
Sequence analysis

GenMap: ultra-fast computation of genome mappability

Christopher Pockrandt1,2,3,4,*, Mai Alzamel5,6, Costas S. Iliopoulos5 and

Knut Reinert3,4

1Center for Computational Biology, School of Medicine, 2Department of Biomedical Engineering, Johns Hopkins University, Baltimore,

MD, USA, 3Department of Computer Science and Mathematics, Freie Universität Berlin, 4Department of Computational Molecular

Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany, 5Department of Informatics, King’s College London, London, UK

and 6Department of Computer Science, King Saud University, Riyadh, Saudi Arabia

*To whom correspondence should be addressed.

Associate Editor: Jinbo Xu

Received on December 14, 2019; revised on March 23, 2020; editorial decision on March 25, 2020; accepted on March 31, 2020

Abstract

Motivation: Computing the uniqueness of k-mers for each position of a genome while allowing for up to e mis-
matches is computationally challenging. However, it is crucial for many biological applications such as the design of
guide RNA for CRISPR experiments. More formally, the uniqueness or (k, e)-mappability can be described for every
position as the reciprocal value of how often this k-mer occurs approximately in the genome, i.e. with up to e
mismatches.

Results: We present a fast method GenMap to compute the (k, e)-mappability. We extend the mappability algorithm,
such that it can also be computed across multiple genomes where a k-mer occurrence is only counted once per gen-
ome. This allows for the computation of marker sequences or finding candidates for probe design by identifying
approximate k-mers that are unique to a genome or that are present in all genomes. GenMap supports different for-
mats such as binary output, wig and bed files as well as csv files to export the location of all approximate k-mers for
each genomic position.

Availability and implementation: GenMap can be installed via bioconda. Binaries and Cþþ source code are avail-
able on https://github.com/cpockrandt/genmap.

Contact: pockrandt@jhu.edu

1 Introduction

Analyzing data derived from massively parallel sequencing experi-
ments often depends on the process of genome assembly via rese-
quencing; namely, assembly with the help of a reference sequence.
In this process, a large number of reads derived from a DNA donor
during these experiments must be mapped back to a reference se-
quence, comprising a few gigabases to establish the section of the
genome from which each read originates. An extensive number of
short-read alignment techniques and tools have been introduced to
address this challenge emphasizing different aspects of the process
(Fonseca et al., 2012). Given a set of reads of some fixed length k
the process of resequencing depends heavily on how mappable a
genome is. Thus, for every substring of length k in the sequence, we
want to count how many times this substring appears in the se-
quence while allowing for a small number e of errors. In other terms,
mappability is a measure of how unique or repetitive regions in the
genome are and is closely related to mapping. The concept of mapp-
ability for sequence analysis was introduced by Koehler et al.
(2011), taken up again and later formalized by Derrien et al. (2012)
(see also Antoniou et al., 2009).

While k-mer counting became extremely popular in the last
years, searching for k-mers with low occurrences does not meet the
needs of many applications. Sequencing errors and variations, such
as SNPs, require not only the k-mer to be unique or rare enough but
also close matches of this k-mer, i.e. all k-mers with a certain num-
ber of mismatches have to be considered as well. Since the number
of k-mers to be considered grows exponentially in the number of
mismatches, k-mer counters are infeasible for this problem.

The suite GEM-Tools (Marco-Sola et al., 2012) includes a pro-
gram to compute the mappability for arbitrary k-mers and number
of mismatches. It is the most common and advanced algorithm to
compute the mappability of entire genomes. To improve its perform-
ance, it offers a heuristic mode leading only to an approximation of
the mappability. Nevertheless, it is not feasible to compute many
instances of biological relevant k-mer sizes and number of errors.

In the following paragraph, we give a formal definition of the
problem, present our algorithm in the next section and compare it to
GEM. Our algorithm does not rely on heuristics and outperforms
GEM even in its heuristic mode by far.

