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ABSTRACT

The mammalian transcriptome includes thousands
of transcripts that do not correspond to annotated
protein-coding genes and that are known as long
non-coding RNAs (lncRNAs). A handful of lncRNAs
have well-characterized regulatory functions but the
biological significance of the majority of them is not
well understood. LncRNAs that are conserved be-
tween mice and humans are likely to be enriched in
functional sequences. Here, we investigate the pres-
ence of different types of ribosome profiling signa-
tures in lncRNAs and how they relate to sequence
conservation. We find that lncRNA-conserved re-
gions contain three times more ORFs with translation
evidence than non-conserved ones, and identify nine
cases that display significant sequence constraints
at the amino acid sequence level. The study also
reveals that conserved regions in intergenic lncR-
NAs are significantly enriched in protein–RNA inter-
action signatures when compared to non-conserved
ones; this includes sites in well-characterized lncR-
NAs, such as Cyrano, Malat1, Neat1 and Meg3, as
well as in tens of lncRNAs of unknown function. This
work illustrates how the analysis of ribosome profil-
ing data coupled with evolutionary analysis provides
new opportunities to explore the lncRNA functional
landscape.

INTRODUCTION

The advent of high-throughput genomic technologies has
revealed that mammalian transcriptomes are more complex
than initially thought (1–4). One of the most intriguing find-
ings has been the discovery of thousands of expressed loci
that that do not correspond to protein-coding genes; these

are known as long non-coding RNAs (lncRNAs) (3,5–9).
Similar to coding RNAs, lncRNAs are usually polyadeny-
lated and can have a multi-exonic structure; however, un-
like coding RNAs, they lack long conserved open reading
frames (ORFs) (10).

Recently, it has been found that many lncRNAs are likely
to translate small proteins or peptides (11,12). The strongest
evidence comes from the analysis of ribosome profiling ex-
periments (Ribo-Seq), a high-throughput RNA sequencing
technique developed to identify ribosome-protected RNA
fragments (13). Ribo-Seq read coverage can provide an
unambiguous signal of protein translation, arising from
the codon-by-codon movement of the ribosome; the three-
nucleotide periodicity of the reads is only observed in ac-
tively translated regions (14–16). Frequent translation of
small ORFs in lncRNAs has been detected in species as
diverse as humans (17–20), mice (11,12,21), zebrafish (22)
and yeast (13,23). It is not yet clear how many of these pep-
tides are functional. This set of translated small ORFs is
highly heterogeneous, ranging from conserved functional
micropeptides that have been missed in gene annotation
pipelines, proteins involved in recent lineage-specific adap-
tations, and pervasively translated sequences that may not
have a function per se but can act as raw material for de novo
gene birth (16,21,24).

At present, the majority of lncRNAs lack known
functions. The subset of well-characterized lncRNAs in-
cludes the X chromosome inactivation RNA, Xist, or the
metastasis-associated transcript Malat1 (25,26). Functional
non-coding RNAs often associate with proteins forming
ribonucleoprotein complexes (RNPs). For example, the
telomerase RNA component (TERC) contains binding sites
for the telomerase reverse transcriptase and other associ-
ated factors to form the telomerase complex (27). Cyrano,
an lncRNA with a role in neural development, interacts
with multiple proteins (28). Recent work has shown that
protein interactions sites in RNAs can be identified using
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ribosome profiling data, by selecting for reads that are of a
specific size and that do not display three-nucleotide period-
icity (17,29). Thus, it is possible to use the same Ribo-Seq
experiment to obtain information on both putative trans-
lated ORFs and protein–RNA interaction signatures.

One of the most intense debates in biology centers around
whether the thousands of currently annotated lncRNAs are
functional or not (30,31). Some researchers consider that
many of the uncharacterized lncRNAs could have a reg-
ulatory role, modulating chromatin structure or gene ex-
pression (32). Others are more skeptical and reason that
many lncRNAs are probably the result of transcriptional
noise (33,34), as they are poorly conserved across species
and show little sequence constraints. Despite this contro-
versy, most researchers would agree that the set of lncR-
NAs that are conserved across relatively distant species is
likely to be enriched in functional lncRNAs (35). Hun-
dreds of lncRNAs show sequence conservation between
mice and humans (36,37); unlike lineage-specific lncRNAs,
these conserved lncRNAs display purifying selection signa-
tures (38,39), and many of the well-studied lncRNAs con-
tain short conserved sequence segments that are required
for their function (40–42).

