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Abstract 

The evolution of circulating viruses is shaped by their need to evade antibody response, which 

mainly targets the glycoprotein (spike). However, not all antigenic sites are targeted equally by 

antibodies, leading to complex immunodominance patterns. We used 3D computational models to 

estimate antibody pressure on the seasonal influenza H1N1 and SARS spikes. Analyzing 

publically available sequences, we show that antibody pressure, through the geometrical 

organization of spikes on the viral surface, shaped their mutability. Studying the mutability 

patterns of SARS-CoV-2 and the 2009 H1N1 pandemic spikes, we find that they are not 

predominantly shaped by antibody pressure. However, for SARS-CoV-2, we find that over time, 

it acquired mutations at antibody-accessible positions, which could indicate possible escape as 

define by our model. We offer a geometry-based approach to predict and rank the probability of 

surface resides of SARS-CoV-2 spike to acquire antibody escaping mutations. 

 

Introduction 

The COVID-19 pandemic, caused by the SARS-CoV-2 coronavirus, is one of the most 

challenging global health crisis within the last century (1). The virus emerged as a result of a 

zoonotic shift (2, 3). It is a member of the betacoronaviruses family (4), related to coronaviruses 

found in Bats (5), and to SARS CoV that cause severe respiratory syndrome (6) as well as other 

widely circulating members of the family that cause the common cold  (7). 

Coronaviruses (CoVs) have the largest genomes among RNA viruses (8). Nonstructural 

protein 14 (nsp14), a subunit of the replicase polyprotein encoded by CoVs is thought to provide 

a form of proofreading activity that could support the expansion of large CoVs genomes to their 

current size. One result of such proofreading activity is that CoVs genomes are less mutable 
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compared to other RNA viruses (9), and thus the sequence diversity of SARS-CoV-2 is quite low 

(10). 

In response to the SARS-CoV-2 pandemic, many approaches for antibody (Ab) therapies, 

and vaccines are being explored (11). Almost all vaccination approaches aim to use the 

glycoproteins or spike protein (S) of the virus in its trimeric form (12) or vaccinate with the full 

(inactivated) virus (13). The spike, a class I fusion protein, mediates entry to the host cell by 

binding to the angiotensin-converting enzyme 2 (ACE2) receptor (Ou et al., 2020) and is the main 

target of Ab response (Robbiani et al., 2020; Wu et al., 2020). These therapeutic approaches, 

hopefully, would be able to elicit strong Ab and T cell response against the virus. In particular, 

Abs against the spike receptor-binding domain (RBD) have been shown to have neutralization and 

protective capabilities (14, 15). 

Since SARS-CoV-2 virus introduction into humans is recent, it probably has not yet 

evolved extensively to acquire escape mutations from the commutative Ab pressure of the human 

population (16). One mutation at the spike (D614G) is now widespread and is thought to support 

a high viral growth rate (17). However, other members of the coronavirus family have been 

circulating in human populations for many years (18) and evidence of antigenic drift is seen in 

SARS-CoV-1 (Guan et al., 2003; Song et al., 2005), and among common cold coronaviruses 229E 

(Chibo and Birch, 2006). Hence, given the prevalence of SARS-CoV-2, to inform vaccine design 

and understand how the fitness landscape of the virus evolves, it is important to recognize antigenic 

drift due to Ab pressure if it were to occur. More generally, antigenic drift due to Ab pressure is 

common in other RNA viruses such as the seasonal influenza virus (19, 20). 

Here we sought to understand and predict, from first principle, to what extent the mutability 

of the spikes of influenza and close relatives of SARS-CoV-2 could be attributed to Ab pressure. 
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The magnitude (titers) of Ab response against a given epitope is a direct consequence of the B 

immunodominance hierarchy patterns of an immunogen, which are the result of various aspects of 

the humoral response to antigen (21-23). Amongst them is the B cell repertoire – the number of B 

cell clones targeting different epitopes (24-29), their germline affinity (24, 30), and T cell help to 

B cell (31). Here, we concentrate on the geometric presentation of the spike to Abs. We have 

previously shown using coarse-grained molecular dynamics simulations, that the geometry of the 

immunogen spike presentation on the virus recapitulates the known immunodominance of 

hemagglutinin (HA) head compared to its stem (24). 

We developed here an in-silico approach to estimate the Ab targeting - a proxy for B cell 

immunogenicity (24), of residues on the spike surface, and the differential accessibility to antigenic 

epitopes due to the geometrical presentation of spikes on the surface of the virus. Superimposed 

on the spike surface, the immunogenicity score gives the Ab affinity maps of influenza and corona 

spikes, which we applied to predict how the antigenic space is explored unevenly across the surface 

of these glycoproteins. We then used sequences from public repositories (www.ncbi.nlm.nih.gov, 

www.gisaid.org) to evaluate the mutability maps of those glycoproteins. Next, we developed a 

computational approach based on spectral clustering to compare these maps. We found that about 

50% of the mutability maps variability of the S protein of the severe acute respiratory syndrome-

related betacoronavirus (sarbecovirus), and 67% of the variability in the mutability of the seasonal 

influenza spike (HA) can be attributed Ab pressure, as estimated from the model. This suggests 

average, polyclonal Ab pressure was consequential in the diversification of the coronavirus 

sarbecovirus spike and the seasonal flu spike. Moreover, our data suggest that the geometry of 

spike presentation on the viral surface is a major factor determining its mutability. 
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We further studied the time evolution of SARS-CoV-2 spike mutability up to November 

1st, 2020. While the overall correlation between our model and the mutability map is still low 

(correlation coefficient 0.46), we find that it has been gradually increasing over time. While very 

preliminary, it could suggest that some variants with Ab escape mutations are establishing in the 

population. Overall, our approach allows us to recognize from first principle, based on the 3D 

structure of glycoprotein and cryo-EM images of the viral surface, whether their mutational 

landscape has features suggesting Ab evasion, and rank surface residues according to their 

likelihood to acquire Ab-escaping mutations in the future. Importantly, this approach can detect 

early signs of SARS-CoV-2 and influenza adaptation to evade immune pressure by memory B 

cells. 