Definition [(k, e)-mappability and (k, e)-frequency]. Given a
string T of length n, the (k, e)-frequency counts occurrences of every

VC The Author(s) 2020. Published by Oxford University Press. 3687

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 36(12), 2020, 3687–3692

doi: 10.1093/bioinformatics/btaa222

Advance Access Publication Date: 4 April 2020

Original Paper

https://github.com/cpockrandt/genmap
https://academic.oup.com/

single k-mer in T with up to e errors. We denote the k-mer starting
at position i in T as Ti. The values are stored in a frequency vector F
of length n� kþ 1 such that

F½i� ¼ jfjjDðTi;TjÞ � e; 1 � j � n� kþ 1gj;

where DðTi;TjÞ denotes the distance of two k-mers given a metric
such as Hamming or Edit distance. Its elementwise multiplicative in-
verse is called the (k, e)-mappability and stored in a mappability vec-
tor M with M½i� ¼ 1=F½i� for 1 � i � n� kþ 1.

A mappability value of 1 represents a unique k-mer, a mappabil-
ity value close to 0 indicates a k-mer occurring in repetitive regions.
Figure 1 gives an example for the (4, 0)- and (4, 1)-frequency of a
given nucleotide sequence considering Hamming distance.

Since, for some applications, an exact computation of mappabil-
ity is favorable, we propose a new algorithm that is not only faster
than previous ones but also exact, i.e. does not rely on heuristics.
Mappability can not only be used straightforward to retrieve infor-
mation on the repetitiveness of the underlying data. In this paper,
we will also illustrate that it can be used to find marker sequences
that allow distinguishing similar strains of the same species, as well
as separate strains by groups sharing common k-mers.

2 Materials and methods

Before we present our algorithm, we give an overview of the ap-
proach of Derrien et al. to compute the (k, e)-mappability. For rea-
sons of clarity, we consider computing its inverse, the (k, e)-
frequency and neglect searching the reverse strand throughout this
paper. To consider the reverse strand, each k-mer has simply to be
searched by its reverse complement leading to a doubling of the run-
ning time. Furthermore, we consider Hamming distance, if not
stated otherwise. It can be applied to other distance metrics such as
Edit distance as well.

To achieve a feasible running time Derrien et al. implemented a
heuristic. First, they initialize the frequency vector with 0 s and per-
form a linear scan over the text (see Algorithm 1). Then each k-mer
Ti is searched with e errors in an FM index and the number of occur-
rences is stored in F[i]. If the count value exceeds some user-defined
threshold parameter t, the locations of these occurrences are located.
Let j be such a location. Since Ti has a high frequency, i.e. F½i� > t
and DðTi;TjÞ � e, it is likely that Ti and Tj share common approxi-
mate matches. Hence, F[j] is assigned the frequency value F[i]. To
speed up the computation, k-mers that already have frequency val-
ues assigned by this heuristic step are skipped during the scan over
the text. If a position j is located multiple times as an approximate
match of a repetitive k-mer, F[j] is assigned the maximum frequency
of all these k-mers to avoid underestimating the frequency value
F[j].Their experiments on chromosome 19 of the human genome
with t¼7 show that almost 90% of the 50-mers with a frequency of
3 are correct, for 50-mers with frequency values between 8 and 12
only 75% are correct (similar errors for Caenorhabditis elegans with

t¼6). This can be led back to an overestimation of rather unique
k-mers.

We now present a fast and exact algorithm to compute the (k, e)-
frequency. Similar to the algorithm implemented in GEM we scan
over the text T while searching and counting the occurrences of each
k-mer Ti for 1 � i � n� kþ 1 with up to e errors in an index on
T. In contrast to GEM, we improve the running time by reducing re-
dundant searches with three major improvements which we intro-
duce in the following.

2.1 Approximate string matching using optimum search

schemes
When searching a k-mer in a string index, it is searched character by
character. Unidirectional indices only support extending characters
into one direction, either to the left or to the right, while bidirection-
al indices support searching into both directions in any arbitrary
order (Lam et al., 2009). To search for every possible approximate
match within the given error bound, backtracking is performed.
This leads to exponential running time in the number of errors.
Especially allowing for errors at the beginning of the k-mer, i.e.
branching at the topmost nodes in the backtracking tree is expen-
sive. Hence, we use optimum search schemes (Kianfar et al., 2018)
when searching each k-mer, a sophisticated search strategy that
reduces the number of search steps performed in the index while still
searching for all possible approximate matches.