Studying the sequence and biochemical properties of con-
served versus non-conserved lncRNAs is key to further un-
derstanding the evolution and function of these molecules.
Here, we perform a thorough investigation of the types
of ribosome profiling signatures in evolutionary conserved
and non-conserved lncRNAs. We find that conserved lncR-
NAs are significantly enriched in both translated ORFs and
RNPs, indicating that the acquisition of coding capacity
and/or protein–RNA interactions facilitates the function-
alization of young novel transcripts.

MATERIALS AND METHODS

Identification of conserved sequences in the mouse transcrip-
tome

We retrieved mouse sequences and regulatory regions (‘pro-
moters’) from Ensembl v.89 (43). We excluded pseudogenes
and sense intronic lncRNAs, as the latter could represent
unannotated regions in protein-coding genes. In order to
avoid spurious conservation matches due to the presence of
repeats and transposable elements, we masked repetitive se-
quences with RepeatMasker (44). The masked regions com-
prised 11.30% of the total coding gene (codRNA) sequence
and 11.56% of the lncRNA sequence. We retained those se-
quences that had a minimum length of 200 nucleotides and
a non-masked sequence length of at least 100 nucleotides or
25% of the total transcript length.

We searched for significant sequence similarity hits be-
tween mouse annotated transcripts and human transcripts
using BLASTN (45). To ensure completeness, we used a
human transcriptome that contains annotated genes as
well as de novo assembled transcripts obtained from high-
coverage RNA sequencing data (RNA-Seq) from differ-
ent tissues (46), which is available from http://dx.doi.org/
10.6084/m9.figshare.4702375. The BLASTN parameters we
used were: -evalue 10−5, -strand plus, -max target seqs 15,
-window size 12. Next, we defined ‘conserved regions’ in
mouse transcripts as the ones showing significant sequence

similarity (E-value < 10−5) to human transcripts, with a
minimum length of 30 nucleotides. Results were largely con-
sistent for different E-value cut-offs: the number of con-
served lncRNAs only increased by 4.65% when relaxing
the E-value (E-value < 10−4) and only decreased by 3.36%
when making this parameter more stringent (E-value <
10−6).

Overlapping BLASTN hits from different transcripts of
the same gene were merged, so each gene had a unique set
of conserved non-redundant regions. We defined the gene
as codRNA if at least one of the isoforms was annotated
as protein-coding; otherwise, it was defined as lncRNA. We
discarded 368 mouse lncRNAs that had homology to se-
quences annotated as coding in human, as they might repre-
sent unannotated proteins or pseudogenized lncRNAs. Ad-
ditionally, if two conserved regions were separated by <100
nucleotides (nt) we merged them; this value was chosen be-
cause only <5% of the annotated coding sequences had in-
ternal gaps longer than 100 nt. After merging, the median
length of conserved regions in codRNAs increased from 124
to 343 nt (Additional File 1: Supplementary Figure S1) and
we recovered more than 95% of the total coding sequence. A
more moderate increase in length was observed in the case
of lncRNAs, from a median length of 136 to 163 nt (Addi-
tional File 1: Supplementary Figure S1). Our method iden-
tified conserved regions in 19,779 out of 21,416 codRNAs
and 1,547 out of 9,734 lncRNAs.

Analysis of mouse–human genomic synteny alignments
from UCSC (47) indicated that about 80% of the mouse
lncRNA conserved regions could be aligned to human
syntenic regions, whereas this fraction decreased to about
50% for non-conserved regions, including many tandem
repeats that were masked by BLAST and that are often
over-represented in whole-genome alignments (48). We also
quantified the overlap of conserved and non-conserved re-
gions in codRNAs and lncRNAs with regions annotated
as promoters in Ensembl, which covered about 1.62% of
the genome. These regions are defined in Ensembl for sev-
eral cell lines and tissues by a combination of data related
to open chromatin regions, histone modifications and tran-
scription factor binding assays (49).