Results  

Geometry-dependent affinity of Abs to HA epitopes 

The high-density presentation of spikes on the viral surface shelters, through steric impediments, 

immunologically recessive and conserved residues from Ab targeting – for example, residues 

belonging to the stem of HA (20, 29, 32). To study the relative accessibility of residues on the 

spike surface, we employed MD simulations to define how Ab on-rate, and hence affinity, could 

be modulated by the presentation of the spike. We first studied two geometrically distinct HA-

presenting immunogens: 1) Presentation as soluble full-length HA trimer in its closed form 

[A/New Caledonia/20/1999 (NC99)] (25, 33-35) (Figure 1A-i); 2) HA presentation within H1N1 

influenza A (NC99) virus model  (Figure 1B-i) [See Material and Methods]. For each presentation 

form, based on structural considerations, we computed the on-rate for Abs engaging different 

surface epitopes (Figure 1A-ii, B-ii). The events occurred in the following sequence: 1] a single 

Ab arm first engages a target epitope; 2] the Ab molecule continues to fluctuate, allowing the 
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second arm to target a second epitope, when the immunogen geometry is favorable, to bind it with 

a high rate, resulting in bivalent binding (S Figure 2A-B). 

We superimposed the in-silico estimated affinity (on-rate of the first Ab arm) on HA 

structure to represent its affinity map (Figure 1A-i, B-i). In the context of the free HA trimer 

presentation, we found that residues at convex sections on the spike surface were more accessible 

to the Ab, resulting in high affinity (Figure 1A-ii). In the context of virus HA presentation (Figure 

1B-ii), similar behavior followed, and the density of spikes on the viral surface reduced the ability 

of the Ab to penetrate and interact with epitopes on the lower part of the spike, resulting in an 

affinity gradient of the Abs targeting residue along the main axis (Figure 1B-ii right). Hence, 

presentation on the virus surface, as occurs in vivo, leads to an immunodominance or Ab pressure 

(targeting) gradient along the main axis of HA.  

Antibody pressure directs the evolution of the seasonal flu 

Viral infection elicits a humoral response and the production of Abs that target residues on 

the surface of glycoproteins. For circulating viruses to propagate in a population, they have to 

evade neutralization and recognition by Abs (36, 37). To do so, they accumulate mutations on their 

glycoproteins  (38, 39). Because sterically hidden residues are less accessible to Abs, we 

hypothesized their need to mutate is smaller compared to more accessible ones. Hence, we 

expected spike evolution and the mutational landscape to follow Ab pressure. 

The influenza virus mutates from one year and the next, where most of the mutations are 

concentrated in five antigenic sites (Sa, Sb, Ca1, Ca2, Cb) located at the head of HA (40). Along 

with genetic drift, escape from neutralization by Abs is one of the main factors contributing to HA 

mutability (19, 20). To examine the relationship between Ab pressure as defined by our model, 

and HA surface mutability, we studied the evolution of the seasonal influenza virus H1N1 using 
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sequences dating back to 1918 (see Material and Methods). Following alignment, we computed 

the entropy of each surface residue identified as an epitope (see Material and Methods). The 

entropy jH  of residue j  is given by 

 ( ), ,
Amino acid in
 virus family

logj j i j i
i

H p p
 ∈  

= ∑ , (1) 

where ,j ip  is the probability of amino acid i  to appear at residue j  across the viral population 

(Figure 1C-i). By superimposing the residue entropy on the surface of HA, we created its 

mutability map (Figure 1C-ii). Interestingly, the mutability map is comparable to the affinity map 

computed for the virus presentation (Figure 1B-ii), showing a pattern of diminishing mutability 

gradient along the main axis of the spike, but less so to the results for the trimer presentation 

(Figure 1A-ii). This is corroborated by previous studies showing that the HA head acquires more 

mutation and evolves faster than its lower part – the stem (41). 

We next quantified the similarity of the affinity and mutability maps. Because of the 

coarse-grained nature of our antibody model, we decided to aggregate close-by residues on the 

spike surface (Figure 2A). As the surface features of the spike appeared to be an important factor 

in determining Ab affinity, we applied a non-linear mapping (manifold learning) algorithm - 

diffusion maps (42) on the epitopes' positions and used the first three components (Figure 2B). We 

then applied the k-means clustering algorithm (43) (spectral clustering) to aggregate residues in 

this space into epitope clusters (Figure 2C). We computed for each epitope cluster k  its entropy 

and affinity as follows: 

 
[ ]

,
Resiudes in cluster k

1
Ent k j

jk

C H
N ∈

= ∑ , (2) 
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[ ]

,
Resiudes in cluster k

1
Aff k j

jk

C
N

ω
∈

= ∑ , (3) 

where ,Ent kC  and ,Aff kC  are the epitope cluster entropy and affinity respectively, kN  is the number 

of residues in cluster k , jω  is the affinity (on-rate of the first Ab arm to epitope) to residue j , and 

the entropy jH  of residue j  is given by eq.(1).  

