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ABSTRACT
Interspecific comparisons of brain structure can inform

our functional understanding of brain regions, identify

adaptations to species-specific ecologies, and explore

what constrains adaptive changes in brain structure,

and coevolution between functionally related structures.

The value of such comparisons is enhanced when the

species considered have known ecological differences.

The Lepidoptera have long been a favored model in

evolutionary biology, but to date descriptions of brain

anatomy have largely focused on a few commonly used

neurobiological model species. We describe the brain of

Godyris zavaleta (Ithomiinae), a member of a subfamily

of Neotropical butterflies with enhanced reliance on

olfactory information. We demonstrate for the first time

the presence of sexually dimorphic glomeruli within a

distinct macroglomerular complex (MGC) in the anten-

nal lobe of a diurnal butterfly. This presents a striking

convergence with the well-known moth MGC, prompting

a discussion of the potential mechanisms behind the

independent evolution of specialized glomeruli. Interspe-

cific analyses across four Lepidoptera further show that

the relative size of sensory neuropils closely mirror

interspecific variation in sensory ecology, with G. zava-

leta displaying levels of sensory investment intermedi-

ate between the diurnal monarch butterfly (Danaus

plexippus), which invests heavily in visual neuropil, and

night-flying moths, which invest more in olfactory neuro-

pil. We identify several traits that distinguish butterflies

from moths, and several that distinguish D. plexippus

and G. zavaleta. Our results illustrate that ecological

selection pressures mold the structure of invertebrate

brains, and exemplify how comparative analyses across

ecologically divergent species can illuminate the func-

tional significance of variation in brain structure.
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The size and structure of nervous systems are shaped

by selection in the context of developmental and func-

tional constraints (Finlay and Darlington, 1995; Barton

and Harvey, 2000; Striedter, 2005). Understanding how

and to what extent selection negotiates these con-

straints to bring about adaptive evolutionary change that

enhances the fitness of an animal’s behavior is key to

understanding the principles of brain evolution (Striedter,

2005). At the same time, such understanding can illumi-

nate the function of brain components and neural net-

works. The principal way to tackling these questions has

been to compare brain size and structure across multiple
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species with divergent ecologies (Felsenstein, 1985; Har-

vey and Pagel, 1998; Strausfeld, 2012). Studies of verte-

brate brain evolution have benefited from large

interspecific datasets (Stephan et al., 1981; Iwaniuk

et al., 2004) to test hypotheses about developmental

constraints (Barton and Harvey, 2000; Finlay and Darling-

ton, 1995) and adaptive hypotheses concerning, for

example, sensory adaptations (Barton et al., 1995) or

social ecology (Dunbar, 1992). The assumptions and

methods used in some of these studies have, however,

been critiqued, along with calls for more experimental

manipulation to support the results of comparative stud-

ies (Healy and Rowe, 2007).

The huge variety of ecological niches that inverte-

brates occupy, combined with their experimental tract-

ability at the molecular, neurological, and environmental

levels, provide rich opportunities for investigating the

evolution of brains and behavior. However, comparative

analyses in insects have so far largely focused on partic-

ular neural pathways or traits in a single or small number

of model species (Brandt et al., 2005; Kurylas et al.,

2008; El Jundi et al., 2009a,b; Kvello et al., 2009; Dreyer

et al., 2010; Heinze and Reppert, 2012; Heinze et al.,

2013). This work has identified potential adaptations to

species-specific ecologies (Heinze and Reppert 2012;

Heinze et al., 2013; El Jundi et al., 2009b; O’Donnell and

Molina 2011; Streinzer et al., 2013) and environmentally

induced plasticity (Withers et al., 1993; Snell-Rood et al.,

2009; Ott and Rogers, 2010; Heinze et al., 2013). With

some exceptions (e.g., Kondoh et al., 2003; Farris and

Roberts, 2005; O’Donnell et al., 2011; Streinzer et al.,

2013), these studies focused on specific questions con-

cerning intraspecific variation, and as such any interspe-

cific comparisons have considered distantly related

species often with radically different ecologies.

The Lepidoptera have long been exploited as a model

system for investigating both neurological (e.g., Bretsch-

neider, 1924; Rospars, 1983) and evolutionary proc-

esses (e.g., Bates, 1862; M€uller, 1879), and continue to

be extensively studied from an ecological, phylogenetic,

and, more recently, genomic (Xia et al., 2004; Zhan

et al., 2011; Dasmahapatra et al., 2012) perspective.

Detailed atlases of brain anatomy are currently avail-

able for three species of Lepidoptera: two night-flying

moths, Manduca sexta (El Jundi et al., 2009b) and Helio-

this virescens (Kvello et al., 2009), and one diurnal but-

terfly, Danaus plexippus (Heinze and Reppert, 2012).

The morphology of the primary olfactory center, the

antennal lobe, has been described for a greater number

of species (Bretschneider, 1924; Boeckh and Boeckh,

1979; Rospars, 1983; Berg et al., 2002; Huetteroth and

Schachtner, 2005; Masante-Roca et al., 2005; Skiri

et al., 2005; Couton et al., 2009; Kazawa et al., 2009;

Varela et al., 2009; Trona et al., 2010; Carlsson et al.,

2013). Comparisons between these species, which

diverged from a common ancestor �100 MYA (Laban-

deira et al., 1994), reveal contrasting investment in sen-

sory neuropil between night- and day-flying species,

and a suite of traits apparently unique to D. plexippus

that may be linked to a diurnal activity pattern, migra-

tory behavior, or some other ecological variable (Heinze

and Reppert, 2012; Heinze et al., 2013).

The relative size of different neuropil is thought to

directly reflect their functional importance (Gronenberg

and H€olldobler, 1999; El Jundi et al., 2009b; Wei et al.,

2010; Heinze and Reppert, 2012). As such, the greater rel-

ative size of the visual neuropils in D. plexippus, and the

smaller relative size of its olfactory neuropils, likely indicate

a greater importance of visual information to diurnal but-

terflies (Hamb€ack et al., 2007). The enlarged volume of a

small number of sexually dimorphic glomeruli in the anten-

nal lobes of male moths (Rospars and Hildebrand, 1992;

Huetteroth and Schachtner, 2005; El Jundi et al., 2009b;

Løfaldli et al., 2010), but not butterflies (Rospars 1983;

Heinze and Reppert 2012; Carlsson et al., 2013), can also

be attributed to greater sensitivity for female pheromones

Abbreviations

AL antennal lobe
aMe accessory medulla
AN antennal nerve
AOTu anterior optic tubercule
CB central body
CBL lower central body
CBU upper central body
CFN central fibrous neuropil of AL
DMSO dimethyl suphoxide
Glom glomeruli
HBS HEPES-buffered saline
HP hair-pencils
iMe inner medulla
iRim inner rim of the lamina
La lamina
LAL lateral accessory lobes
Lo lobula
LoP lobula plate
LU lower unit of AOTu

MB mushroom body
MB-ca mushroom body calyx
MB-lo mushroom body lobes
MB-pe mushroom body peduncle
Me medulla
MGC macro-glomeruli complex
NGS normal goat serum
no noduli
NU nodule unit of AOTu
oMe outer medulla
OR olfactory receptor
OGC optic glomerular complex
PA pyrrolizidine alkaloids
PB protocerebral bridge
PC principal component
POTu posterior optic tubercle
SP strap of AOTu
UU upper unit of AOTu
ZnFA zinc-formaldehyde solution
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over large distances, with butterflies having lost this long-

range function, instead using chemical communication on

much smaller spatial scales (Rospars, 1983; Andersson

et al., 2007; Carlsson et al., 2013).

However, like moths, butterflies respond to floral and

host-plant related odors (Andersson and Dobson, 2003;

Ômura and Honda, 2009; Carlsson et al., 2011, 2013),

and chemical communication does play an important

role in mating behavior (Scott, 1973; Andersson et al.,

2007; Costanzo and Monteiro, 2007). The continued

importance of olfaction in butterflies is further indicated

by the similar numbers of olfactory receptor genes

identified in the butterfly and moth genomes sequenced

to date (Xia et al., 2004; Zhan et al., 2011; Dasmahapa-

tra et al., 2012), and by the occurrence of sex-specific

expression patterns of these genes in both groups

(Nakagawa et al., 2005; Wanner et al., 2007; Briscoe

et al., 2013). Conversely, some moths, including the

crepuscular M. sexta, have greater visual acuity than

others (Theobald et al., 2010) and may favor visual

cues over olfactory cues when foraging (Raguso and

Willis, 2005; Goyret et al., 2007).

To test the implied role of ecological selection pres-

sures in shaping Lepidopteran brain structure we

describe the brain of the Zavaleta Glasswing (Godyris

zavaleta), a member of the Ithomiinae. Ithomiines are a

Neotropical subfamily of nymphalid butterflies primarily

studied for their M€ullerian mimicry rings, where dis-

tantly related species converge on similar pigmentation

patterns to better advertise their distastefulness to

predators (Bates, 1862; M€uller, 1879; Beccaloni, 1997).

Transparent-winged ithomiines, such as G. zavaleta, typ-

ically remain in deeply shaded parts of their inner rain-

forest habitat (Pliske, 1975; Elias et al., 2008; Hill,

2010), raising the possibility of altered dependence on

visual information, potentially in favor of olfactory cues.