Optimum search schemes are based on a framework by
Kucherov et al. called search schemes that allows formalizing search
strategies in a bidirectional index (Kucherov et al., 2016). The se-
quence to be searched is split into p pieces and searched by certain
combinations of the pieces in the index while trying to reduce the
number of search steps performed in the index.

Formally, a search is a triplet S ¼ ðp;L;UÞ of integer strings each
of length p. p is a permutation of the numbers f1;2; . . . ; pg indicat-
ing the order in which the pieces are searched. Starting from an arbi-
trary piece p½0� the subsequent pieces need to be adjacent to the
previously searched pieces. L and U are non-decreasing integer
strings indicating the lower and upper bound of errors. After the
piece p½i� is searched a total number of errors from L½i� to U½i� must
have been spent. A set of searches that covers all possible error dis-
tributions with e errors and p pieces forms a search scheme. As a re-
sult, the number of errors allowed in the first pieces of each search is
reduced which speeds up approximate string matching. By perform-
ing multiple searches starting with different pieces, it is guaranteed
that all possible error distributions among the pieces are covered.

Optimum search schemes are search schemes that are optimal
under certain constraints, i.e. the number of backtracking steps in
an index over all searches are minimized while still covering all error
distributions. Figure 2 illustrates the optimum search scheme for
e¼2 errors, p ¼ eþ 2 pieces and up to three searches.

(a)

(b)

Fig. 1. (k, e)-frequency vectors Fe for k¼4 and e 2 f0; 1g on the same sequence.

A frequency of 1 indicates that the k-mer starting at that position in the text is

unique in the entire sequence without errors, respectively, with up to one mismatch.

(a) (4, 0)-frequency and (b) (4, 1)-frequency

Algorithm 1. Inexact algorithm to compute the (k, e)-fre-

quency by Derrien et al.

1: procedure inexact_frequency (T;k; e; t)

2: F½1::jTj � kþ 1� f0g
3: for i ¼ 1; . . . ; jFj do

4: if F½i� ¼ 0 then

5: P approximate matches with e errors

6: F½i� jPj
7: if jPj > t then

8: for j 2 P do

9: F½j� maxðF½j�; jPjÞ
10: return F

3688 C.Pockrandt et al.

A bidirectional index is required to enable to start a search with
a middle piece as illustrated in Figure 2c. To improve the overall
running time of the index-based search, we use a fast implementa-
tion of bidirectional FM indices based on enhanced prefixsum rank
(EPR) dictionaries (Pockrandt et al., 2017).

2.2 Adjacent k-mers
Adjacent k-mers in T are highly similar, since they have a large over-
lap. Hence, we do not search for every k-mer separately. Consider
the adjacent k-mers Tj;Tjþ1; . . . ;Tjþs�1 for some integer s �
k� eþ 1 which all share the common sequence T½jþ s� 1::jþ k�
1� of length at least e. Since we already need to allow for up to e
errors in their common sequence when searching each k-mer, this in-
fix should only be searched once. Thus, we start searching this infix
using optimum search schemes and extend it afterwards to retrieve
the occurrences for each k-mer separately using backtracking, allow-
ing for the remaining number of errors not spent in the search of the
infix. Since the extension is performed in both directions, a bidirec-
tional index is required. Figure 3a illustrates this approach.

To further reduce the number of redundant computations, the
set of overlapping k-mers is recursively divided into two sets of k-
mers of roughly equal size that each share a larger common overlap
among each other. This overlap is then searched using backtracking
before the next recursive partitioning of k-mers. The recursion ends
when a single k-mer is left and the number of occurrences can be
reported and summed up, or no hits are found. The recursive exten-
sion is shown in Figure 3b. Note that there are two recursions
involved: subdividing the set of k-mers and backtracking in each re-
cursion step. Hence, the same partitioning steps and backtracking
steps have to be performed for each set of preliminary matches rep-
resented by suffix array ranges in the FM index.