Null model for sequences evolving under no constraints

We simulated the evolution of sequences along the mouse
and human lineages with Rose (50). The objective was to
create a set of alignments for sequences evolving under no
constraints and then compare the substitution rates from
these alignments and the substitution rates estimated from
the alignment of real sequences. We used the annotated
mouse lncRNA sequences as starting sequences for the sim-
ulation, as this allowed us to automatically control for GC
content and k-mer composition. We used the following
parameters to simulate sequence evolution in the absence
of selection: HKY model with a TT ratio of 4.26, mouse
branch mean substitution 0.34 and indel rate 0.018 × 2, hu-
man branch mean substitution 0.17 and indel rate 0.009 ×
2, indel function = [.50,.18,.10,.08,.06,.04,.04]. These values
were based on previous genomic estimates (51–53), and we
implemented a 2-fold higher substitution rate in mouse than
in human. After the simulations, we ran BLASTN using

http://dx.doi.org/10.6084/m9.figshare.4702375


PAGE 3 OF 14 NAR Genomics and Bioinformatics, 2019, Vol. 1, No. 1 e2

the same conditions as for real sequences and recovered the
alignments. Up to 59.6% of the mouse simulated sequences
had at least one match in the set of human simulated se-
quences. This corresponded to 20.8% of the total sequence
length.

Estimation of substitution rates

We estimated the number of substitutions per site (k or ko)
in the BLASTN alignments using the maximum likelihood
method ‘baseml’ from the PAML package (54) with model 7
(REV). If a position was covered by several BLAST hits, we
chose the one with the lowest E-value. We discarded k values
higher than 5 as they were deemed unreliable. We observed
that k values tended to be abnormally low for short align-
ments (<300 nt) of the simulated sequences. This is because
in the case of short regions of homology, significance can
only be achieved if the sequences are very well conserved.
We employed linear regression to calculate the expected k
(ke) given the length of the alignment (L), using the simu-
lated data. For real alignments of a given length, we could
then calculate a normalized substitution rate ko/ke, which
was informative on the deviation from neutrality while cor-
recting for the effect of length. The log-linear regression
model was calculated for short (<300 nt) and long (≥300
nt) neutrally evolved sequences separately:

log(ke ;L≥300) = −0.468900 − L × 7.865 × 10−5

log(ke ;L<300) = −1.562833 + L × 0.003879

where L represents alignment length
The two models were statistically significant according to

a T-test (P-value < 0.05).

Classification of genes based on genomic location or small
RNA content

Up to 20% of the total sequence length in lncRNAs had
exonic overlap with other genes on the opposite strand. We
divided conserved and non-conserved regions into ‘overlap-
ping’ and ‘non-overlapping’, depending on whether the re-
gion was overlapping an antisense conserved feature (de-
tected by BLAST or annotated as conserved in humans in
Ensembl Compara). Regions shorter than 30 nt were not
considered.

We classified genes into three different categories:
ncRNA host, in the case of genes containing annotated
small RNAs or being annotated as microRNA or small
RNA hosts; antisense, in the case of genes having at least
one overlapping region, being expressed from bidirectional
promoters (distance between transcription start sites <2
Kb) and/or being annotated as antisense in Ensembl; or in-
tergenic otherwise.

Analysis of ribosome profiling data

We used RNA-Seq and ribosome profiling data (Ribo-Seq)
for the mouse hippocampus obtained from the Gene Ex-
pression Omnibus accession number GSE72064 (55). We
merged sequencing replicates to increase the power to de-
tect translated ORFs. We removed reads mapping to an-
notated rRNAs and tRNAs. Next, we mapped Ribo-Seq

(361 million mapped reads) and RNA-Seq reads (435 mil-
lion mapped reads) to the mouse genome (mm10) using
Bowtie (v. 0.12.7, parameters -k 1 -m 20 -n 1 –best –strata)
(56) and we extracted P-sites corresponding to Ribo-Seq
reads as done in a previous study (21). For comparison, we
analyzed Ribo-Seq data from the rat brain (rn6, 373 mil-
lion mapped reads) and the human brain (hg19, 50 million
mapped reads) obtained from Gene Expression Omnibus
accession numbers, GSE66715 and GSE51424 (57), respec-
tively. We mapped the Ribo-Seq reads to the corresponding
syntenic genomic regions in rats and humans.

Next, we assigned strand-specific mouse reads to the dif-
ferent predefined transcript regions if at least 1 bp of the
computed P-site (Ribo-Seq) spanned the corresponding re-
gion. We defined two metrics: a per-base coverage metric
based on the number of reads spanning the region per kilo-
base and a total coverage based on the percentage of se-
quences covered by reads.