A greater role for olfaction in G. zavaleta ecology is fur-

ther suggested by their derived mating behavior. Itho-

miines use pyrrolizidine alkaloids (PA) both as precursors

for pheromone synthesis and for chemical protection

(Pliske et al., 1976; Trigo and Motta, 1990). The majority

of ithomiines obtain these PAs pharmacophagously as

adults, by males feeding on the nectar of Boraginaceae

and Asteraceae, or decomposing Boraginaceae leaves, in

particular the genus Heliotropium (Brown, 1984; Trigo and

Motta, 1990), to which males show a strong olfactory

attraction (Pliske et al., 1976). Females obtain the derived

defense compounds from males through the spermato-

phore (Brown, 1984), as part of a “nuptial gift”, potentially

meaning pheromone production serves as an honest indi-

cator of a male’s ability to collect PAs (Rutowski, 1984).

Males secrete PA-derived pheromones on the costal mar-

gin of the hind-wing from a patch of specialized "hair-pen-

cils". These hair-pencils are spread erect when a male is

perching in an exposed area, or when in chase with

another individual (Pliske, 1975a; Edgar et al., 1976;

Pliske et al., 1976). Scent diffusion from hair pencils is

thought to play a role in courtship (M€uller, 1879; Gilbert,

1969; Drummond, 1976; Pliske et al., 1976; Haber, 1978;

Kaye, 2009), by disseminating aphrodisiac pheromones

(Pliske, 1975a) and attracting both sexes to multi-species

leks (Haber, 1978). It may also function in male–male

repellency and territorial marking (Pliske, 1975b; Edgar

et al., 1976; Pliske et al., 1976; Vasconcellos-Neto and

Brown, 1982). Chemical communication is therefore of

heightened importance for ithomiines, both at close range

and over larger spatial scales. Indeed, this pattern is pre-

dicted in M€ullerian mimicry complexes: where visual com-

munication cues may be unreliable, chemical

communication can reduce male–male or interspecific

pursuits (Brower et al., 1963; Scott, 1973).

In this article we test two hypotheses: 1) that the

derived mating behavior, sex-specific motivation to

locate PA sources, and sex-specific chemical communi-

cation mediated by hind-wing hair-pencils result in sex-

ual dimorphism in the antennal lobes of G. zavaleta that

is not observed in other butterflies; and 2) that the

generally enhanced role of olfaction in G. zavaleta is

supported by an investment in sensory neuropil interme-

diate between moths and D. plexippus. In addition, by

describing the general layout of the brain we lay the

foundations for future comparative studies across a

greater number of species. Finally, Ithomiinae are the

sister-clade to Danainae, the subfamily to which D. plex-

ippus belongs (Freitas and Brown, 2004). The phyloge-

netic position of ithomiines therefore offers an improved

comparison with D. plexippus to identify traits shared by

diurnal species, or specific to either subfamily.

MATERIALS AND METHODS

Animals
Godyris zavaleta is not readily available from commer-

cial breeders; therefore, all individuals were captured in

the wild as part of a larger project to obtain samples

across Ithomiinae. All individuals were captured in free

flight, on the trails surrounding the Estaci�on Cient�ıfica

Yasun�ı, in the Parque Nacional Yasun�ı, Orellana Pro-

vence, Ecuador. Samples were collected during two

field trips in November/December 2011 and Septem-

ber/October 2012 under collection permit no. 0033-

FAU-MAE-DPO-PNY, and exported under permit nos.

001-FAU-MAE-DPO-PNY and 006-EXP-CIEN-FAU-DPO-

PNY obtained from Parque Nacional Yasun�ı, Ministerio

Del Ambiente, La Direcci�on Provincial de Orellana with

cooperation from the Estaci�on Cient�ıfica Yasun�ı and

Brain anatomy of Godyris zavaleta
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Pontificia Universidad Cat�olica del Ecuador. Godyris

zavaleta was the most abundant medium-sized species

encountered across both field trips and in total eight

males and eight females were included in the analyses.

We assume all individuals were sexually mature, and

that the age range is not biased between the sexes. In

support of this, wing wear, a proxy for age (Walters

et al., 2012), shows a similar range across both sexes.

Wings and body tissue, stored in ethanol, were kept as

voucher specimens.

Antibodies and sera for neuropil staining
We used indirect immunofluorescence staining against

synapsin to reveal the neuropil structure of the brain

under a confocal microscope (Ott, 2008). This technique

exploits the abundant expression of synapsin, a vesicle-

associated protein, at presynaptic sites. Monoclonal

mouse anti-synapsin antibody 3C11 (anti-SYNORF1;

Klagges et al., 1996) was obtained from the Developmen-

tal Studies Hybridoma Bank (DSHB; University of Iowa,

Department of Biological Sciences, Iowa City, IA; RRID:

AB_2315424). 3C11 immunostaining has been used as

an anatomical marker of synaptic neuropil in a wide

range of arthropod species. The 3C11 antibody was

raised against a bacterially expressed fusion protein gen-

erated by adding a glutathione S-transferase (GST)-tag to

a cDNA comprising most of the 50 open reading frame 1

of the Drosophila melanogaster synapsin gene (Syn,

CG3985). The binding specificity of this antibody has

been characterized in D. melanogaster by Klagges et al.

(1996) and the epitope was later narrowed down to

within LFGGMEVCGL in the C domain (Hofbauer et al.,

2009). This motif is highly conserved across arthropod

synapsins.

For the present study we confirmed its presence in the

synapsin ortholog of D. plexippus by bioinformatics analy-

sis using Ensembl Genomes (http://www.ensemblge

nomes.org). We used the D. melanogaster synapsin iso-

form F amino acid sequence (Syn1; UniProt Q24546-1)

as a query for blastp (v.2.0MP) searches on predicted

proteins in the D. plexippus genome (DanPle_1.0, INSDC

assembly GCA_000235995.1; Zhan et al., 2011). This

identified a predicted 692 AA protein from hypothetical

gene KGM_17479 as the Syn1 ortholog in D. plexippus

(53.95% identity over the region corresponding to amino

acid residues 3–581 in Syn1; e 5 1.4e-153). The 3C11

epitope motif occurs as IFGGLEVCAL in D. plexippus. We

subsequently obtained the ortholog of this locus in

Bombyx mori (XP_004932024.1) using a blastp search

against the B. mori genome (ASM15162v1, INSDC

Assembly GCA_000151625.1; Xia et al., 2004), the most

distantly related Lepidopteran genome available, to

assess the conservation of the motif across Lepidoptera.

The 3C11 epitope motif shows 100% identity between B.

mori and D. plexippus, suggesting it is very highly con-

served. The staining pattern obtained with 3C11 in G.

zavaleta is highly similar to that in D. plexippus and other

Lepidoptera (El Jundi et al., 2009b; Kvello et al., 2009;

Heinze and Reppert, 2012). Cy2-conjugated affinity-puri-

fied polyclonal goat antimouse IgG (H1L) antibody (Jack-

son ImmunoResearch Laboratories, West Grove, PA) was

obtained from Stratech Scientific (Newmarket, Suffolk,

UK; Jackson ImmunoResearch Cat No. 115–225-146,

RRID: AB_2307343).

Immunocytochemistry
Brains were fixed and stained following a published

protocol (Ott, 2008) previously applied to a range of

invertebrates including the monarch butterfly, D. plexip-

pus (Heinze and Reppert, 2012). The protocol was

divided into two stages, the first of which was performed

at the Estaci�on Cient�ıfica Yasun�ı. Briefly, the brain was

exposed under HEPES-buffered saline (HBS;150 mM

NaCl; 5 mM KCl; 5 mM CaCl2; 25 mM sucrose; 10 mM

HEPES; pH 7.4) and fixed in situ for 16–20 hours at room

temperature (RT) in zinc-formaldehyde solution (ZnFA;

0.25% [18.4 mM] ZnCl2; 0.788% [135 mM] NaCl; 1.2%

[35 mM] sucrose; 1% formaldehyde) under agitation. Fix-

ation with ZnFA affords considerably better antibody pen-

etration, staining intensity, and preservation of

morphology than conventional (para)formaldehyde fixa-

tion (Ott, 2008; Heinze and Reppert, 2012). The brain

was subsequently dissected out, under HBS, by removing

the eye cuticle in slices before gently plucking away the

main body of the ommatidia to reveal the basement

membrane. The basement membrane of the retina is

firmly attached to the lamina, which itself is loosely con-

nected to the rest of the optic lobe. The most successful

method to remove the retina was to use a very fine pair

of tweezers to cut small sections away from the lamina,

rather than to try and pull strips away. After removing the

retina, and any air sacks or tissue around the outer sur-

face of the brain, the brain was lifted from the head cap-

sule, washed three times in HBS, and placed into 80%

methanol/20% DMSO for a minimum of 2 hours under

agitation. The brain was then transferred to 100% metha-

nol and stored at RT. After transportation back to the UK

samples were stored at 220�C.

In the second stage of the protocol, performed in lab-

oratory conditions in the UK, the samples were brought

to RT and rehydrated in a decreasing methanol series

(90%, 70%, 50%, 30%, 0% in 0.1 M Tris buffer, pH 7.4,

10 minutes each). Normal goat serum (NGS; New Eng-

land BioLabs, Hitchin, Hertfordshire, UK) and antibodies

were diluted in 0.1 M phosphate-buffered saline (PBS;

pH 7.4) containing 1% DMSO and 0.005% NaN3 (PBSd).
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Nonspecific antibody binding was blocked by preincuba-

tion in 5% NGS (PBSd-NGS) for 2 hours at RT. Antibody

3C11 was then applied at a 1:30 dilution in PBSd-NGS

for 3.5 days at 4�C under agitation. The brains were

rinsed in PBSd for 3 3 2 hours before applying the Cy2-

conjugated antimouse antibody 1:100 in PBSd-NGS for

2.5 days at 4�C under agitation. This was followed by a

series of increasing concentrations (1%, 2%, 4% for 2

hours each, 8%, 15%, 30%, 50%, 60%, 70%, and 80% for

1 hour each) of glycerol in 0.1 M Tris buffer with DMSO

to 1%. The brains were then passed in a drop of 80%

glycerol directly into 100% ethanol and agitated for 30

minutes; the ethanol was changed three times with 30-

minute incubations. Finally, to clear the tissue, the

ethanol was underlain with methyl salicylate, the brain

was allowed to sink, before the methyl salicylate was

refreshed twice with 30-minute incubations.