The question remains on how to combine the improvements of
Sections 2.1 and 2.2, i.e. how to choose s, the number of adjacent k-
mers that are searched together starting with their common se-
quence using optimum search schemes. On the one hand, approxi-
mate string matching using optimum search schemes is more
efficient than simple backtracking; hence, a longer common infix is
favorable. On the other hand, a longer common infix means fewer
adjacent k-mers are searched at once which leads to more redundant
search steps due to the high similarity of overlapping k-mers.

GenMap chooses s according to the following equation derived
from optimal values that were determined experimentally on differ-
ent genomes such as the human and barley genome [see Pockrandt
(2019) for details]. clampðv; l; rÞ returns v if it lies within the range,
i.e. l � v � r, and returns l or r if it is less or greater

s ¼
bk � 0:7c ; e ¼ 0

bk � clamp
k

100
;0:3; 1:0

� �
� 0:7e

� �
c ; otherwise

:

8<
:

2.3 Skipping redundant k-mers
Finally, we avoid searching the same k-mer multiple times.
Especially k-mers from repeat regions may occur many times with-
out errors in the text. Since they all share the same frequency value,
it should be avoided to compute it more than once. Hence, after
searching and counting the occurrences of a k-mer, we locate the
positions of the exact matches and set all their frequency values in F
accordingly.

We observed that this strategy leads to longer runs of frequency
values forwarded to positions with uncomputed frequency values.
When forwarded frequency values of previously counted k-mers are
encountered during the scan over the text, they are skipped.

3 Results

3.1 Benchmarks
At first, we compare the running times for computing the frequency
on the human genome for different lengths and errors based on
Hamming distance. We ran GEM in its exact mode as well as in its
heuristic mode. For the latter, the authors recommend t¼7. Table 1

(a)

(b)

(c)

Fig. 2. The optimum search scheme for two mismatches consists of three searches

with four pieces each. The arrows indicate in which order the pieces are searched.

The error bounds below each part are cumulative bounds, i.e. the minimum number

of errors that must, respectively, the maximum number of errors that can be spent

until searching the end of the corresponding piece. Illustrated for searching the 8-

mer CGTACAAG. The forward search covers the error distributions 0010, 0011,

0020, the backward search covers 2000, 1100, 0200, 1010, 0110 and the bidirec-

tional search 0000, 0001, 0002, 1000, 1001, 0100, 0101. (a) Forward search:

Sfwd=(1234, 0011, 0022); (b) backward search: Sbwd=(4321, 0002, 0122) and (c) bi-

directional search: Sbi=(3214, 0000, 0112)

(a)

(b)

Fig. 3. Searching s overlapping k-mers using optimum search schemes for the infix

and extending it using backtracking. Illustrated for k¼11 and s¼4. (a) First, the

common overlap (light gray) is searched using optimum search schemes. Second, the

search of T1 and T2 is continued recursively by extending the previously identified

approximate matches of the infix in the index by GC to the left (allowing for the

remaining number of errors; medium gray). T1 and T2 are then retrieved separately

by backtracking in the index by one character to the left and one character to the

right (allowing for an error, if any left; dark gray). T3 and T4 are extended analo-

gously in a recursive manner. (b) The same strategy presented as a backtracking

tree. It is traversed for all occurrences reported by the search of the infix T[4, 11]

using optimum search schemes. Each edge also has to account for remaining errors,

i.e. approximate string matching is performed using backtracking

GenMap: ultra-fast computation of genome mappability 3689

compares the running times for shorter k that are of interest for
applications such as identifying marker sequences, presented in
Section 3.2. Table 2 shows typical instances used for applications in
read mapping based on a typical Illumina read length. Even though
longer Illumina read lengths are more common these days, we
choose a shorter read length, since the frequency is easier to com-
pute for longer k-mers.

For all computed instances, GenMap is faster than GEM.
Compared to the approximate mode, we are almost a magnitude
faster for a smaller number of errors, but for 4 errors, the heuristic
of GEM pays off and is almost as fast as our algorithm.
Interestingly, the increase of the running time of GEM in its exact
mode gets smaller with more errors. For 101-mers with 1–4 errors,
the running time is always about 7–8 h, nonetheless GenMap is still
faster by a factor from 3 of up to 64 (4 and 1 errors). Even when
searching without errors where no backtracking has to be per-
formed, our tool is faster by a factor of 20–100 (for 101-mers and
36-mers). The most noticeable improvement is achieved for short k-
mers. Derrien et al. point out that their algorithm is not suitable for
small k and completely unfeasible for k<30 without its heuristic
which is reflected by our benchmarks, whereas GenMap can handle
these instances easily. GEM takes significantly longer, often does
not even terminate within 24 h on 16 threads.