For genes expressed at very low levels, the Ribo-Seq sig-
nal may be undetectable. In order to account for this, we
imposed a RNA-Seq coverage threshold in which the num-
ber of false negatives (annotated coding sequences not cov-
ered by Ribo-Seq reads) was lower than 5% (Additional File
1: Supplementary Figure S2, RNA-Seq coverage in region
≥ 56.38 reads/kb); we only considered regions with expres-
sion values above this cut-off. ‘Conserved genes’ were those
that contained at least one conserved region above the cut-
off. Finally, we eliminated 192 lncRNAs located within 4 kb
from a sense protein-coding gene and/or with evidence of
being part of the same gene using RNA-Seq data, as these
lncRNAs may have been unannotated UTRs.

ORF translation in conserved and non-conserved regions

We predicted all possible canonical ORFs (ATG to STOP)
with a minimum length of nine amino acids in the tran-
scripts. This covered 55% of the conserved regions and
57% of the non-conserved ones. Next, we eliminated re-
dundant ORFs by selecting only the longest ORF when
several ORFs overlapped in the same frame. We used Ri-
bORF (v.0.1) (58) to predict translated ORFs with a mini-
mum threshold of 10 mapped Ribo-Seq reads per ORF. We
used the same score cut-off as in a previous study (≥0.7),
which had a reported false positive rate of 3.30–4.16% and
a false negative rate of 2.54% (21). We assigned translated
ORFs to the different defined regions if at least 10% of the
translated sequence spanned the region. For the prediction
of substitution rates and proteomics analysis, we used the
longest ORF per region.

Mass spectrometry data

We used an available mass-spectrometry dataset from
the mouse hippocampus (PXD007150) (59) to search
for peptide spectra produced by translated ORFs. Mass-
spectrometry data were analyzed using Comet (r2018.01
rev. 2) (60) and setting modifications as described in the
original study. Peptide tolerance was 20 ppm and the maxi-
mum number of missed cleavages was set at 2. We built three
custom databases by concatenating 11,345 annotated pro-
teins in SwissProt that were translated in the hippocampus
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according to the RibORF analysis, a file with the most com-
mon contaminants, and any of the following problem sets:
(i) 157 conserved codRNA genes encoding small proteins
(small CDSs, <100 amino acids); (ii) 492 translated ORFs
in lncRNAs; (iii) 492 SwissProt proteins sampled with the
same distribution of RiboSeq reads as translated ORFs in
lncRNAs, and subsequently trimmed from 3′ so they had
the same length as translated ORFs in lncRNAs.

The Percolator algorithm (v3.02.1) (61) implemented in
the Proteome Discoverer software was run to estimate the
q-value by using reverse decoys as a negative control. We se-
lected peptides with q-value <0.01. Finally, any ORF con-
taining at least two peptides not found in any other gene was
considered validated by proteomics. In the positive set of
SwissProt, we found 36.65% of proteins containing at least
two or more peptides.

dN/dS analysis in translated ORFs

We used the UCSC tool liftOver (-minMatch = 0.75) (62)
to extract the corresponding ORF genomic coordinates in
humans. For the cases in which we found a matching region,
we aligned the ORFs with PRANK (63) and we selected se-
quences with matching start and stop codons. Additionally,
we considered that each alignment should not contain more
than 33% of gaps, and that the alignment length should be
longer than 10 amino acids. In all cases, the human ORF
was at least 50% the length of the mouse ORF.

Next, we used CODEML of the PAML package (54) to
compute a dN/dS ratio (non-synonymous to synonymous
substitution rate, or omega) for each aligned ORF. We dis-
carded cases in which the computed dN or dS was higher
than 10, as they were deemed unreliable. We tested whether
this ratio was significantly different from 1 by comparing
the likelihood of the model to that obtained with a fixed
omega of 1. We found 9 mouse/human conserved ORFs in
lncRNAs with dN/dS significantly lower than 1, with an
adjusted P-value < 0.05.

PhyloP codon analysis in translated ORFs

We used the GenomicScores package (v. 1.2.2) available at
Bioconductor (64) to compute the average PhyloP score per
codon position (+1, +2, +3) in different sets of translated
ORFs. PhyloP is a set of phylogenetic P-values for multiple
alignments of 59 vertebrate genomes to the mouse genome.
GenomicScores rounds PhyloP scores using a lossy com-
pression algorithm. We compared the conservation of the
third codon position to the conservation of the first and sec-
ond codon positions. In functional proteins, the third posi-
tion is expected to be more variable because of the degener-
acy of the genetic code (65).