Confocal imaging
Samples were mounted in fresh methyl salicylate

between two round coverslips separated by a thin

metal washer (UK size M8 or M10). All imaging was

performed on a confocal laser-scanning microscope

(Leica TCS SP8, Leica Microsystem, Mannheim,

Germany) at the University College London Imaging

Facility, using a 103 dry objective lens with a numeri-

cal aperture of 0.4 (Leica Material No. 11506511, Leica

Microsystem). In each individual brain, we captured a

single stack of confocal images from one antennal lobe,

and a series of overlapping stacks of lower resolution

that together covered the whole brain. For the antennal

lobe stack, we randomly selected either the left or the

right antennal lobe and imaged it with a mechanical

z-step of 1 lm, an x-y resolution of 1024 3 1024 pixels,

and a line average of six. For the whole brain imaging,

we used a mechanical z-step of 2 lm with an x-y reso-

lution of 512 3 512 pixels. Imaging the whole brain

required 2 3 2 stacks in the x-y dimensions with an

overlap of 10%; the tiled stacks were automatically

merged in Leica Applications Suite Advanced Fluores-

cence software. Each brain was scanned from the pos-

terior and anterior side to span the full z-dimension of

the brain. These two image stacks were subsequently

merged in Amira 3D analysis software 5.5 (FEI Visual-

ization Sciences Group), using a custom module

"Advanced Merge" provided by R�emi Blanc (Application

Engineer at FEI Visualization Sciences Group). This

module combines a sequence of other modules: the

two stacks are aligned using affine registration and sub-

sequently merged to produce the combined stacks. The

merging procedure resampled the first third of the ante-

rior image stack, the final third of the posterior image

stack, and averaged the intervening images. Finally, to

correct for the artifactually shortened z-dimension asso-

ciated with the 103 air objective, a correction factor of

1.52 was applied to the voxel size in the z-dimension.

This correction factor was obtained during the analysis

of the D. plexippus brain using identical methods

(Heinze and Reppert, 2012; S. Heinze, pers. comm.).

Images presented in the figures to illustrate key mor-

phological details were captured separately as single

images.

Neuropil segmentations and volumetric
reconstructions

Neuropils were reconstructed from the confocal image

stacks in Amira 5.5. We assigned image regions to ana-

tomical structures in the Amira labelfield module by

defining outlines based on the brightness of the synapsin

immunofluorescence. This process segments the image

into regions that are assigned to each particular struc-

ture and regions that are not. Within each stack, every

third image was manually segmented in this way using

the outline or magic-wand tool. The segmentation was

then interpolated in the z-dimension across all images

that contain the neuropil of interest. The neuropil outlines

were then fine-edited in all three dimensions and

smoothed. The measure statistics module was used to

determine volumes (in lm3) for each neuropil. 3D polygo-

nal surface models of the neuropils were constructed

from the smoothed labelfield outlines using the Surface-

Gen module.

As explained in the previous section, in each of the

n 5 8 male and n 5 8 female brains, either the left or the

right antennal lobe was randomly chosen for imaging at

higher resolution (1024 3 1024 pixel, 1.52 lm optical z-

sampling). These high-resolution antennal lobe stacks

were used to measure the following variables (yielding

one value per brain for each variable, i.e., N 5 16): 1) the

volumes of the four glomeruli that form a distinct cluster

below the base of the antennae, and that we hypothesize

may be functionally analogous to the macroglomerular

complex (MGC) observed in moths; 2) the volumes of

seven "ordinary" glomeruli that could be reliably identi-

fied by their size, position, and shape; 3) the total volume

of all glomeruli and of the entire antennal lobe including

the central fibrous neuropil. In addition, in a subset of

two males and two females the total number of glomeruli

in one antennal lobe was estimated by individually seg-

menting all discernable glomeruli in the antennal-lobe

stack and counting their number. Difficulty in identifying

the boundaries between closely packed glomeruli likely

causes some measurement error.

The whole-brain composite stacks (assembled from

the lower-resolution 512 3 512 pixel scans with 3.04 lm

optical z-sampling) were used to reconstruct and

Brain anatomy of Godyris zavaleta
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measure five paired neuropils in the optic lobes, and

seven paired and two unpaired neuropils in the midbrain.

All paired neuropils (including the antennal lobes) were

measured on both sides of the brain to permit tests of

asymmetry, yielding two paired measurements per brain

(i.e., N 5 16 3 2) for each structure. In each brain, both

antennal lobes were measured at this lower voxel resolu-

tion; the value obtained in the higher-resolution antennal-

lobe stacks was not reused in this analysis in order to

permit unbiased comparisons between the two sides and

with other structures. In addition, we measured the total

neuropil volume of the midbrain to control for allometric

differences. In Lepidoptera the subesophageal ganglion

is fused tightly against the ventroposterior boundary of

the supraesophageal ganglion (i.e., against what is

referred to as the "midbrain" in insects with less exten-

sively fused head ganglia such as Orthoptera; Kurylas

et al., 2008), resulting in a single compact central mass

that is flanked by the protocerebral optic lobes. In keep-

ing with the earlier Lepidopteran literature, we use the

term "midbrain" for this fused central mass, which thus

comprises: the protocerebral neuromere excluding the

optic lobes; the deuto- and tritocerebral neuromeres;

and the subesophageal neuromeres. All data collection

was performed blind with respect to the sex of the indi-

vidual. The color code used for the neuropils in the 3D

models is consistent with previous neuroanatomical stud-

ies of invertebrate brains (Brandt et al., 2005; Kurylas

et al., 2008; El Jundi et al., 2009a,b; Dreyer et al., 2010;

Heinze and Reppert, 2012).

Statistical analysis
Paired two-tailed t-tests on combined data from

males and females were used to test for left–right

asymmetry (16 3 2 paired observations from n 5 16

individuals, 15 degrees of freedom, except in a small

number of cases where one side was damaged) (Table

1). The normality of each dataset was examined using a

Shapiro–Wilk test and where any dataset within a set

of analyses was found to deviate from normality, the

analyses were repeated using a nonparametric Mann–

Whitney test. In all cases parametric and nonparametric

tests led to the same conclusions, so we only present

results from the parametric test. All statistical analyses

were performed in GenStat (VSNi, Hemel Hempstead,

UK) or R (R Development Core Team, 2008). We found

no evidence for asymmetry in the volume of paired neu-

ropil (Table 1) and subsequently summed their volumes

to calculate the total volume of a structure. Unpaired

two-tailed two-sample t-tests were used to test for sex-

ual dimorphism (n 5 8 males and n 5 8 females, total

N 5 16, 14 degrees of freedom); for paired neuropils,

the tests were carried out on the sum of the left and

right volume.

We collected published data for neuropil volumes of

three other Lepidoptera; the monarch butterfly (D. plex-

ippus; Heinze and Reppert, 2012), the giant sphinx

moth (M. sexta; El Jundi et al., 2009b), and the tobacco

budworm moth (Heliothis virescens; Kvello et al., 2009).

Data were available for eight neuropils across all three

species (Table 3). We calculated the relative investment

TABLE 1.

Mean Volumes of Major Neuropil

Asymmetry
Sexual dimorphism

Mean Relative
Raw volume Raw volume % volume

Neuropil (N 5 16)1 SD SD (%) t15
2 P t14 P t14 P

Lamina 2.31 3 107 5.70 3 106 24.70 0.31 0.766 23.82 0.003 21.72 0.114
Medulla 6.96 3 107 1.47 3 107 21.11 0.02 0.985 22.07 0.057 21.11 0.288
Accessory medulla 6.88 3 104 1.43 3 104 20.71 0.32 0.754 0.43 0.676 2.79 0.015
Inner lobula 8.07 3 106 1.30 3 106 16.06 0.12 0.905 20.73 0.478 1.27 0.229
Lobula plate 5.27 3 106 1.33 3 106 25.31 0.33 0.749 20.58 0.573 0.26 0.803
Antennal lobes 8.54 3 106 1.92 3 106 22.45 1.48 0.159 20.54 0.601 0.98 0.343
AOTu 1.01 3 106 2.90 3 105 28.66 0.52 0.613 22.52 0.025 22.71 0.018
MB calyx 2.40 3 106 6.37 3 105 26.55 0.20 0.843 21.14 0.273 20.27 0.795
MB peduncle 2.29 3 105 7.34 3 104 32.10 0.73 0.476 21.16 0.265 20.07 0.945
MB lobes 1.33 3 106 3.79 3 105 28.54 0.14 0.888 20.57 0.58 0.56 0.585
Central body lower 1.78 3 105 5.71 3 104 32.04 — — 21.03 0.32 0.30 0.774
Central body upper 6.32 3 105 1.64 3 105 25.94 — — 20.76 0.457 20.06 0.95
Noduli 1.89 3 104 9.22 3 103 48.80 0.80 0.439 20.79 0.46 20.48 0.649
Protocerebral bridge 9.79 3 104 2.51 3 104 25.63 0.56 0.584 20.19 0.849 0.65 0.527
POTu 2.00 3 104 7.57 3 103 37.93 1.21 0.245 1.24 0.248 1.92 0.077
Total mid brain 8.30 3 107 1.90 3 107 22.91 — — 21.89 0.079 — —

1For paired structures the mean is calculated from the combined volume of left and right neuropil
2Lower sample sizes for the lamina due to damage caused when removing the retina, and lack of clear boundaries for the noduli reduced the sam-

ple size to 12 (t11) in both cases

S.H. Montgomery and S.R. Ott

874 The Journal of Comparative Neurology |Research in Systems Neuroscience



in each neuropil by comparing its volume to the total

neuropil volume of either the whole brain, or of only the

midbrain. As the volume of the lamina was not meas-

ured in H. virescens the "whole brain" excludes lamina

volume in order to make the data comparable across

species. Differences in brain architecture across spe-

cies were identified by multivariate principal component

analysis of these data, and visualized as biplots

(Greenacre, 2010) in R package ggbiplot (V.Q. Vu,

https://github.com/vqv/ggbiplot).