GenMap is also faster than GEM when computing the frequency
of small genomes like Drosophila melanogaster. Since smaller
genomes are generally less challenging, we omit the benchmarks
here. For the human genome, the memory consumption of GenMap
is about 9 GB (using a bidirectional FM index with EPR dictionaries
and a suffix array sampling rate of 10), while GEM takes up 4.5 GB
(using an unspecified FM index implementation with a suffix array
sampling rate of 32).

GenMap is also suitable to compute the frequency of larger and
more repetitive genomes than the human genome. We computed the
(50, 2)-frequency of the barley genome (Mascher et al., 2017) as it
contains large amounts of repetitive DNA (Ranjekar et al., 1976).
Barley has 4.8 billion base pairs while the human genome has 3.2
billion base pairs. As expected, the human genome has considerably
more unique regions than the barley genome. To be precise 75.4%

of the 50-mers are unique in the human genome, and only 26.4% in
the barley genome. There are 12.0% (54.4%), 7.6% (42.1%) and
4.8% (25.6%) 50-mers in human DNA (resp. barley DNA) with at
least 10, 100 and 1000 occurrences. Computing the (50, 2)-fre-
quency of barley on 16 threads took less than 1 h 15 m with
GenMap and nearly a day with GEM using its heuristic with t¼6
(automatically chosen by GEM).

In conclusion, GenMap is a magnitude faster than GEM in its
exact mode, and still faster than GEM using its heuristic, while
GenMap is always exact. Even for up to 4 errors, GenMap achieves
a reasonable running time. This is due to the three techniques
described in the previous section. Further improvements can be
implemented which might speed up the algorithm even further, such
as in-text verification (Pockrandt, 2019), i.e. locating partially
searched k-mers and verifying whether their locations in the text
match the k-mer with respect to the error bound. A location and
verification step in the text is often several times faster than finishing
an index-based approximate search.

All tests were conducted on Debian GNU/Linux 7.1 with an
Intel Xeon E5-2667v2 CPU. To avoid dynamic overclocking effects
in the benchmark, the CPU frequency was fixed to 3.3 GHz. The
data were stored on a virtual file system in the main memory to
avoid loading it from disk during the benchmark which might affect
the results due to I/O operations.

We used the only available version 1.759 beta of the GEM suite
that included the mappability algorithm. We did not reach the
authors for other versions including their method. Other available
and newer versions do not offer this feature anymore. The running
times we measured for GEM heuristic differ considerably from the
running times for GRCh37 published by the authors. Even when we
ran it on a similar CPU with the same number of cores, we were 2–5
times slower than their published benchmarks. One reason might be
that the only available version of GEM with the mappability func-
tionality was published as a beta version; however, it was a year
after their paper. Nonetheless, GenMap is still faster than the run-
ning times published by Derrien et al. For a fair comparison in our
benchmark, we reduced the genomes to the dna4 alphabet, i.e.
replaced Ns by random bases. Based on tests, we observed that
GEM neither computes the mappability of k-mers that have un-
known bases nor considers them as mismatches in its default mode
even when errors are allowed.

A more recent tool to compute the mappability is Umap
(Karimzadeh et al., 2018). It is limited to computing the ðk;0Þ-
mappability and reporting only unique k-mers, i.e. regions with a
mappability value of 1. It uses the read mapper Bowtie to search
every single k-mer in the genome and filter non-unique k-mers after-
wards. Due to these constraints, we excluded it from our bench-
marks. From the authors’ benchmarks, we can conclude that
GenMap still outperforms Umap as GenMap needs less than 1 h
without parallelization to compute the ðk; 0Þ-mappability (see
Table 1), while Umap needs about 200 h.