To assess the predictive strength of the computed affinity in explaining the observed 

mutability, we computed the correlation between ,Aff kC  and ,Ent kC  as a function of the cluster 

number (Figure 2D). We find that the correlation values for HA virus presentation are high, with 

a maximum of 0.92 for 10 clusters, suggesting the in-silico model can explain a significant fraction 

of the mutability. Interestingly, the correlation value, regardless of cluster number, is always larger 

for the virus presentation than for the trimer (Figure 2D), highlighting that spike evolution and 

escape due to Ab pressure occurs in the context of the virus - as a result, both mutability and Ab 

affinity vary most along the main axis of the spike. 

To determine the optimal number of clusters k  for comparison between the two maps, we 

first estimated the Total Within Sum of Squares for different cluster numbers (S Figure 5A) and 

used the elbow method to choose 60k =  (44). For 60k = , we found a correlation of 0.82 between 

,Ent kC  and  ,Aff kC , suggesting that epitope cluster affinity, at this resolution, can explain 67% of 

the variability in the mutability map of HA.  

Surprisingly, most epitope clusters that contain residues belonging to the five antigenic 

sites show a linear relation between their entropy and affinity, suggesting that the mutability of 

these sites simply follows from their position on HA, the geometry of its presentation on the viral 
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surface, and is due to Ab pressure (Figure 2E). Epitope clusters containing conserved residues at 

the HA stem belonging to the HA Group 1 broadly neutralizing epitope (20, 29, 32) similarly align.  

Taken together, these results suggest that the mutability of surface spike epitopes of 

circulating viruses can be described using a phase diagram (Figure 2F). The mutability of epitope 

clusters that lay on a linear line of epitope cluster entropy vs. epitope cluster affinity is related to 

the average Ab pressure acting on these residues (Figure 2F). Epitope clusters below the line are 

more conserved than would be expected based on their accessibility to Ab pressure and could be 

due to the presence of functionally important sites. Epitope clusters above that line are more 

mutable than would be expected due to Ab pressure and may result from allosteric immune escape 

(45), escapes from CD8+ T cells (46, 47), glycosylation (48), or other factors.  

The mutability map of the sarbecovirus spike follows geometry-dependent antibody pressure 

Coronaviruses are capable of crossing the species barriers in zoonotic shifts resulting in the 

SARS-CoV pandemic in the year 2002-2004 and the 2012 MERS pandemic (4). To understand 

whether the geometrical principles controlling the distribution of mutation on the spike surface are 

general across species, we applied our computational model to study the mutability of the spike 

protein of close relatives of SARS-CoV-2 – the sarbecovirus subgenus. We considered two 

presentations of the corona spike (S protein) to Abs: 1) Presentation as soluble full-length S trimer 

in its closed form (49) (S Figure 3A-i); 2) S presentation on the coronavirus surface (Figure 3A-i) 

[based on the cryo-EM structure of SARS that has 65 spikes on its surface (50) and SARS-CoV2 

spike (49) (See Material and Methods)]. 

We first used in-silico simulation to estimate the Ab affinity to surface residues of S, when 

presented as a trimer or the surface of the virus model (See Material and Methods). Similarly to 

our observation for the Abs affinity against HA, we found an increased affinity to convex regions, 
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an affinity gradient along the main axis of S for the virus presentation (Figure 3A-ii), but not for 

the trimer presentation (S Figure 3A-ii). Next, we analyzed sequences of close relatives of the 

SARS-CoV-2 spike within the sarbecovirus subgenus (Table 1). Following alignment and 

construction of the phylogenetic tree (S Figure 4), we computed the mutational entropy of each 

surface residue identified as an epitope using eq.(1) (Figure 3B-i) and superimposed it on the spike 

surface to create its mutability map (Figure 3B-ii). We observed that the most significant change 

in mutability is along the main axis of S. To quantitatively compare the affinity and mutability 

maps, we applied the diffusion map transformation on S and clustered the epitopes (Figure 3C). 

Studying the correlation value as a function of cluster size (Figure 3D), we found that the 

correlation between the model and the mutability map is always higher for the virus spike 

presentation compared to the trimer, highlighting that the geometrical context in which Abs 

interact with the spike determines its mutability. We found a high degree of correlation (R=0.69) 

between ,Ent kC  and  ,Aff kC , suggesting that affinity as computed by our model, at this resolution, 

can explain 48% of the variability in the mutability map of S (Figure 3E). The high degree of 

correlation between entropy and affinity suggests that average Ab pressure shaped, to the first 

order, the mutability of the sarbecovirus subgenus spike. While for seasonal influenza, the HA 

entropy (Figure 1C) was the result of a gradual accumulation of mutations over time, S protein 

entropy (Figure 3B) analyzed here is the result of a horizontal mutational process occurring 

simultaneously in different hosts, suggesting the virus evolves under similar geometrical 

immunoglobulin pressure. 

The receptor-binding domain (RBD) is involved in the spike binding to ACE-2 (51, 52). It 

has been shown that neutralizing Abs targeting the RBD can offer protection (14). Within the 

RBD, residues belonging to the receptor-binding motif (RBM) are most important in binding to 
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ACE-2. We recognized epitope clusters to which residues part of the RBD and RBM belong 

(Figure 3E). Many of the epitope clusters have both high entropy and high affinity, which could 

suggest mutations acquired at these key domains across the spike are due to evasion from Abs, as 

well as adaptation to the host-specific receptor. Several of the highly targeted and mutable epitope 

clusters are not part of the RBD. Hence, Abs targeting these residues will not necessarily offer 

neutralization activity. However, Abs targeting these clusters can control viral infection through 

non-neutralizing pathways (53), thereby motivating the virus to mutate these highly targeted parts.  