Relative size was measured in two ways. First, by

calculating the volume of each structure as a percentage

of the total, or total midbrain, neuropil. Second, by calcu-

lating the residuals of a phylogenetically corrected least

squares linear regression between each structure and the

rest of the brain. For this analysis, a phylogeny of the

four species was created using data on two loci, COI

and EF1a (GenBank Accession IDs, COI: EU069042.1,

GU365908.1, JQ569251.1, JN798958.1; EF1a:

EU069147.1, DQ157894.1, U20135.1, KC893204.1). The

data were aligned and concatenated using MUSCLE

(Edgar, 2004), before constructing a maximum likelihood

tree in MEGA v.5 (Tamura et al., 2011). Phylogenetically

controlled regressions were performed between log-

transformed data in BayesContinous in BayesTraits (freely

available from www.evolution.rdg.ac.uk; Pagel, 1999)

using this phylogeny.

These two approaches to calculating relative size make

different assumptions about the underlying interspecific

allometric relationships and their functional interpretation

(Montgomery, 2013). Using percentage volumes assumes

a 1:1 allometric relationship, which is rarely the case,

and does not account for the nonindependence of data.

Changes in percentage size may therefore reflect differ-

ences in overall investment, but not necessarily adaptive

changes in function if the true allometric relationship

reflects a constraint, while changes in residual size sug-

gest changes in the underlying functional relationship

between two regions of the brain (Montgomery, 2013).

In the present analysis the sample size available for

Figure 1. Overview of the anatomy of the G. zavaleta brain. A–C: Volume rendering of synapsin (3C11) immunofluorescence showing the

surface morphology of the brain neuropil from the anterior (A), posterior (B), and dorsal (C) view. D–F: Surface reconstructions of the

major neuropil compartments from the anterior (D), posterior (E), and dorsal (F) view. The midbrain houses the antennal lobes (AL) which

lie at the base of the antennal nerve (AN in G), the anterior optic tubercles (AOTu), the central body (CB), protocerebral bridge (PB), and

the mushroom body, which comprises the calyx (MB-ca), peduncle (MB-pe), and lobes (MB-lb); the optic lobes comprise the lamina (La),

medulla (Me), and accessory medulla (aMe), the lobula (Lo), and lobula plate (LoP). G–J: Anti-synapsin immunofluorescence in frontal con-

focal sections taken at progressively more posterior levels. G: The antennal lobes (AL) are the most anterior midbrain neuropils. H: Further

back, the anterior optic tubercles (AOTu) flank the mushroom body lobes (MB-lb), which occupy a dorsomedial position. I: The central

body (CB) and the three main neuropils in the optic lobe, the lamina (La), medulla (Me), and lobula (Lo). J: The mushroom body calyx (MB-

ca) at the back end of the midbrain. The individual displayed is female. Scale bars 5 500 lm.

Brain anatomy of Godyris zavaleta
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determining the allometric relationships is quite low,

which limits the accuracy of the residual estimates. How-

ever, both analyses led to similar conclusions.

RESULTS

General layout of the Godyris brain
The general layout of the brain in G. zavaleta is similar

to that of other Lepidoptera (El Jundi et al., 2009b;

Kvello et al., 2009; Heinze and Reppert, 2012). The sub-

esophageal ganglion is fused against the ventroposterior

boundary of the supraesophageal ganglion, resulting in a

single compact mass, with the esophagus running

through a large central aperture. This single medial

mass, which we henceforth refer to as the "midbrain," is

separated from the flanking optic lobes by pronounced

lateral isthmuses on either side (Fig. 1). As expected,

synapsin immunostaining resulted in intense fluores-

cence in regions of synaptic neuropil and little or no fluo-

rescence in fiber tracts and in the cell body cortex. The

boundaries of most previously identified neuropil struc-

tures were clearly defined, permitting segmentation of

five paired neuropils in the optic lobes, and seven paired

Figure 2. Sexual dimorphism in the wings and antennal lobes (AL). A–C: Wing morphology in males (#) and females ($) showing wing pig-

mentation on the dorsal surface (A) and the presence of hair-pencils (HP) on the hind wings of males from an oblique anterodorsal view

(B) and a direct dorsal view (C). D,E: Surface reconstructions of the full complement of AL glomeruli (D), and of the subset of four glomer-

uli that form the macroglomerular complex (MGC1–4 in E). Among the ordinary glomeruli, green tones indicate the dorsalmost glomeruli,

blue tones the middle layer, pink tones the posterior layer, red tones the posterodorsal glomeruli and yellow tones the posteromedial glo-

meruli. F–J: Synapsin immunofluorescence in single confocal sections of the AL. F–I: Frontal sections that move progressively deeper into

the AL until reaching its posterior boundary. The four distinct glomeruli of the MGC (MGC1–4 in F) occupy the most anterior position in

the AL, close to the root of the antennal nerve (AN in F). The ordinary glomeruli (Glom in G) surround the central fibrous neuropil (CFN in

H,J). J: A horizontal section at the level of the anterior optic tubercle (AOTu) and shows MGC1 protruding from the general spherical shape

of the AL. Scale bars 5 1.0 cm in A; 0.5 cm in B,C; 50 lm in D–J.
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and two unpaired neuropils in the midbrain. We quanti-

fied the volumes of these 14 neuropils in eight males

and eight females (Table 1). A large proportion of the

midbrain lacks distinct internal boundaries and we there-

fore did not segment it into subdivisions in our analysis.

Antennal lobes
The general morphology of the antennal lobes (Fig. 2;

AL in Fig. 1C,F) is similar to that in other Lepidoptera

(Huetteroth and Schachtner, 2005; El Jundi et al.,

2009b; Heinze and Reppert, 2012). In G. zavaleta each

AL contains on average 67 glomeruli (N 5 2#: 70, 63,

2$: 67, 68), globular units of neuropil arranged around

a central fibrous neuropil (CFN in Fig. 2H,J). In G. zava-

leta four large glomeruli at the root of the antennal

nerve (AN in Fig. 2F,J) form a distinct unit that is raised

with respect to the anterior surface of the AL (Fig. 2E).

The position of this unit closely matches that of the

sexually dimorphic MGC present in moths, which has

known roles in sex pheromone detection (Hansson

et al., 1991; Todd et al., 1995; Berg et al., 1998). We

label these glomeruli MGC subunits 1–4 (MGC1–4),

with MGC1 being the dorsal most glomerulus. While we

hypothesize that they may be involved in pheromone

signaling in Ithomiinae, we emphasize that we use

"MGC" as a purely descriptive morphological term that

does not imply homology with the MGC of moths.

In D. plexippus two large glomeruli, which lie in a

similar position, appear morphologically distinct from

other "normal glomeruli" in shape and internal appear-

ance (Heinze and Reppert, 2012). Whereas the volumes

of this pair of glomeruli cannot be distinguished

between the sexes in D. plexippus (Heinze and Reppert,

2012), there is a clear signature of sexual dimorphism

in the volume of the MGC in G. zavaleta (Fig. 3, # vs.

$). In absolute terms, the total volume of MGC1–4 is

significantly larger in males than females (t14 5 2.69,

P 5 0.018). This difference is driven by two sexually

dimorphic MGC glomeruli (Fig. 3A, Table 2), MGC1

(t14 5 2.82, P 5 0.014) and MGC4 (t14 5 4.97,

P 5 0.001), both of which are larger in males (by �60%

and 170%, respectively) where they are the largest of

the glomeruli, approximately two standard deviations

from the average glomerular volume. This sexual dimor-

phism mirrors the sexually dimorphic hind-wing hair

pencils (Fig. 2A–C). The volumes of MGC2 (t14 5 0.45,

P 5 0.650) and MGC3 (t14 5 0.84, P 5 0.414) are not

significantly different between males and females, nei-

ther are seven control glomeruli (Table 2a). There was

no significant sex difference in the sum total volume of

all glomeruli (t14 5 0.54, P 5 0.598) or in the total vol-

ume of the whole AL (t14 5 0.44, P 5 0.668) (Fig. 3B).