To verify our tool, we compared the results to an exhaustive
search with Bowtie1 (Langmead et al., 2009) by mapping every k-
mer to all its possible locations. From the number of mappings of
each k-mer, the mappability can be computed and written to a bed

Table 1. Running times for computing the frequency of the human genome (GRCh38) using 16 threads

Tool (36, 0) (24, 1) (36, 2) (50, 2) (75, 3)

Instances are taken from the experiments by Derrien et al. (2012)

GEM exact 5 h 10 m N/A N/A N/A N/A

GEM heuristic 23 m N/A 7 h 11 m 5 h 50 m 4 h 26 m

GenMap 3 m 23 m 1 h 19 m 42 m 1 h 27 m

Tool (101, 0) (101, 1) (101, 2) (101, 3) (101, 4)

Typical Illumina read length with growing number of mismatches

GEM exact 44 m 7 h 28 m 7 h 34 m 7 h 45 m 8 h 8 m

GEM heuristic 28 m 2 h 40 m 3 h 17 m 3 h 31 m 3 h 49 m

GenMap 2 m 7 m 17 m 46 m 2 h 42 m

Note: Timeouts of 1 day are represented as N/A.

Table 2. (30, 2)-mappability on four strains of E.coli assigned to the

phylogenetic group B1 based on the known marker genes by

Clermont et al.

All k-mers Non-adjacent k-mers

Strain Unique Pseudo 1 Dist. Unique Pseudo 1 Dist.

IAI1 171 942 4992 27 6 627 1829 81 2476 6 5560

SE11 305 439 10 365 15 6 447 2356 176 1942 6 4708

11128 260 305 40 101 20 6 953 2494 685 2049 6 9517

11368 434 033 108 968 13 6 912 3142 1116 1674 6 10 592

Note: We computed the mean distance of the unique marker sequences and

their standard deviation.

3690 C.Pockrandt et al.

file. This approach yields identical results. We tested it by comput-
ing the (20, 1)-mappability on an Escherichia coli genome (https://
github.com/cpockrandt/genmap/blob/master/tests/bowtie-test.sh)
Locating all mapping positions of each k-mer with a read mapper
would be too inefficient on eukaryotic genomes.

3.2 Experiments
Although the main focus of this work lies on presenting a new and
fast algorithm for computing the mappability of a genome, we pro-
pose an application to identify marker sequences illustrated by a
small example on E.coli strains.

GenMap has an option to compute the mappability on multiple
genomes while at most one approximate occurrence for a k-mer is
counted for each genome. This allows us to quickly identify k-mers
that are unique to a genome (regardless of the overall number of ap-
proximate occurrences in this genome) or k-mers that occur in every
genome at least once. Additionally, GenMap not only outputs the
mappability or frequency but also outputs the locations where the
approximate matches for each k-mer occur into a csv file. This helps
to find marker sequences or to select candidates for probe design by
identifying k-mers that are unique to a genome or that are present in
all genomes while allowing for errors.

Marker genes or marker sequences are short subsequences of
genomes whose presence or absence allows determining the organ-
ism, species or even strain when sequencing an unknown sample or
helping building phylogenetic trees (Patwardhan and Ray, 2014).
Depending on the marker length, it can span up to dozens of reads.
Instead of assembling the strain to search for marker genes or apply-
ing experimental methods such as PCR-based amplified fragment
length polymorphism (see Vos et al., 1995), we propose using its
mappability.

When searching for marker sequences we consider two use cases:
on the one hand, we want to identify k-mers that match a sequence
uniquely to determine the exact strain. On the other hand, we want
to search for k-mers shared by many or all strains in the same phylo-
genetic group.

To test this approach, we used a dataset of E.coli strains. It was
shown that E.coli can be grouped into four major phylogenetic
groups (A, B1, B2 and D) (see Clermont et al., 2000). The authors
identified two marker genes (chuA and yjaA) and an anonymous
DNA fragment (TspE4.C2) whose combination of presence or ab-
sence in the genome can determine the phylogenetic group.