Analysis of protein–RNA complexes

We used Rfoot (v.0.1) and FLOSS-based measurements to
predict regions in lncRNAs involved in protein–RNA in-
teractions or ribonucleoprotein particles (RNPs). Rfoot is
based on the lack of three-nucleotide periodicity as well as
low Ribo-Seq coverage uniformity for the predictions (66).
FLOSS is a metric based on the distribution of Ribo-Seq

read lengths that measures the extent of disagreement be-
tween the observed distribution and the distribution for ri-
bosomal associations (67). First, we subtracted predicted
ORF sequences with a RibORF score ≥ 0.5 and/or read
periodicity ≥ 0.66 and then we selected 60 nt sequence win-
dows showing uniformity < 0.6 and a minimum of 10 reads.
Next, we analyzed the FLOSS score of the regions, select-
ing those with a score ≥ 0.35, as only 5% of annotated cod-
ing sequences showed a score above 0.35. Any overlapping
predicted RNPs were merged into a single RNP. We pre-
dicted RNPs in 95% of the RNAs from a positive control
set composed of snRNAs and snoRNAs (10 or more Ribo-
Seq reads per RNA), and in only about 5% of the translated
ORFs in lncRNAs (Additional File 1: Supplementary Fig-
ure S3).

We also downloaded peak annotation files from 39 CLIP-
seq datasets in POSTAR (68). The computed peaks were al-
ready mapped to the mouse genome and we directly checked
the overlap with the predicted RNPs. We found positive
FLOSS scores (≥0.35) for ∼90% of CLIP-seq peaks in
lncRNAs with 10 or more Ribo-Seq reads (Additional File
1: Supplementary Figure S3), supporting the validity of the
selected FLOSS threshold for identifying RNPs.

Definition of a set of functional lncRNAs

We obtained a list of 30 functional mouse lncRNAs ex-
pressed in the hippocampus by selecting all cases present
in lncRNAdb (69) and adding four additional known
lncRNAs: Pantr1 (70), Firre (71), TERC (72) and Norad
(2900097C17Rik) (73).

Statistical tests and plots

Plots and statistics were performed with R (74).

RESULTS

Ribo-Seq reads frequently map to lncRNAs

We searched for matches of the complete set of Ensembl
mouse annotated transcripts against the human transcrip-
tome using BLASTN (E-value < 10−5) (45). We detected
19,779 protein-coding genes (codRNAs) and 1,547 lncR-
NAs that contained at least one conserved region in hu-
mans. The conserved regions were generally shorter in lncR-
NAs than in codRNAs with a median length of 163 and 343
nucleotides, respectively (Additional File 1: Supplementary
Figure S1).

Next, we mapped ribosome profiling and RNA-Seq data
to the set of annotated mouse transcripts using previously
published ribosome profiling data from the mouse hip-
pocampus (55). This dataset was chosen because of its high
coverage, allowing for the unambiguous recovery of many
novel translation events using three-nucleotide periodicity
(21). Of the annotated transcripts, 13,345 codRNAs and
707 lncRNAs were expressed in the hippocampus dataset.
We focused on these transcripts for the rest of the study.
Around 98% of the codRNAs (13,084) had at least one con-
served region in humans; this fraction decreased to 41%
(289) for lncRNAs (Figure 1A; regions described in Addi-
tional File 2: Supplementary Tables S1, S2 and S5).
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Figure 1. Transcriptome-wide identification of conserved sequences, promoters and Ribo-Seq associations. (A) Fraction of mouse genes that showed
conservation in humans using BLASTN (Conservation), that overlapped with annotated promoter regions (Promoter), or that were covered by Ribo-Seq
reads (Ribo-Seq). The percentage of genes with at least one feature, and the total sequence covered, is indicated. Data are for expressed codRNAs and
lncRNAs in the hippocampus (sequences with a minimum RNA-Seq coverage of 56.38 reads/kb). (B) Analysis of feature coverage in equally-sized fractions
of the genes, from 5′ (p1) to 3′ (p5). Grey bars represent the mean proportion of a shuffled control where the different features per gene were randomly
shuffled along the sequence 1000 times. Error bars represent the standard error of the proportion.

Most functionally characterized lncRNAs (27 out of 30
cases) had at least one conserved region (see Additional File
2: Table S3); only Firre, Adapt33 and Snhg6 were not found
in humans. In terms of the total length, 61.62% of the co-
dRNA sequence and 8.50% of the total lncRNA sequence
(25.39% in the case of functionally characterized lncRNAs)
were conserved (Figure 1A). Conservation was highest in
the 5′ end of the transcripts for both codRNAs and lncR-
NAs (Figure 1B).