This suggests that strong size dimorphism is limited to

a subset of glomeruli, although we cannot rule out

subtle sex differences in glomerular size outside the

MGC. The similar sum total volumes of the glomeruli in

the two sexes do not, however, by themselves indicate

that some other, non-MGC glomeruli are necessarily

larger in females, because MGC1 and MGC4 together

account for only 3.56% and 6.37% of the total volume

of all glomeruli in females and males, respectively. If

there were no other sex differences in glomerular size

or number, the larger MGC in males would increase the

Figure 3. Volumetric quantification of the sexual dimorphism in the antennal lobes. A: Raw volumes of MGC1–4 for males (#) and females

($). B: Raw volumes of the total volume of all glomeruli and the AL (including the CFN) for males (#) and females ($). C: Volumes of

MGC1–4 for males (#) and females ($) as a proportion of the total volume of the glomeruli. The boxplots show the median (horizontal line

in box), the interquartile range (range of the box), and the maximum and minimum of the range (whiskers); outliers are shown as separate

data points. Significant differences between males and females are indicated by *P< 0.05, **P< 0.01, ***P< 0.001.

Brain anatomy of Godyris zavaleta
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total by only 3.00%; this differential contribution is likely

to be drowned out by interindividual variation, which is

19.96% of the mean volume. When the size of each of

the four MGC glomeruli is considered as a proportion of

either the total volume of all glomeruli (Fig. 3C) or of

the whole antennal lobe, sexual dimorphism is again

limited to MGC1 and MGC4 (Table 2b). No other neuro-

pil was found to be consistently sexually dimorphic

either before or after accounting for differences in the

overall size of the midbrain (Table 1).

Visual neuropil
Five major neuropils are clearly visible in the optic

lobes (Fig. 4), each well defined and clearly homologous

to those observed in other Lepidoptera. The outermost,

the lamina, forms a thin "cap" to the rest of the optic

lobe, separated from it by the first optic chiasm (La in

Figs. 1D,E,I, 4A–D,G). Next, the medulla forms a

thicker, layered structure (Me in Figs. 1E,I, 4A–E,G)

with two major divisions, the outer and inner layer

(oMe, iMe in Fig. 4G), each of which contains a further

number of striations (�10 in total across the Me).

Tucked against the anteromedial edge of the medulla is

the small but distinct accessory medulla (aMe in Figs.

1E, 4A,B,D). Finally, the lobula and lobula plate form a

pair of neuropil neighboring one another along the ante-

rior/posterior axis (Lo in Figs. 1E,I, 4A–C,E,M; LoP in

Figs. 1E, 4A,B,D).

Heinze and Reppert (2012) noted a number of

unusual features in the optic lobes of D. plexippus that

may reflect adaptations to their general ecology or per-

haps specifically to their migratory behavior. First, they

observed an inner rim of intense synapsin staining in

TABLE 2.

Statistical Support for the Presence of Sexually Dimorphic Glomeruli

a) Raw volumes of MGC and control glomeruli, total glomeruli and total AL volume

Male Female Sexual dimorphism

mean volume

(x 104 lm3)

SD

(x 104 lm3)

mean volume

(x 104 lm3)

SD

(x 104 lm3) t14 P

MGC1 10.980 3.856 6.756 1.751 22.82 0.014
MGC2 4.184 1.594 4.512 1.215 0.45 0.650
MGC3 7.503 3.302 6.419 1.539 20.84 0.414
MGC4 7.971 2.809 2.934 0.578 24.97 0.001

Control glomerulus 1 1.947 0.405 2.366 0.679 1.50 0.157
Control glomerulus 2 3.371 1.229 3.672 0.692 0.60 0.555
Control glomerulus 3 2.018 0.786 1.795 0.433 20.62 0.545
Control glomerulus 4 3.235 1.058 3.446 1.027 0.37 0.714
Control glomerulus 5 4.870 1.538 3.877 0.695 21.66 0.118
Control glomerulus 6 2.762 1.011 2.351 1.212 20.74 0.474
Control glomerulus 7 0.894 0.219 1.106 0.243 1.84 0.087

Total glomeruli 297.800 71.860 281.800 43.114 20.54 0.600
Total antennal lobe 431.000 94.773 409.700 98.553 20.44 0.670

b) Sexual dimorphism in MGC is robust to variation in total AL size

Male Female Sexual dimorphism

mean % of

R glomeruli SD

mean % of

R glomeruli SD t14 P

MGC1 3.692 0.861 2.413 0.540 23.56 0.003
MGC2 1.439 0.473 1.607 0.362 0.79 0.441
MGC3 2.49 0.766 2.29 0.448 20.66 0.519
MGC4 2.68 0.661 1.05 0.172 26.77 <0.001

Male Female Sexual dimorphism

mean % of

R AL SD

mean % of

R AL SD t14 P

MGC1 2.580 0.864 1.670 0.280 22.81 0.022
MGC2 0.990 0.333 1.120 0.211 0.95 0.360
MGC3 1.680 0.417 1.580 0.208 20.61 0.550
MGC4 1.882 0.692 0.740 0.163 24.55 <0.001
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the lamina. This inner rim is also observed in G. zava-

leta (iRim in Fig. 4G). Second, they noted a small, irreg-

ularly shaped neuropil running ventrally alongside the

medial edge of the medulla to the accessory medulla.

In some G. zavaleta individuals thin projections can be

seen connecting the medulla and accessory medulla,

but they are not as well defined as they appear in D.

plexippus. Third, and most strikingly, Heinze and

Reppert (2012) identified a large neuropil, the optic glo-

merular complex (OGC), located in the optic stalk,

stretching from the medial margin of the lobula to the

lateral edge of the mushroom body calyx. This neuropil

is not observed in G. zavaleta. However, we do observe

a small but distinct, brightly stained neuropil at the

medial margin of the lobula (asterisk, Fig. 4M) that is

not mentioned in Heinze and Reppert’s (2012) thorough

description of the D. plexippus brain. Whether or not

this is a homologous structure to the OGC that has

been expanded in D. plexippus is unclear.

Within the midbrain, the paired anterior optic tubercle

(AOTu) are important visual neuropils that receive affer-

ent projections from the medulla and lobula (Homberg

et al., 2003). As in D. plexippus (Heinze and Reppert,

2012) the AOTu in G. zavaleta (Figs. 1D,F,H, 4C,D) can

be subdivided into four units: a large upper unit (UU)

and three smaller units, the lower unit (LU), the nodular

unit (NU), and the strap (SP), which connects LU and NU

(Fig. 4H–L). The presence of the strap in both species

suggests that it is not specifically linked to long-distance

navigation. Rather, it may be a butterfly synapomorphy,

since moths reportedly lack the strap (Heinze and

Reppert, 2012). A further distinctive feature of the AOTu

of both butterfly species is an expansion of the upper

unit, first reported in D. plexippus by Heinze and Reppert

(2012). This expansion is less extreme in G. zavaleta. In

M. sexta the ratio of upper unit : lower unit : nodular

unit is 73: 10: 17, in G. zavaleta it is 85: 4: 11, and in

D. plexippus it is 93: 2: 5. This pattern of expansion

matches corresponding differences in medulla size, sug-

gesting this is a potential case of coevolution between

functionally related neuropil (Barton and Harvey, 2000).

Mushroom bodies
The mushroom bodies are integral to higher-order

information processing, learning, and memory (Farris,

2005; Strausfeld et al., 2009). As in other insects, the

mushroom body in G. zavaleta (Fig. 5) can be divided

into three major substructures: the calyx (MB-ca in

Figs. 1E,F,J, 5), the pedunculus (MB-pe in Figs. 1F, 5),

and the lobe system (MB-lb in Figs. 1D,F,H, 5). The

mushroom bodies are well developed in G. zavaleta but

both the lobes and calyx are notably smaller than in

D. plexippus (Table 3). Moreover, unlike in D. plexippus,
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the calyx lacks subdivision into an outer, inner, central,

and basal zones. Instead, the calyx has a relatively sim-

ple structure, a fused double-calyx (Fig. 5F,H,I) more

reminiscent of that seen in moths (Pearson, 1971;

Homberg et al., 1988; Sj€oholm et al., 2005; El Jundi

et al., 2009b; Fukushima and Kanzaki, 2009; Kvello

et al., 2009). To a certain extent this is also the case

for the mushroom body lobes. The vertical and medial

lobe systems are more distinct from one another than

they are in D. plexippus (Heinze and Reppert, 2012),

and within the vertical lobe system it is possible to

identify the a-lobe and g-lobe (Fig. 5A). The vertical

lobes project dorsoposteriorly towards the upper sur-

face of the brain, visible as a protruding bulge (Fig. 5C).

In the medial lobe the boundaries between the compo-

nents are less well defined, but they are not fully fused

into a globular mass as in D. plexippus (Heinze and

Reppert, 2012), although identifying further subdivisions

homologous to those observed in moths (Rø et al.,

2007) is difficult (Fig. 5J,K).

As in other Lepidoptera, the peduncle emerges from

a fusion of two tracts of Kenyon cell axons within the

fused double-calyx (Fig. 2F,G) and spans the depth of

the midbrain to connect with the lobes. The boundary

between the peduncle and the lobes is not well defined.

A Y-tract is also present, running dorsal and parallel to

the peduncle, between the mushroom body lobe and

the anterior boundary of the calyx (Y-tract in Fig. 5).

Figure 4. Anatomy of the visual neuropils. A,B: Surface reconstructions of the optic lobe neuropils viewed from posterior (A) and anterior

(B). They comprise the lamina (La), the medulla (Me), and accessory medulla (aMe), the lobula (Lo), and the lobula plate (LoP). C–G: Syn-

apsin immunofluorescence in single confocal sections of the optic lobe. C: A horizontal section showing all four major optic lobe neuropils

(La, Me, Lo, LoP) together with the anterior optic tubercle (AOTu) in the midbrain. D–F: Frontal sections at increasing depths from anterior

to posterior, beginning at a plane tangential through the lamina (La in D) and reaching the optic stalk (OS in F). G: The inner rim (iRim) of

the lamina is a thin layer on its inner surface that is defined by intense synapsin immunofluorescence; it is also visible in C,D,F. Synapsin

immunostaining also reveals the laminated structure of the medulla with two main subdivisions, the outer and inner medulla (oMe, iMe).