SARS-CoV2 and the 2009 influenza pandemic spikes mutability is not predominantly due to 

antibody-pressure 

Our analysis suggested that spike presentation geometry is an important factor governing 

the mutational entropy of viruses circulating either over long periods (influenza) or across species 

(sarbecoviruses). To find whether this observation can be generalized to pandemics, we computed 

the sequence entropy of HA for the 2009 flu pandemic H1N1 (sequences from (41), GISAID) 

(Figure 4C-i). Superimposing the entropy on the HA structure (Figure 4A-ii), we did not observe 

immunodominance gradient along the main axis of HA observed in the computational model 

(Figure 1A-ii). Unlike for the mutability of seasonal flu, the correlation coefficient between epitope 

cluster pandemic entropy and epitope cluster affinity was low (0.18) (Figure 4A-iii). 

SARS-CoV-2 zoonotically shifted to humans in 2019 (5), probably from Bats via 

pangolins, although its precise evolutionary path is still unclear. Since then, it has spread in the 

human population, infecting more than 35 million people as of October 2020. Because of its 

proofreading capability, the virus evolution is slow. To analyze its total mutational entropy up to 

November 1st, 2020, we downloaded publically available SARS-CoV-2 sequences from GISAID 

(www.gisaid.org) (54) (sequences choice is discussed in Material and Methods), computed the 
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sequence entropy (Figure 4B-i), and superimposed it on the close structure of the spike (Figure 

4B-ii). Interestingly, the mutability map does not show the same gradient pattern as observed for 

the sarbecovirus subgenus spike entropy (Figure 3B-ii). We applied the same clustering ( 60k = ) 

to compare the epitope cluster entropy and affinity and found a low value of the correlation 

coefficient (-0.047) (Figure 4B).  Hence, the total sequence entropy of SARS-CoV-2 thus far is 

not dominanted by escape from Ab mutations.  

Time evolution of SARS-CoV-2 mutability map 

To see if we could observe changes in the evolution trend of the virus of the time, indicative 

of Ab escape mutations, we separated SARS-CoV-2 sequences into five groups based on the time 

at which they were captured: 1] before 02/2020, 2] 02/2020-06/2020, 3] 07/2020-08/2020, 4] 

09/2020, and 5] 10/2020 (Figure 4C-G). Computing the correlation coefficient between the Ab 

affinity map and the sequence entropy, we found a significant increase over time (Figure 4H) from 

a value of -0.18 in Feb 2020 to 0.46 for sequences sampled during 10/2020. While the correlation 

value of 0.46 is still low, this may point that escape from Abs mutations are starting to be a more 

significant part of its population, in accordance with other reports (16, 55). An increase over 

months and years in correlation value between the affinity map computed by our model and the 

evolving mutational landscape of SARS-CoV-2 could indicate that its mutability patterns are being 

shaped by Ab pressure. (See time dependence here 

https://amitaiassaf.github.io/SpikeGeometry/SARSCoV2EvoT.html). 

Discussion 

Humoral immunity is often characterized by dominant versus recessive responses to different 

epitopes on the same antigen. This hierarchy of B cell immunodominance depends on many 

factors, amongst them are the precursor frequency within the germline B cell repertoire, BCR 
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affinity, and the steric accessibility or antigen geometry. Pathogens take advantage of antigen 

geometry to shield sites of vulnerability. Such is the case in influenza spike hemagglutinin, where 

conserved sites are located and the sterically hidden stem (56-58), or on HIV spike gp120 where 

the vulnerable and evolutionary conserved CD4 binding site position does not allow Abs to form 

bivalent interactions, reducing the effective affinity of Abs (59). While mature Abs are 

nevertheless capable of approaching sterically restricted sites via somatic hypermutations that 

could extend, for example, their CDR3 loops (60), immunogen shape and valency manipulates B 

cell immunodominance patterns, their selection process in the germinal center or the expansion of 

memory B cell population (24, 61, 62). Because viruses must evade Ab response to survive, B 

cells immunodominance patterns could be a proxy to glycoprotein mutability, coupled through 

antigen geometry. Thus, we studied whether spike presentation geometry to Abs is a good 

predictor of their mutability. Using a coarse-grained model of an antibody, HA, and the S protein 

of SARS-CoV-2, in both trimer and viral presentation model system, we computed the Ab affinity 

maps as a proxy for Ab pressure on the spike. We used those maps to assess whether the magnitude 

of mutability at a cluster of sites is just what would be expected by geometrical considerations 

(Figure 2F). 

We found that for the seasonal flu spike – HA, geometry through the presentation on the 

virus could explain, to the first order, the mutability patterns at its surface. In particular, the 

mutability of the five antigenic sites is ordered as would be expected by the geometric restriction 

imposed by their position on the spike, as did the conserved group 1 epitope, which is functionally 

important for HA conformation change (Figure 2E). Hence, we speculate that rather than 

maintaining functionally important sites conserved by negatively selecting mutants at such sites, 
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the virus positions functional sites at a location, where their acceptable mutational rate would be 

determined by their need to escape from targeting by the average polyclonal Ab response. 

To understand whether a similar principle governs the mutability of coronaviruses, we 

created a similar coarse-grained model of the SARS CoV family. As coronaviruses do not mutate 

much, we decided to analyze its mutability across the virus sub-species, using sequences isolated 

from different hosts in the years 2003-2019. In mammalians, these viruses have to evade 

immunoglobulin response which we hypothesized would lead to geometrically similar escape 

patterns. We found that geometry, through Ab targeting, shapes to the first order the mutability 

patterns on the sarbecovirus subgenus spike map. Hence, these viruses evolve across various hosts 

under roughly geometrically-similar Ab pressure – at least the main axis of the virus seems to be 

the first, principles axis of mutability resulting from the density of spikes on the viral surface. 