We computed the (30, 2)-mappability on four different strains of
group B1. [Strains: IAI1 O8 (GCA_000026265.1), SE11 O152: H28
(GCA_000010385.1), 11128 O111: H- (GCA_000010765.1),
11368 O26: H11 (GCA_000091005.1).] According to the study, all
strains within B1 share the anonymous DNA fragment TspE4.C2 of
152 base pairs. We used GenMap to search for both, unique k-mers
among all strains as well as k-mers that occur in each strain at least
once, see Figure 4a for an illustration. We observed that TspE4.C2
is an exact match in all strains and the 30-mers in this region also
have a mappability value of exactly 0.25 when accounting for 2
errors. We further found numerous 30-mers with a mappability of
1, thus allowing to determine a strain among those four, while still
accounting for sequencing errors and mutations. Table 2 lists the
number of k-mers identified. We counted the number of k-mers
matching only one strain, i.e. the strain the k-mer originated from.
We refer to this count as unique. Additionally, we counted how
many of these k-mers matched multiple times to the strain, referred
to as pseudo. GenMap allows to exclude these pseudo marker
sequences when computing the mappability on multiple sequence
files, i.e. it is only counted in how many sequence files a k-mer is
present. To avoid counting highly overlapping k-mers in large
unique regions, we break down the numbers for non-adjacent k-
mers as well, i.e. for a k-mer to be considered it must have a preced-
ing k-mer with a mappability value smaller than 1.

In Table 3, we present the data of a second experiment, where
we select strains from more than one group (A and B1); see
Figure 4b for an illustration. Again, we computed the (30, 2)-

mappability, but this time we counted k-mers that match all strains
in one group but no strain in the other group.

This example shows that mappability on multiple species or
strains can be used to identify possible marker sequences. Short k-
mers could be used to search a dataset of reads instead of searching
for marker genes that span multiple reads. Since computing the (30,
2)-mappability on a few E.coli strains even takes less than a minute
on a consumer laptop, this method is suitable to be run on large sets
of similar E.coli strains to identify new marker sequences, even with
errors accounting for uncertainty arising from sequencing and muta-
tions such as SNPs.

(a)

(b)

Fig. 4. Illustration of the experiments performed on E.coli sequences in Tables 2 and

3. (a) Four strains belonging to the same phylogenetic group. The sequence in light

gray is conserved within this group and a marker sequence. The light gray k-mers

belonging to this marker sequence are also all found in the other strains. The k-mers

in dark gray are unique among all four strains and allow distinguishing each of the

strains. (b) Six sequences belonging to two different phylogenetic groups. Marker

sequences are highlighted in light and dark gray. They only occur in one of the

groups and are present in all of its strains

Table 3. (30, 2)-mappability on six strains of E.coli of the groups A

and B1

All k-mers Non-adjacent k-mers

Group Strain Unique 1 Dist. Unique 1 Dist.

A W3110 109 375 41 6 731 2398 1867 6 4577

A HS 111 179 39 6 709 2414 1796 6 4471

B1 IAI1 125 042 37 6 680 3063 1485 6 4091

B1 SE11 127 302 38 6 690 3123 1510 6 4148

B1 11128 121 325 42 6 766 3275 1548 6 4408

B1 11368 131 121 41 6 814 3473 1537 6 4763

Note: Only k-mers were counted that perfectly separated the strains in A

from B1, i.e. if and only if the k-mer matched all strains of A and no strain of

B1 and vice versa.

GenMap: ultra-fast computation of genome mappability 3691

https://github.com/cpockrandt/genmap/blob/master/tests/bowtie-test.sh
https://github.com/cpockrandt/genmap/blob/master/tests/bowtie-test.sh

4 Discussion

We have presented GenMap, a fast and exact algorithm to compute
the mappability of genomes up to e errors, which is based on the
Cþþ sequence analysis library SeqAn (Reinert et al., 2017). It is sig-
nificantly faster, often by a magnitude than the algorithm from the
widely used GEM suite while refraining from heuristics.

Mappability has already been used for various purposes (Derrien
et al., 2012). In this paper, we proposed a new application, the com-
putation of mappability on a set of genomes to identify marker
sequences for grouping and distinguishing genomes by short k-mers
and illustrated it with a small example on closely related E.coli
strains. It is also suitable for large scale data as demonstrated by the
benchmarks on human and barley genomes in Section 3.1.