H: Surface reconstruction of the AOTu from an oblique anterior view, showing the four component neuropils: the upper unit (UU), lower

unit (LU), strap (SP), and the nodular unit (NU). I–L: Synapsin immunofluorescence in the AOTu in frontal confocal sections at increasing

depths from anterior (I) to posterior (L). M: A small neuropil (asterisk) positioned at the medial margin of the lobula which may be homolo-

gous to the D. plexippus optic glomerular complex. Scale bars 5 200 lm in A–F; 100 lm in G; 50 lm in H–M.
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Interestingly, in D. plexippus the Y-tract appears to

innervate exclusively the inner zone of the calyx (Heinze

and Reppert, 2012), suggesting that this structure may

be homologous to the entire un-zonated calyx of G.

zavaleta and thus represents the ancestral base around

which the outer and basal zones have formed as addi-

tional derived structures.

The presence of a Y-tract is thought to indicate the

presence of Kenyon cells functioning as class III neurons

by receiving mechanosensory and gustatory information

through the tritocerebral tract (Farris, 2005). In true

class III Kenyon cells, the dendrites typically form a dis-

tinct accessory calyx. However, no accessory calyx is

observed in G. zavaleta, unlike in Pieris brassicae (Ali,

1974) and D. plexippus (Heinze and Reppert, 2012),

where it occurs as a distinct neuropil to the anterior of

the main calyx. This suggests that the adult brain of G.

zavaleta may lack true class III cells. They may still have

a transient developmental role in establishing circuitry

with the tritocerebral tract before transferring this func-

tion to a subpopulation of the class I Kenyon cells and

dying (Farris et al., 2004; Farris, 2005). Alternatively, the

class III cells of G. zavaleta might survive but their den-

drites may be integrated into the main calyx.

Central complex
The final major group of neuropils considered here

form the central complex (Fig. 6), a multimodal integra-

tion center implicated in a range of functions including

spatial representation of visual cues, spatial visual mem-

ory, and directional control of locomotor behaviors

(Pfeiffer and Homberg, 2014). The central complex com-

prises the central body (CB in Fig. 1E,I) that in turn is

composed of an upper division (CBU in Fig. 6A–D), a

lower division (CBL in Fig. 6A–D), and the anteriorly

associated paired noduli (No in Fig. 6B,H); the protocere-

bral bridge (PB in Figs. 1E, 6E,F) and the posterior optic

tubercle (POTu in Fig. 6E,G). All of these neuropils are

Figure 5. Anatomy of the mushroom body. A,B: Surface reconstruction of the mushroom body from the dorsal (A) and lateral (B) view. C–

F: Synapsin immunofluorescence in horizontal confocal sections through the midbrain at increasing depths from dorsal towards ventral.

The very dorsal (tangential) plane C shows the tips of the medial lobe (MB-lb) and of the y-lobe (y-lb). D: The main components of the

lobes: the a-lb, y-lb, and the compartmentalized medial lobe (MB-lb). E: The Y-tract runs from the calyx (MB-ca) anteriorly to the lobes

(MB-lb). F: Further ventral and level with the upper and lower units of the central body (CBU, CBL), the peduncles (Pe) provide the main

connection between MB-ca and MB-lb. G–K: Details of mushroom body architecture as revealed by synapsin immunofluorescence in confo-

cal sections. G: Frontal section showing the separate profiles of the Y-tract and pedunculus (MB-pe) in the central mid-brain; dorsal is up.

H,I: Frontal sections through the calyx (Mb-ca). H: Each MB-ca consists of two fused calycal neuropils, which lack any obvious internal

zonation. I: Emergence of the Y-tract at the anterodorsal boundary of MB-ca. J,K: Morphology of the partially merged dorsal lobe of the

MB. Scale bars 5 100 lm in A–F; 50 lm in G–K.
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clearly visible in G. zavaleta (Fig. 6). The lateral acces-

sory lobes (LAL), situated at the ventral boundary of the

antennal lobes, are also functionally linked to the CB but

we refrained from quantifying the size of the LAL due to

its poorly defined posterior boundaries. Although the LAL

is well stained, we were unable to identify within it any

clear anterior lobelet with a microglomerular appearance

as observed in D. plexippus (Heinze and Reppert, 2012).

The general morphology and layout of the remaining cen-

tral complex is otherwise conserved between G. zavaleta

and D. plexippus, although in the current analysis we did

not explore the finer-scale morphology of the central

body to confirm the conservation of CB layers. One nota-

ble difference is the highly foliated structure of the dor-

sal surface of the lower CB in G. zavaleta (Fig. 5A,D).

Although the POTu were easily identifiable they were

found to be one of the more variable structures in both

volume (Table 1) and shape.

Divergence in brain structure across
Lepidoptera

The brain of G. zavaleta has a number of features

that appear to be intermediate between those observed

in moths and D. plexippus. We collated comparable

datasets for two night-flying moths, H. virescens (Kvello

et al., 2009) and M. sexta (El Jundi et al., 2009b), and

a second diurnal butterfly, D. plexippus (Heinze and

Reppert, 2012), to further explore these differences

(Table 3). As a percentage of the total neuropil volume,

G. zavaleta is intermediate between D. plexippus and

the moths for all major sensory neuropil, with larger

antennal lobes and smaller visual neuropil than D. plex-

ippus (Table 3). To remove the dominant effect of the

large optic lobe neuropil we repeated the comparison

focusing on the relative size of structures within the

midbrain. Again, in terms of percentage volume, the

antennal lobes and the mushroom body of G. zavaleta

are much closer to the moths than D. plexippus (Table

3). This pattern is borne out in a multivariate principal

component (PC) analysis measuring relative size as

deviation from interspecific allometric relationships with

total brain size (Fig. 7). The four species are clearly

separated along two PCs. Considering all neuropil,

including the optic lobes, PC1 explains 77.82% of the

variance and is most heavily loaded by the antennal

lobe and medulla, while PC2 explains 21.16% of the var-

iance and is most heavily loaded by the mushroom

body calyx, peduncle and lobes (Fig. 7A, Table 4). Con-

sidering only the midbrain PC1 explains 86.83% of the

variance and is most heavily loaded by the mushroom

body calyx, peduncle and lobes, and AOTu, while PC2

explains 11.34% of the variance and is most heavily

loaded by the central body and AOTu (Fig, 7B, Table 4).

Similar results are obtained from a PC analysis with

percentage volumes (Table 4).

DISCUSSION

We have described the anatomical layout and size of

the major neuropils in the brain of Godyris zavaleta, a

diurnal butterfly with a heightened dependence on

Figure 6. Anatomy of the central complex. A,B: Surface reconstruction of the central body from an anterior (A) and oblique anteroventral

(B) view, showing the upper and lower subunit of the central body (CBU, CBL) and the three compartments of the noduli (No). C,D: Synap-

sin immunofluorescence in horizontal confocal sections showing the structure of the upper and lower CB (C) and the foliated dorsal sur-

face of the lower CB (D). E: Surface reconstruction of the protocerebral bridge (PB) and posterior optic tubercles (POTu) from an oblique

posterior view. F,G: Synapsin-immunofluorescence in frontal confocal sections showing the PB (F), and the POTu ventral to the MB-ca (G).

H: The noduli (No) in a horizontal confocal section ventral to the CB showing three discrete compartments homologous to compartments

II–IV in D. plexippus (Heinze and Reppert, 2012); the intensely stained compartment I, which partially encircles subcompartment II in D.

plexippus was not clearly visible. Scale bars 5 50 lm in A; 100 lm in C–F; 50 lm in G–H.
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olfactory information. The antennal lobes of G. zavaleta

have a unique morphology compared to other butter-

flies examined so far (Rospars, 1983; Heinze and

Reppert, 2012; Carlsson et al., 2013), with a distinct

cluster of four enlarged glomeruli, of which two are sex-

ually dimorphic. Based on their size, location, and the

fibrous appearance of their internal structure, we tenta-

tively label these four glomeruli as a macroglomerular

complex analogous to the MGCs present in a wide vari-

ety of moths (Bretschneider, 1924; Rospars, 1983; Berg

et al., 2002; Huetteroth and Schachtner, 2005;

Masante-Roca et al., 2005; Skiri et al., 2005; El Jundi

et al., 2009b; Kazawa et al., 2009; Varela et al., 2009).

Through an interspecific analysis within Lepidoptera, we

further show the adaptation to greater olfactory

dependence extends to the major sensory neuropils,

with the relative size of the visual and olfactory neuropil

of G. zavaleta being intermediate between night-flying

moths and the diurnal monarch butterfly. In the follow-

ing discussion we explore the selection pressures that

may have favored these adaptations, the potential rela-

tionship of the G. zavaleta MGC to the MGC in moths

and other insects, and the strength of constraints that

may limit the effect of selection on brain composition.

Ecological relevance of sexual dimorphism
in the antennal lobe

To our knowledge, a morphologically distinct and sexu-

ally dimorphic MGC has not been described in any of

the butterflies previously examined (Pieris brassicae,

Rospars, 1983; Danaus plexippus, Heinze and Reppert,

2012; Polygonia c-album and Aglais urticae, Carlsson

et al., 2013). Physiological studies will be necessary to

Figure 7. Principal component (PC) biplots of the relative size of major brain structures in four Lepidoptera. A: PC analysis of all neuropil.