The mutational probability distribution we sampled for the sarbecovirus subgenus is 

analogous to sampling different “realizations” of the statistical ensemble of the sequence landscape 

of the viruses (63), where each realization is a viral from a different host. For the seasonal flu, we 

considered sequences over a large period - starting from 1918 and aggregate them to a single 

probability distribution analyzed. In both cases, presentation geometry roughly explained sequence 

entropy. Comparing both these approaches to describe mutability distribution is conceptually 

similar to the ergodic theorem in statistical physics, where the averages of a stochastic process 

sampled over time are equivalent to the averages computed over different statistical realizations. 

While evolution patterns of mutating viruses are not an ergodic system in general – as many 

mutants are not viable, and hence unreachable in the sequence space, the similar geometry of 

immunoglobulins and spike presentations could be is the reason our model works for both these 

different instances, with mutations distributed across time (for influenza), or across species (for 
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sarbecoviruses). Statistical physics models have been previously used (64) to analyze the sequence 

space to compute the fitness landscape space of viruses (65, 66). The overall fitness of viruses is 

often split into its intrinsic fitness of the virus and fitness component related to evasion from the 

immune response (i.e. Abs) (67). As our approach allows for rough estimation, from first principle, 

of the virus Ab-dependent element of the fitness, it can be used as a prior in inference methods of 

the intrinsic fitness. 

Because of its proofreading mechanism, SARS-CoV-2 is not expected to mutate much. 

Nevertheless, since the SARS-CoV-2 pandemic has erupted, its sequences have been analyzed to 

detect mutations that would increase its fitness, infection capabilities, or allow it to escape from 

Abs (16, 17, 55, 68). To see if we can find traces of escape due to Ab pressure on the SARS-CoV-

2 spike, we compared its mutability map to our computed affinity map over time and found an 

increase in the correlation value since the beginning of the pandemic (Figure 4H). While the 

correlation value of 0.46 computed for October 2020 is still low, it could suggest the spike starts 

to acquire some escape from Ab mutations. Since the RBD is involved in binding to ACE2, 

mutations at this domain could also modify the binding energy to the receptor. Interestingly, for 

the 2009 influenza pandemic, we found a low correlation value of 0.18. This could suggest that 

the 2009 flu pandemic has not been evolving for long enough under Ab pressure for the geometric 

pattern to be apparent and that the evolution of pandemic viruses is not, at least initially, directed 

by Ab pressure acting on their surface residues. It is more likely that mutations that accumulate in 

their spikes serve to increase their fitness and infecting capabilities in humans. Additionally, it is 

possible that pandemics do not elicit as strong a memory recall as seasonal/circulating viruses, and 

hence do not need to evolve as rapidly to escape Ab immune pressure. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2020. ; https://doi.org/10.1101/2020.10.20.347641doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.20.347641
http://creativecommons.org/licenses/by-nd/4.0/


 16 

We propose here a simple geometrical interpretation of the surface mutational landscape 

of that spike that could inform, based on sequences and the 3D structure alone, whether a dominant 

component of virus evolution is evasion from Abs. This technique could serve as an indicator of 

the evolutionary stage in the infection trajectory of a virus and whether it is on its way to becoming 

a circulating virus such as the seasonal flu. 
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Materials and Methods  

The geometry of immunogens and epitope choice 

The first input to our model was an atomistic description of the geometry of our immunogens, 

which we generated from available structural information and pdb files (49, 69). For HA and S, 

solvent-accessible residues were identified using pymol script “findSurfaceResidues” 

(https://pymolwiki.org/index.php/FindSurfaceResidues), which identifies atoms with a solvent 

accessible area greater than or equal to 20 Ang2 (HA) and 15 Ang2 (S). We then find the residues 

to which those atoms belong to. This selection criterion gives a uniformly distributed set of 

residues on the face of HA and S (see S Figure 1A, B). A total of 184 epitopes (residues) were 

chosen for HA and 254 epitopes for S. 

 We constructed a simplified model of the influenza virus, in which 40 HA molecules are 

arranged in a fixed conformation on a sphere of radius equal to 16nm (a value chosen for 

computational tractability). The model recapitulates (24) the average spacing between adjacent 

HA on the influenza viral surface of ~ 14 nm (Harris et al., 2013). We also constructed a simplified 

model of the coronavirus based on the cryo-EM images of the SARS virus, in which 65 S 

molecules in closed form (49) are arranged in a fixed conformation on a sphere of radius equal to 

87nm (50), resulting in a density of 0.27 spike pre 100nm2. 

Steric constraints affect the access of antibodies to epitopes and this modifies the on-rate, 

thus modulating the affinity. To compute the relative magnitude of this effect for different epitopes 

presented by immunogens with different geometries, we employed MD simulations. In these 

simulations, a Lennard-Jones potential describes the interactions of antibodies with the 

immunogen atoms, and a separate Morse-potential is used to model interactions of the antigen 

binding region of the Ab to its specific cognate epitope (see Table S 1). To estimate the steric 
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effects alone, we first assumed that the affinity of Abs to all epitopes was equal in the absence of 

steric constraints. We then used MD simulations (Lammps software) (70) to compute the average 

time for the Ab antigen-binding region (S Figure 1C-D) to find the target epitope for the first time, 

which is called a “first passage time”. By running simulations multiple times, and then averaging 

over many simulations, we could estimate the mean first passage time to the epitope. The inverse 

of the mean first-passage time is the on-rate, and thus we computed the relative on-rates for Ab 

binding to different epitopes for different immunogen geometries. We take the on-rate of the first 

arm of the Ab model as a proxy for Ab affinity to a residue. 

Coarse-grained model of the antibody 

To estimate the encounter probability and rate of different residues on the surface on the 

immunogens by the Ab, we employed coarse-grained MD simulations. The B cell receptor is 

represented using 8 beads (see S Figure 1). We used a coarse-grained model of the Ag and Ab (see 

S Figure 1). In (71), a model of the Ab was suggested, built from ellipsoids and spheres. Here, we 

built our Ab model using spheres of different sizes to approximate the same dimension and 

flexibility of the Ab. The MD simulation system is composed of different beads (see Table S 1). 