The ability to compute the mappability efficiently opens up new
applications such as incorporating the mappability information into
the read mapping process itself instead of the post-processing phase.
During the index-based search of a read, the possible locations of
the eventually completely mapped read can be examined beforehand
to filter repetitive regions without repeat masking. This allows for
new mapping strategies to improve the running time of state-of-the-
art read mappers and reduce post-processing overhead (Pockrandt,
2019).

Acknowledgements

The authors acknowledge the support of the de.NBI network for bioinformat-

ics infrastructure, the Intel SeqAn IPCC and the IMPRS for Computational

Biology and Scientific Computing.

Funding

This work was supported in part by the US National Institutes of Health

[grant R35-GM130151] and also supported by the Royal Society, UK under

international exchange schema [grant IE161405].

Conflict of Interest: none declared.

References

Antoniou,P. et al. (2009) Mapping uniquely occurring short sequences derived

from high throughput technologies to a reference genome. In: Information

Technology and Applications in Biomedicine (ITAB 2009). IEEE, pp. 1–4.

Available at: https://ieeexplore.ieee.org/document/5394394.

Clermont,O. et al. (2000) Rapid and simple determination of the Escherichia

coli phylogenetic group. Appl. Environ. Microbiol., 66, 4555–4558.

Derrien,T. et al. (2012) Fast computation and applications of genome mapp-

ability. PLoS One, 7, e30377.

Fonseca,N.A. et al. (2012) Tools for mapping high-throughput sequencing

data. Bioinformatics, 28, 3169–3177.

Karimzadeh,M. et al. (2018) Umap and Bismap: quantifying genome and

methylome mappability. Nucleic Acids Res., 46, e120.

Kianfar,K. et al. (2018) Optimum search schemes for approximate string

matching using bidirectional FM-index. bioRxiv, 301085. doi:

10.1101/301085.

Koehler,R. et al. (2011) The uniqueome: a mappability resource for short-tag

sequencing. Bioinformatics, 27, 272–274.

Kucherov,G. et al. (2016) Approximate string matching using a bidirectional

index. Theor. Comput. Sci., 638, 145–158.

Lam,T.W. et al. (2009) High throughput short read alignment via

bi-directional bwt. In: IEEE International Conference on Bioinformatics

and Biomedicine, 2009 (BIBM’09). IEEE, pp. 31–36. Available at: https://

ieeexplore.ieee.org/document/5341875.

Langmead,B. et al. (2009) Ultrafast and memory-efficient alignment of short

DNA sequences to the human genome. Genome Biol., 10, R25.

Marco-Sola,S. et al. (2012) The GEM mapper: fast, accurate and versatile

alignment by filtration. Nat. Methods, 9, 1185–1188.

Mascher,M. et al. (2017) A chromosome conformation capture ordered se-

quence of the barley genome. Nature, 544, 427–433.

Patwardhan,A. et al. (2014) Molecular markers in phylogenetic studies—a re-

view. J. Phylogenet. Evol. Biol., 2, 131.

Pockrandt,C. (2019) Approximate string matching—improving data struc-

tures and algorithms. PhD Thesis, Freie Universität Berlin, Berlin,

Germany.

Pockrandt,C. et al. (2017) EPR-dictionaries: a practical and fast data structure

for constant time searches in unidirectional and bidirectional FM indices.

In: International Conference on Research in Computational Molecular

Biology. Springer, Washington, DC, pp. 190–206.

Ranjekar,P. et al. (1976) Analysis of the genome of plants: II. Characterization

of repetitive DNA in barley (Hordeum vulgare) and wheat (Triticum aesti-

vum). Biochim. Biophys. Acta, 425, 30–40.

Reinert,K. et al. (2017) The seqan Cþþ template library for efficient se-

quence analysis: a resource for programmers. J. Biotechnol., 261,

157–168.

Vos,P. et al. (1995) AFLP: a new technique for DNA fingerprinting. Nucleic

Acids Res., 23, 4407–4414.

3692 C.Pockrandt et al.

https://ieeexplore.ieee.org/document/5394394
https://ieeexplore.ieee.org/document/5341875
https://ieeexplore.ieee.org/document/5341875

	btaa222-TF1
	btaa222-TF2
	btaa222-TF3