B: PC analysis excluding the optic lobe neuropil. In both cases the PC analysis was performed using residuals from a phylogenetically con-

trolled regression between each neuropil and the rest of the total neuropil/total midbrain. Analysis using volumes expressed as percen-

tages results in similar conclusions (Table 4). The biplots show each species as a data point labeled with the first letter of the genus

name (D 5 Danaus, G 5 Godyris, H 5 Heliothis, M 5 Manduca); vectors lengths are proportional to the variance of that variable/neuropil.

TABLE 4.

Loadings on Principal Components Analysis of Relative

Size of Brain Components Across Four Lepidoptera

Loadings

Residuals Percentages

Neuropil PC1 PC2 PC1 PC2

a) Midbrain only
Antennal lobe 20.219 0.114 20.753 0.649
Central body 0.209 0.678 0.053 0.014
Calyx 0.531 0.339 0.504 0.539
Peduncle and lobes 0.605 0.050 0.385 0.530
AOTu 0.511 20.640 0.168 0.077

b) Whole neuropil
Antennal lobe 0.455 20.395 0.080 0.748
Central body 0.339 0.253 0.017 20.063
Calyx 0.242 0.509 0.021 20.131
Peduncle and lobes 0.198 0.489 0.002 20.018
AOTu 20.034 0.253 20.002 20.034
Medulla 20.737 0.254 20.994 0.014
Lobula 20.160 20.257 20.060 0.400
Lobula plate 20.096 20.297 20.035 0.507
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confirm that the MGC of G. zavaleta has the predicted

role in pheromone detection. For the time being, two

hypotheses can be made regarding its ecological rele-

vance. First, detecting pheromonal cues used in mating

and/or territorial defense. Second, detecting allelochemi-

cals from plants that provide males with the PA precur-

sors from which they synthesize their pheromones.

Male ithomiines utilize PA-derived pheromones in

male–male territorial interactions and male–female

courtship (Gilbert, 1969; Pliske, 1975a; Edgar et al.,

1976). The specially adapted hind-wing hair-pencils help

distribute these pheromones during flight. In the

absence of females, many species embark on short, cir-

cling flights that fill the airspace with pheromone secre-

tions (Pliske, 1975a; Drummond, 1976). This suggests

that the signal is distributed over larger spatial scales

than typical for butterflies. Most species of Danainae

also utilize PA-derived pheromones in sexual communi-

cation (Pliske et al., 1976; Trigo and Motta, 1990;

Honda et al., 2006). Danainae have hair-pencils located

at the tip of the abdomen that are displayed during

courtship and persistently brought into contact with the

hind-wing, to aid dissemination of chemical secretions

(M€uller, 1879; Boppr�e et al., 1978; Brower and Jones,

2009). Although Danainae may utilize chemical commu-

nication on smaller spatial scales than Ithomiinae, it

remains possible that the lack of sexually dimorphic

glomeruli in D. plexippus is not representative of all

Danainae. In the closely related D. gilippus, the experi-

mental removal of hair-pencils substantially reduces

courtship success (Myers and Brower, 1969) whereas

in D. plexippus, which has smaller hair pencils than

most Danainae, it has no observable effect on repro-

duction (Pliske, 1975b). Instead, D. plexippus matings

often occur through "aerial take downs" where males

grasp the female in mid-air, causing them to fall to the

ground where the male attempts to mate (Pliske,

1975b). This behavior is also observed in the ithomiine

genus Methona (Pliske, 1975a). Comparisons across

Danainae and Ithomiinae with contrasting mating behav-

iors may provide independent tests of whether sexually

dimorphic glomeruli are associated with the dominance

of hair-pencil mediated pheromone signaling in mating

behavior (Gilbert, 1969; Pliske, 1975a; Drummond,

1976; Haber, 1978).

An alternative explanation may be that the sexually

dimorphic glomeruli of G. zavaleta are specialized to

detect odors emanating from plants used to obtain PAs

for pheromone synthesis and chemical protection. In

most ithomiine species, males, but not females, are

strongly attracted to Heliotropium bait traps and use

olfaction to locate these resources (Pliske et al., 1976).

In the wild these resources may be transitory, with

decaying Heliotropium losing its attractive properties

after 2 weeks in wet conditions (Pliske et al., 1976). As

the estimated average lifespan across ithomiines is �10

weeks and potentially up to 25 weeks (Drummond,

1976), enhancing foraging efficiency with olfactory adap-

tations may be more efficient than learning the location

of transient resources. It is conceivable that selection for

increased foraging efficiency targeted the antennal lobe

in a sex-specific manner. Although less common, macro-

glomeruli associated with nonsexual pheromones are

found in some taxa (Galizia and R€ossler, 2010; Hansson

and Stensmyr, 2011), most notably in leaf cutter ants

(Atta vollenweideri, Atta sexdens) where the single mac-

roglomerulus processes trail-pheromones (Kleineidam

et al., 2005), and in Drosophila sechellia, where large

glomeruli are involved in specialization to a single food

source (Dekker et al., 2006).

Evolution of sexual dimorphism in the
antennal lobe

Sexually dimorphic MGCs, or single macroglomeruli,

are sporadically found in phylogenetically distant insect

clades, and are generally considered the result of con-

vergent evolution (Schachtner et al., 2005; Hansson and

Stensmyr, 2011). A possible homology of MGCs among

more closely related clades, such as the Lepidoptera,

has received insufficient discussion, given its importance

in interpreting patterns of neural evolution. As pointed

out by Scotland (2010), ". . . every hypothesis of homol-

ogy requires a conditional or specifying phrase; homolo-

gous as what?" Thus, at any given phylogenetic level,

one may ask whether MGCs are homologous as struc-

tures, that is, linked through unbroken phylogenetic pres-

ence to a set of glomeruli in the last common ancestor.

Whether structurally homologous glomeruli have had an

unbroken functional history in pheromone detection, and

whether this function was always associated with male-

specific enlargement are separate questions, as enlarge-

ments could occur in parallel in structurally homologous

glomeruli. Given the phylogenetic position of the butter-

flies examined thus far (Freitas and Brown, 2004; Wahl-

berg, 2006; Regier et al., 2013) it seems most likely that

the male-specific enlargement of particular glomeruli into

an MGC is a secondarily derived trait of G. zavaleta

among butterflies, and an example of convergence at

the level of the Lepidoptera. Whether the putative MGC

in G. zavaleta is homologous to the MGCs in moths at

the level of "structural correspondence" is less clear.

Indeed, the homology of the MGC among moths is not

established. The number of glomerular units that com-

prise the MGC in moths varies between species, partly

but not wholly dependent on the number of chemical

components in the species’ pheromone blend (Hansson

S.H. Montgomery and S.R. Ott
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et al., 1991; Todd et al., 1995; Berg et al., 1998). Struc-

tural homology may therefore be limited to a core set of

glomeruli, or a single glomerulus, and the associated

neural circuitry, around which the MGC evolves in a

taxa-specific manner.

That male-specific MGCs can evolve rapidly and inde-

pendently even at the family and genus level is wit-

nessed by the report that an MGC has evolved

independently multiple times in the two Drosophilid gen-

era, Drosophila and Scaptomyza (Kondoh et al., 2003).

Among Hawaiian species, it is the same two (quite

uncontentiously homologous) glomeruli, DA1 and DL3,

that have been independently enlarged in males in multi-

ple lineages, a case of parallelism of enlargement of

homologous structures. But within D. melanogaster spe-

cifically, enlargement affects DA1 and VA1v, rather than

DL3 (Kondoh et al., 2003). Therefore, even within one

genus, structurally nonhomologous glomeruli can show

convergent male-specific enlargement. Similarly, five spe-

cies of bombycid moths share a core set of two sexually

dimorphic macroglomeruli, the toroid and cumulus, to

which two additional glomeruli have been co-opted into

the MGC in Rondotia and Bombyx (Namiki et al., 2014).

By extrapolation, it is possible that all Lepidopteran

MGCs contain a structurally homologous core glomerulus

(like DA1 within Drosophilids), but we currently lack suffi-

cient information to test this hypothesis.

The fundamental problem here lies in the difficulty of

identifying corresponding glomeruli across taxa. The

consistent positioning of MG(C)s at the root of the

antennal nerve may reflect the outcome of a conver-

gent wiring optimization (Rospars, 1983) and is there-

fore not a suitable homology criterion. One might

define homologous glomeruli according to the orthology

of their associated olfactory receptors (ORs), on the

basis that the gene-regulatory link between OR gene

expression and glomeruli formation might couple gains

and losses in OR genes to concomitant gains and

losses of glomeruli (see below). However, in Drosophila

OR expression is not required for glomerulus-specific

axonal targeting, which is instead controlled by sepa-

rate mechanisms (Dobritsa et al., 2003; Hummel et al.,

2003; Hong and Luo, 2014). It therefore seems con-

ceivable that OR gene expression can be switched out

for expression of a nonorthologous OR in a structurally

homologous glomerulus. Hence, while gene expression

can provide useful information, it is not suitable for

establishing structural homology.