This size of the beads was chosen such that the distance between the two Fabs is approximately 

15nm and the length of the Ab arm is 7nm (72). The size of the Fc region is chosen to be 5nm (73) 

(see Table S 1). To construct the 7nm arm we use 3 beads (types 4,5,6 – S Figure 1B-C, Table S 

1), where nearest-neighbor beads are connected with rigid bonds of length 1.75nm. Bead type 4 

(arm hinge) is connected to bead 3 (Fc hinge) by a rigid bond of length 1.75nm. The epitope bead 

(type 7, Table S 1) was chosen to have the same size as the Fab beads (1.75nm) (Table S 1). The 

beads along the arm (type 4,5,6) are on a straight line (no kink), and the middle bead (type 6) is 

larger, to approximate the elongated ellipsoid shaped arm of the Ab (71). 
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The average angle between the two arms of the Ab fluctuate with a mean of 120 degrees 

and obeys the harmonic potential 

 ( ) ( )2
0U θ κ θ θ= − ,  (S1) 

with  and  , resulting in a relatively rigid model of the Ab (De 

Michele et al., 2016).  

The system is integrated using a Langevin thermostat under “fix nve” to perform performs 

Brownian dynamics simulations (see https://lammps.sandia.gov/doc/fix_langevin.html).  

The Fab bead interacts with the respective epitope bead via the Morse potential 

 ( ) ( )0 02 2
0 2 forr r r r

cE D e e r rα α− − − − = − <  ,  (S2) 

where  which is the distance between the Fab bead and an epitope bead at which the 

LJ energy between them is zero, and the cutoff radius .  is the energy and the 

bond fluctuation scale : the Morse potential only serves to anchor the 1st arm to the 

epitope allowing the second arm to search for a second epitope. 

The beads interact with the Lennard-Jones potential  

 

 
12 6

, ,4 fori j i j
cE r r

r r
σ σ

ε
    
 = − <   
     

 ,  (S3) 

where ,   is the interaction distance between beads i and j, and the cutoff radius is 

. The values of  are detailed in Table S 2. The LJ interaction distance  between 

all beads composing the Ab arm (types 4, 5, 6), and the epitope bead (type 7) is 1.75nm to construct 

0 0.66 radiansθ = 2
bk T / d10 ra ianκ =

0 1.75nmr =

2.2nmcr = 0 50D =

11nmα −=

1ε = ,i jσ

1/6
,2c i jr σ= ,i jσ ,i jσ
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the 7nm long arm. The LJ self-interaction distance of the Ab arm bead (type 6) was taken to be 

4.2nm (Table S 1) to maintain an angle of approximately 120 degrees between the arms. The 

interaction distance of other pairs of beads is the sum of their radii (Table S 2). 

Estimating the on-rates to the epitopes 

 The on-rate to each of the residues is estimated using MD simulations. Each simulation 

runs for a predetermined amount of time and we find the diffusion-limited first passage time of 

one of the Fabs to the neighborhood of the target residue. The on-rate for the first arm to find an 

epitope is given by 

 ,  (S4) 

where  is the on-rate estimated from simulation, , for the Ab to find epitope , and 

is the number of independent simulations we perform. In a simulation where the Ab does not 

find its respective epitope we take . We perform independent MD simulations to 

estimate  for each epitope (7 independent simulations for the HA trimer, 12 for the 

influenza virus model, 17 independent simulations for the S protein trimer, 9 for the coronavirus 

model). 

 The on-rate for the binding of the second arm is given by 

 ,  (S5) 

where in a simulation where the Ab does not find its epitope we take . 

Viral sequences 

,1 , ,1 , ,
1

on arm Ep on arm Ep i
iSim

k k
N

= ∑

,1 , .on arm Ep ik i Ep

SimN

,1 , , 0on arm Ep ik =

,1 ,on arm Epk
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1
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The sequences analyzed here of the seasonal influenza H1N1 and the 2009 influenza pandemic are 

from (Kirkpatrick et al., 2018) - which originate from www.gisaid.org. SARS-CoV-2 sequences 

were downloaded on November 8th, 2020 from www.gisaid.org. Out of a total of 189550, only 

high quality (complete) sequences of length 1274 amino acid (135216 sequences) were analyzed. 

The consensus sequence of SARS-CoV-2 was calculated using the BLOSUM50 scoring matrix in 

Matlab. Sequences of the sarbecovirus subgenus were downloaded from www.ncbi.nlm.nih.gov. 

(see Table 1). The alignment of those sequences was done using ‘GONNET’ scoring matrix in 

Matlab. Find an interactive, time-dependent comparison of the mutability map to the affinity map 

model here https://amitaiassaf.github.io/SpikeGeometry/SARSCoV2EvoT.html. 
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Figure legends 

 
Figure 1 Antibody targeting and mutability of the hemagglutinin protein for the seasonal flu. 

