecules

The CXCL13/CXCR5 axis makes pivotal contributions to the initiation and progres-
sion of tumors, and therefore may serve as an attractive therapeutic target for related
malignant neoplasms [20,104,112]. Pivotal molecules of the CXCL13/CXCR5 axis may also
serve as targets for drug development (Table 1). Intriguingly, utilizing intrakine CXCL13-
KDEL, which traps CXCR5 in the endoplasmic reticulum, causes a prolonged growth
arrest of cancer cells [99]. In breast cancer, an anti-CXCL13 antibody suppressed tumor
growth by inhibiting the TGF-β1, IL-1, TNF, cyclin D1, and CXCR5/Erk pathways [81,86]
and repressed tumor metastasis by inhibiting RANKL production [117]. Anti-CXCL13
antibodies and RNAi were used to treat lung cancer and PDAC [18,98]. Small interference
RNA (siRNA or shRNA)-mediated silencing of this axis reversed 5-fluorouracil-resistance
in colorectal cancer cells or restrained the volume and mass of tumors in murine mod-
els [112,122]. A study showed that spebrutinib (CC-292), a small molecular inhibitor of
Bruton’s tyrosine kinase (BTK), significantly reduces the serum concentration of CXCL13
and shows a therapeutic effect on rheumatoid arthritis [196]. Inhibition of the downstream
molecules of the CXCL13/CXCR5 axis, e.g., TGFβR and NFATc3, represent an alternative
therapeutic strategy for cancers [103,115,131]

6.2. Regulating the Non-Cancerous Cells in the TME by Directly or Indirectly Targeting the
CXCL13/CXCR5 Axis

CXCL13-producing non-cancerous cells in the TME, such as myofibroblasts, myeloid
cells, B cells, and T cells, may also serve as potential targets for cancer therapy (Table 1).
A previous study demonstrated that blocking the CXCL13/CXCR5 axis using siRNA
dampens the recruitment and expansion of Tregs, which exert immunosuppressive effects
in the TME [119]. B cells homing into the TME via the CXCL13/CXCR5 axis include pro-
tumor B cells and anti-tumor B cells. In pro-neoplastic circumstances, tumor-infiltrating B
cells facilitate tumor progression by producing cytokines to enhance cancer cell survival
and proliferation [115,116], or by developing immune-suppressive B cells to impair CD8+

T cell activity [117]. Therapeutic strategies (including anti-CXCL13 antibody) to block
B cell recruitment have efficiently hindered cancer progression and prevented cancer-
associated myofibroblasts (CAMF) activation by phosphodiesterase 5 (PDE5) inhibitors or
by deleting CAMF along with blocking the TGF-β receptor kinase [87]. In anti-neoplastic
circumstances, B cells engage in responses against tumors by secreting immunoglobulins,
activating T cells, and directly lysing cancer cells [15,49]. Emerging evidence has depicted
the upregulation of CXCL13 levels in the TLS, where B cells yield the capability of releasing
antibodies and presenting antigens to CD8+ T cells [190,191]. An increased interest in
developing a responsive biomarker and target for immune checkpoint therapy has focused
on the role of B cells and the TLS, which are associated with favorable outcomes for patients
after immunotherapy [51,141,195,197]. Given the crucial role of CXCL13/CXCR5 signaling
in B cell migration and TLS formation, a further understanding of how these processes
are regulated by the CXCL13/CXCR5 axis might provide a novel strategy to enhance the
response to immune checkpoint blockade therapy.

7. Concluding Remarks

The CXCL13/CXCR5 axis plays multifaceted roles in intracellular signaling trans-
duction pathways and interactions among tumor cells, stromal cells, and lymphocytes.
The CXCL13/CXCR5 axis not only modulates molecular events inside malignant cells to
promote tumor initiation and progression, but also recruits multiple populations of lym-
phocytes to exert pro-tumor or anti-tumor immunity reactions in the TME. An intriguing
phenomenon is that those anti-neoplastic lymphocytes attracted by CXCL13 signaling, such
as B cells and Tfh, participate in the organization of the TLS. However, the circumstances,
which contain immune-suppressive cells recruited by the CXCL13/CXCR5 axis, with or
without TLSs, have not been fully illuminated. In addition, CXCL13-expressing CD8+ T
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cells are linked to the proinflammatory features of macrophages and show enhanced cyto-
toxicity following anti-PD-L1 therapy in triple-negative breast cancer [198]. Thus, better
recognition of the specific microstructures in the TME might allow for the development
of optimal treatment strategies. Additionally, understanding whether CXCL13/CXCR5
signaling could be an untapped target for inducing the recruitment of B cells and the
formation of TLSs in the TME could complement current immunotherapy.
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