Establishing homology between glomeruli is of clear

importance, as it permits the identification of independ-

ent gains and losses of an MGC. This would provide fur-

ther insights into how olfactory information is coded in

different species, and how labile the underlying neural

networks are. For example, chemical communication is

known to play a significant role in butterfly biology (Scott,

1973; Andersson et al., 2007; Costanzo and Monteiro,

2007) and species that lack an MGC presumably retain

the ability to detect pheromones. In moths, the sex pher-

omone response is thought to be restricted to the MGC,

while plant odors are processed in the ordinary glomeruli,

creating two parallel olfactory systems (Galizia et al.,

2000; Hansson and Anton, 2000; Galizia and R€ossler,

2010), although crosstalk between the pheromone and

ordinary glomeruli subsystems may occur (Trona et al.,

2010, 2013). Whether the loss of an MGC merely reflects

a decrease in the volume of pheromone-associated glo-

meruli while the distinction between two parallel olfactory

systems is maintained, or whether there is a concomitant

wider integration of this function across ordinary glomer-

uli, is not yet clear. Exclusive pheromone detection by

ordinary glomeruli is observed in some honeybee castes

but this may be a special case linked to chemical similar-

ity between pheromones and other environmental odors

(Sandoz et al., 2007).

Sensory adaptations in Lepidoptera
Beyond the sexually dimorphic glomeruli there is a

clear signal of sensory adaptation in the major neuro-

pils. Consistent with the expectation that visual infor-

mation is more important for diurnal Lepidoptera, while

olfactory information plays a greater role in night-flying

species (Hamb€ack et al., 2007), a PCA largely sepa-

rates moths from butterflies along an axis representing

the size of the antennal lobes and the largest visual

neuropil, the medulla. More subtle effects are also

apparent, with the crepuscular M. sexta, which has rela-

tively high visual acuity for a moth (Theobald et al.,

2010), having a proportionately larger medulla than H.

virescens, which is predominantly nocturnal (Hayes,

1991; Topper, 2009), while the size of the G. zavaleta

medulla and antennal lobe are intermediate between

the moths and D. plexippus.

The observed interspecific variation in antennal lobe

size contrasts with the relative constancy of glomerular

number. Across Lepidoptera the total number of glo-

meruli found in each antennal lobe is between 60 and

70 (Boeckh and Boeckh, 1979; Rospars, 1983; Berg

et al., 2002; Huetteroth and Schachtner, 2005;

Masante-Roca et al., 2005; Skiri et al., 2005; Kazawa

et al., 2009; Carlsson et al., 2013) with the exception

of the oligophagous moth genus Cydia, which has only

�50 (Varela et al., 2009; Couton et al., 2009; Trona

et al., 2010). Evidently, variation in antennal lobe size

must be caused by variation in the average size of the

glomeruli and/or changes in the size of the central

fibrous neuropil. The former may reflect heightened
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sensitivity as the glomeruli receive projections from

more olfactory sensory neurons, while the latter may

reflect changes in the number and structure of local

interneurons (and possibly of projection interneurons).

This would result in altered processing of combinatorial

excitation, perhaps enhancing odor discrimination.

The relatively constant number of glomeruli further

contrasts with the apparent high evolutionary turnover

of OR genes in Lepidoptera (Zhan et al., 2011; Dasma-

hapatra et al., 2012). Although drift may also have a

role (Gardiner et al., 2008), duplicated OR genes likely

reflect functional changes in olfaction favored by chang-

ing ecological conditions (Hansson and Stensmyr,

2011). In Drosophila, closely related ORs project to

adjacent glomeruli (Couto et al., 2005; Silbering et al.,

2011), suggesting new glomeruli may often evolve

through fission events (Ramdya and Benton, 2010). This

process may be genetically linked to OR duplication, as

cis-regulatory regions regulating OR expression are also

found upstream of genes controlling olfactory sensory

neuron axon growth (Ray et al., 2008). Hence, ORs and

their associated glomeruli may form readily adaptable,

interchangeable modules that can be readily acquired

and discarded through gain and loss of OR genes

(Cande et al., 2013). This in turn implies that the

roughly constant number of glomeruli across Lepidop-

tera masks a high evolutionary turnover of OR genes,

meaning only few glomeruli may be linked to homolo-

gous ORs across species. This scenario, however, is not

readily reconciled with recent reports that a variety of

odors elicit similar antennal lobe excitation maps in two

ecologically distinct Nymphalids and three closely

related sphingid moths, suggesting conservation of glo-

merular tuning (Bisch-Knaden et al., 2012; Carlsson

et al., 2013). Reconciling these apparently contrasting

patterns of divergence at the genomic and anatomical

level, and understanding what selection pressures or

constraints limit the range of glomerular number in Lep-

idoptera, may shed much light on the function and evo-

lution of olfactory networks.

Conservation and divergence in neuropil
One of the most debated themes in comparative ver-

tebrate neurobiology is the extent to which genetic and

developmental constraints limit the scope of adaptive

evolution of brain structure, enforcing a concerted, as

opposed to a mosaic, pattern of brain evolution (Finlay

and Darlington, 1995; Barton and Harvey, 2000). Our

analysis suggests that invertebrate brains can readily

respond to changing selection pressures, with the gain

and loss of distinct structures, or subcompartmentaliza-

tion of existing neuropil, occurring in a lineage-specific

manner, often without any clear correlative change in

other structures. Within Lepidoptera, species vary mark-

edly not only in the relative volume of different neuro-

pils, as discussed above, but also in the presence or

absence of some traits such as the optic glomeruli, the

AOTu strap, and the zonation of the mushroom body

calyx. Indeed, some traits diverge in a manner that

does not reflect phylogenetic relatedness, or any

obvious ecological variable. A notable example is the

presence of an accessory calyx in the mushroom body

of P. brassicae (Ali, 1974) and D. plexippus (Heinze and

Reppert, 2012), but not of G. zavaleta. Among moths,

an accessory calyx is present in M. sexta (Homberg

et al., 1988), but not in H. virescens (Kvello et al.,

2009; Løfaldli et al., 2010) or several other species

(Bretschneider, 1924; Pearson, 1971). This repeated

gain and loss of the accessory calyx is common across

invertebrates (Farris, 2005) but the functional signifi-

cance is unclear.

A final notable aspect of Lepidopteran brain evolu-

tion is the lack of apparent coevolution between the

antennal lobes and the mushroom body calyces. The

calyces are one of only two neuropils that receive

direct innervation from the axons of antennal lobe pro-

jection neurons, the other being the lateral protocere-

brum. It may therefore be reasonable to expect a

positive coevolutionary relationship between antennal

lobe size and the mushroom body calyx (Strausfeld

and Li, 1999; Farris, 2005). Indeed, insects that show

an extreme evolutionary reduction or total loss of their

antennal lobes also typically lack calyces (Strausfeld

et al., 1998; Farris and Roberts, 2005). However, the

present analysis within Lepidoptera provides little evi-

dence for graded concomitant changes in antennal

lobe and calyx size. In some instances, the explanation

may be that substantial portions of the calyx are given

over to non-olfactory tasks (Sj€oholm et al., 2005;

Heinze and Reppert, 2012). We note, however, that a

decoupling of AL and MB calyx size does not in itself

imply that part of the calyx has assumed nonolfactory

functions: it may instead reflect the distinct computa-

tional roles of the AL and MB in olfaction (Laurent

et al., 1998; Laurent, 2002). For example, selection

for increased odor sensitivity may drive an increase in

the number of receptor neurons and thus result in big-

ger glomeruli, but would not require more projection

neurons or any changes in the calyx. The patterns

seen among Lepidoptera indicate that, apart from the

extreme case of anosmic insects, the forces driving

coevolution of AL and MB size are only moderate, and

refutes the na€ıve expectation that reliance on olfactory

information will drive the expansion of both structures.

Deciphering whether this mosaic pattern of change is

a common feature of invertebrate brain evolution will
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require further comparative data, but proportional dif-

ferences in brain structure have been reported for a

number of taxa (Ott and Rogers, 2010; O’Donnell

et al., 2011, 2013).

CONCLUSIONS AND FUTURE PROSPECTS

In this study we present multiple lines of evidence

that ecology-specific behavioral selection pressures

shape the composition of invertebrate brains. In the but-

terfly G. zavaleta, heightened reliance on olfaction appa-

rently drove the independent evolution of a group of

specialized olfactory glomeruli into a prominent MGC

with a putative function analogous to the pheromone-

sensing MGC in moths. Combined with recent genomic

(Zhan et al., 2011; Dasmahapatra et al., 2012) and neu-

rophysiological and ecological evidence (Andersson

et al., 2007; Costanzo and Monteiro, 2007; Carlsson

et al., 2013) this reinforces the importance of olfaction

in some diurnal butterflies, a group traditionally per-

ceived as relying primarily on visual information. To the

extent that brain composition reflects adaptations rather

than developmental or functional constraints, the relative

sizes of brain structures should differ according to their

importance to an organism’s behavior (Barton et al.,

1995; Gronenberg and H€olldobler, 1999; De Winter and

Oxnard, 2001; El Jundi et al., 2009a,b; Wei et al., 2010;

Heinze and Reppert, 2012). We found that the size of

the sensory neuropil can be directly related to a species’

diel pattern of activity and habitat preference across four

species of Lepidoptera. This is true both when compar-

ing two moths with two butterflies, and when comparing

a nocturnal and a crepuscular moth, or a more visually

and a more olfactorily driven butterfly. Our results also

uncover a strong signature of a mosaic pattern of brain

structure evolution. Whatever developmental and func-

tional constraints may operate in invertebrate brains,

they clearly permit adaptive (sensu mosaic) evolution of

brain structure with expansions in certain neuropils

occurring without concomitant expansion in all function-

ally related structures. These results suggest future com-

parative studies across many more species may be

useful in illuminating the ecological and behavioral rele-

vance of neuropil size and structure, and the significance

of connections between neuropils.
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