(A-B) Coarse-grain model of the hemagglutinin trimer of A/New Caledonia/20/1999 (NC99) 

H1N1 influenza protein in its closed form (A). The virus has 40 HA molecules at a spike spacing 

of 14.8 nm. [Measured spike spacing on influenza is 14 nm (74)] (B). For each immunogen 

geometry (trimer - A or full virus - B), a detailed atomistic structure of the immunogen is coarse-

grained and presented in rainbow colors (panel i). Here every colored bead on the immunogen is 

a residue, representing a different HA epitope (184 different possible sites on trimeric HA). The 
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antibody structure is presented as the Fc (blue bead), and two antigen binding sites (magenta 

beads). Panels ii within A-B depict coarse-grained simulations for the Ab affinity (on-rate of Ab 

first arm binding – see eq.(S4)) to these residues. The affinity estimated from the simulation is 

superimposed on the HA structure. Top view (left), side view (right). The affinity to cyan sites is 

high, intermediate to white sites, low for purple sites, and was the average over multiple 

simulations. (C) Panel i depicts the entropy (see eq.(1)) of HA epitopes computed for the seasonal 

flu (pre-pandemic influenza H1N1 (1918–1957 and 1977–2009) (sequences from (41)). Panel ii 

shows the entropy of the residues superimposed on HA structure, where highly mutable residues 

are in cyan, intermediate in white and conserved sites in purple. 
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Figure 2 Antibody pressure guided the mutability of the hemagglutinin. (A) HA protein. Each 

circle corresponds to a surface residue (epitope) and has a different color. (B) 2d projections of the 

first four eigenvectors of the epitope positions following diffusion map decompositions. (C) 

Surface residues (epitopes) were clustered using k-means clustering algorithm applied to spectral 
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decomposition shown in B. Same color-coding as in (A) (D) The correlation coefficient between 

epitope cluster entropy (eq.(2)) and the epitope cluster affinity (eq.(3)), as a function of cluster 

number, computed for HA in the virus presentation depicted in Figure 1B (blue), and at the trimer 

presentation depicted in Figure 1A (red). (E) Scatter plot of the epitope clusters entropy computed 

for the seasonal influenza H1N1 vs. the epitope clusters affinity. The correlation coefficient 

between them is 0.82. Marked are clusters containing residues belonging to the five known 

antigenic sites of flu (Cb - green, Sa - yellow, Sb - blue, Ca1 - cyan, Ca2 - red). Also marked is 

the group 1 conserved broadly neutralizing antibodies epitope (purple). (The number of clusters is 

60). (F) Schematic of the relationship between entropy and computed Ab affinity for circulating 

viruses evolving under Ab pressure. 
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Figure 3 Antibody targeting and mutability of the sarbecovirus subgenus spike. (A) SARS-

CoV-2 spike (S) protein in its closed form (49) arranged on a sphere to create a virus model. The 

virus model has 65 S molecules at a density of 0.27 spikes per 100nm2 (50). A detailed atomistic 

structure of the spike is coarse-grained and presented in rainbow colors (panel i). Every colored 

bead on the spike is a residue, representing a different S epitope (254 different possible sites on 

trimeric S). Panel ii depicts coarse-grained simulations for the Ab affinity to these residues (see 

Figure 1A-ii for definition and color-coding). (B) Panel i depicts the entropy (see eq.(1)) of each 

spike residue computed for the sarbecovirus subgenus spike (see Table 1). Panel ii shows the 

entropy of the residues superimposed on the spike structure. Same color-coding as in Figure 1C-

ii. (C) Pane i. The spike protein of the coronavirus. Each circle corresponds to a surface residue 

(epitope) and has a different color. Panel ii. 2d projections of the first four eigenvectors of the 

epitope positions following diffusion map decompositions. Pane iii. Clustering of the surface 

residues of the spike protein using k-means clustering algorithm applied to the spectral 

decomposition shown in panel ii ( 60k = ). (D) The correlation coefficient between epitope cluster 

entropy (eq.(2)) and the epitope cluster affinity (eq.(3)), as a function of cluster number, computed 

for the corona spike in the virus presentation (blue), and at the trimer presentation (red). (see S 

Figure 3 for the trimer presentation affinity map) (E) Scatter plot of the epitope clusters entropy, 

computed for the sarbecovirus spike vs. the epitope cluster affinity estimated from the simulations. 

The correlation coefficient between them is 0.69. Clusters that contain residues belonging to the 

RBD are in green and those containing residues belonging to the RBM are in red. (The number of 

clusters is 60). 
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Figure 4 Spike evolution of the 2009 influenza pandemic and SARS-CoV-2. Comparison of the 

mutational variance of sequences (mutability map) and the affinity maps computed from the 

computational model. For A-B, panel i depicts the residue entropy as a function at different 

positions. For A-B, panel ii depicts the entropy of the residues is superimposed on the spike. Same 

color coding as in Figure 1C-ii. Panel iii. Scatter plot of the entropy of epitope clusters, against the 

epitope cluster affinity computed for the spike. (A) Sequence entropy of HA for the pandemic flu 

H1N1 (2009–2017) (sequences taken from www.gisaid.org, and (41)). The correlation coefficient 

between the epitope cluster entropy and affinity is R=0.18.  (B) (i) Sequence entropy of the S spike 

protein of SARS-CoV-2 computed for all S protein sequences up-to October 31th 2020 (sequences 

downloaded from www.gisaid.org). (ii) The correlation coefficient between the epitope cluster 

entropy and epitope cluster affinity is R=-0.076. Same legend as Figure 3E. Time-dependence of 

SARS-CoV-2 sequence entropy. The entropy of the S spike protein of SARS-CoV-2 computed 

for sequences collected at 5 time periods since the beginning of the pandemic (panel i) and 

correlation to the computationally derived affinity map, following epitope clustering (panel ii) 

(same clusters as those shown and used in Figure 3C-iii, E). (C) up to February 1st 2020, R=-0.18, 

(D) February-June 2020, R=-0.089 (E) July-August 2020, R=0.26, (F) September 2020, R=0.37, 

(G) October 2020, R=0.46. (H) The correlation coefficient as a function of time. (Find an 

interactive, comparison of the time-dependent mutability map to the affinity map here 

https://amitaiassaf.github.io/SpikeGeometry/SARSCoV2EvoT.html). 
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Tables 
Coronavirus 

Species 

Collection date Reference Isolation 

origin 

SARS-CoV-2 

consensus 

2019-2020 Computed in this manuscript Human 

Bat 

coronavirus 

RaTG13 

2013 https://www.ncbi.nlm.nih.gov/prot

ein/QHR63300.2 

Rhinolophus 

affinis 

Bat 

coronavirus 

Urbani 

May 2003 https://www.ncbi.nlm.nih.gov/prot

ein/AAP13441 

Human 

Bat 

coronavirus 

CUHK-W1 

2003 https://www.ncbi.nlm.nih.gov/prot

ein/AAP13567.1 

Human 

Bat 

coronavirus 

GZ02 

2003 https://www.ncbi.nlm.nih.gov/prot

ein/AAS00003 

Human 

Bat 

coronavirus 

A031 

2004 https://www.ncbi.nlm.nih.gov/prot

ein/AAV97988.1 

Raccoon dogs 

Bat 

coronavirus 

A022 

2004 https://www.ncbi.nlm.nih.gov/prot

ein/AAV98003.1 

Raccoon dogs 
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Bat SARS-like 

ZXC21 

2015 https://www.ncbi.nlm.nih.gov/prot

ein/AVP78042.1 

Rhinolophus 

sinicus 

Bat SARS-like 

ZC45 

2017 https://www.ncbi.nlm.nih.gov/prot

ein/AVP78031.1 

Rhinolophus 

sinicus 

Bat SARS-like 

CoV Rp3/2004 

2004 https://www.ncbi.nlm.nih.gov/prot

ein/AAZ67052.1 

Rhinolophus 

ferrumequinu

m 

SARS 

coronavirus Rs 

672/2006 

2006 https://www.ncbi.nlm.nih.gov/prot

ein/ACU31032.1 

Rhinolophus 

sinicus 

 

Bat SARS-like 

coronavirus 

WIV1 

2012 https://www.ncbi.nlm.nih.gov/prot

ein/AGZ48828.1 

Rhinolophus 

sinicus 

SARS-like 

coronavirus 

WIV16 

2013 https://www.ncbi.nlm.nih.gov/prot

ein/ALK02457.1 

Rhinolophus 

sinicus 

 

Table 1 Sarbecovirus. Species used for the analysis detailed in Figure 1C. 
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Supplementary information 

Supplementary Tables 

Index Description Size   Bead color in Figure 

S1 

1 “Structural” atom of 

the immunogen. Not an 

epitope. The ferritin 

body is composed of 

such beads 

0.8nm - 

2 Fc of the Ab 5nm Blue 

3 Hinge bead connecting 

the Fc bead to the two 

arms hinges 

1nm Orange 

4 Hinge beads in the Ab 

arms 

1.75nm White 

5 Fab 1.75nm Yellow 

6 Arm bead in the Ab 4.2nm Magenta 

7 Epitope beads 1.75nm - 

Table S 1 Dimensions of the elements constructing the coarse-grained models. Description of 

the elements constructing the coarse-grained antibody model (S Figure 1C-D) and the immunogens 

(Figure 1A-i, B-i, Figure 3A-i, S Figure 1A,B). 

,i iσ
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Bead 

index 

1 2 3 4 5 6 7 

1 - 1.275 1.275 1.275 1.275 1.275 1.275 

2  - 3. 375 3. 375 3.375 3. 375 1.75 

3   - 0.50 1.75 1.75 1.75 

4    - 1.75 1.75 1.75 

5     - 1.75 1.75 

6      - 1.75 

7       - 

Table S 2 LJ interaction parameters. Values of   in nm. 
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Supplementary Figures 

 

 

S Figure 1 S and HA antigen-antibody models and antibody. (A) Set of 254 distinct residues 

on the surface of the S protein of SARS-CoV-2. See also Materials and Methods. (B) Set of 184 

distinct residues on the surface of HA. (C-D) Schematic representation of the antibody (Ab). The 

large blue bead represents the Fc part of the Ab. The two magenta beads are the arms, and the 

yellow beads are the Fab section of the arms. The model also contains hinge beads between the Fc 

and the arms. For full description see “Coarse-grained model of the antibody”). 
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S Figure 2 Second arm on-rate.  Second arm binding was measured as on-rate to the second 

epitope, given that the first site is already bound (see eq.(S5)). (A-B) HA in its trimeric form (A) 

or on the surface of the virus (B) (see Figure 1A-B for details). (C-D) S protein in its trimeric form 

(C) or on the surface of the virus (D) (see Figure 3A for details). The second arm binding rate to 

cyan sites is high, intermediate to white sites, low for purple sites, and was the average over 

multiple simulations. 

 

 

S Figure 3 Antibody affinity to surface residues of the coronavirus spike in its trimeric form. (A) 

SARS CoV-2 spike (S) protein in its closed form (Walls et al., 2020). A detailed atomistic structure 

of the spike is coarse-grained and presented in rainbow colors (panel i). Every colored bead on the 

spike is a residue, representing a different S epitope (254 different possible sites on trimeric S). 

Panel ii depicts coarse-grained simulations for the Ab affinity to these residues (see Figure 1A-ii 

for definition and color-coding). 
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S Figure 4 Sarbecovirus subgenus phylogenetic tree. The sequence origin is detailed in Table 

1. 
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S Figure 5 Clustering of spike surface residues (epitopes). (A) The Total Within Sum of Squares 

as a function of the number of clusters computed for seasonal influenza spike HA. Related to 

Figure 2 (B) The Total Within Sum of Squares as a function of the number of clusters computed 

for the sarbecovirus subgenus spike. Related to Figure 3. 
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