Many transcripts partially overlapped sequences anno-
tated as ‘promoter’ by Ensembl (49). This affected 87.15%
of codRNAs and 68.18% of lncRNAs. The total fraction
of the sequence covered by ‘promoter’ regions was 24.50%
for lncRNAs and 11.52% for codRNAs (Figure 1A). As
expected, regions annotated as ‘promoter’ were biased to-
ward the 5′ end of the transcript (Figure 1B and Additional
File 1: Supplementary Figure S4). The relatively high over-
lap of these regions with lncRNAs could be explained by
their short size compared to codRNAs; when we focused on
the 5′-most 200 nucleotides of the transcript, the percent-
age of sequence overlapping ‘promoter’ regions was actu-
ally higher for codRNAs than for lncRNAs (80.46% versus
63.38%).

Next, we investigated the presence of ribosome profil-
ing (Ribo-Seq) footprints on the transcripts. Up to 99.10%
of codRNAs and 89.82% of lncRNAs had mapped Ribo-
Seq sequencing reads. Overall, 50.08% of the codRNA se-
quence and 27.17% of the lncRNA sequence were covered
by at least one Ribo-Seq read (Figure 1A). These results
are in line with recent reports of a relatively high coverage
of lncRNAs by Ribo-Seq reads (12,17,18,20). We also ob-
served that the Ribo-Seq reads showed a clear 5′ bias, for

both conserved and non-conserved transcripts (Figure 1B,
Additional File 1: Supplementary Figure S4).

Conserved lncRNA sequences are enriched in promoter re-
gions and Ribo-Seq signatures

Promoter regions in lncRNAs have been described to be
more conserved than the rest of the lncRNA sequences
(1). Consistent with this, we found that 53.9% of the con-
served regions in lncRNAs overlapped promoters, whereas
this value was only 21.8% for non-conserved lncRNA re-
gions (test of equal proportions, P-value < 10−5).

We next asked whether conserved lncRNA regions were
more enriched in Ribo-Seq reads than non-conserved ones.
We found that 51.7% of the lncRNA conserved regions,
but only 24.9% of the non-conserved ones, were covered
by at least one Ribo-Seq read (Test of equal proportions,
P-value < 10−5). Although conserved regions were signifi-
cantly more expressed and covered by Ribo-Seq reads (Ad-
ditional File 1: Supplementary Figure S5), the trend could
not be explained by differences in the expression level of
the transcript or the amount of overlap with exons from
other genes (Additional File 1: Supplementary Figures S6
and S7). Consistent results were observed when analyzing
Ribo-Seq data from human and rat brain tissues for the cor-
responding genomic syntenic sequences (Additional File 1:
Supplementary Figure S8).

To analyze the relationship between evolutionary se-
quence conservation and Ribo-Seq signal in more detail,
we divided lncRNAs into intergenic, antisense and host
ncRNA types (I, A and H, Figure 2A). Antisense lncRNAs
included those lncRNAs annotated as antisense in Ensembl
as well as any other lncRNA whose transcription start site
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Figure 2. Effect of conservation across lncRNA types. (A) Number and fraction of different categories based on position and sequence features. Antisense:
Exonic overlap, expression on a bidirectional promoter, and/or annotated as antisense; ncRNA host: Genes with at least one small RNA sequence found
in the exonic region; intergenic: rest of the genes. Conserved genes are enriched in antisense and ncRNA host genes. (B) Percentage of total sequence that
is covered by Ribo-Seq reads (1 or more reads), and annotated promoter cores, for conserved and non-conserved regions in codRNAs and lncRNAs.
Conserved lncRNA regions showed a significantly higher proportion of all features compared to not conserved regions or expected randomly (test of equal
proportions; *** P-value < 10−5). Error bars represent the standard error of the proportion. Categories: A: Antisense; I: Intergenic; H: ncRNA host.

was located less than 2 Kb from the TSS of another gene in
an antisense orientation and/or had antisense exonic over-
lap with another gene. Host ncRNAs corresponded to lncR-
NAs with embedded short non-coding RNAs in the ex-
ons (they contained 33 miRNAs, 41 snoRNAs and 32 mis-
cRNAs). Intergenic lncRNAs were completely independent
transcriptional units. Host ncRNAs showed a much higher
degree of conservation between mice and humans than the
other two lncRNA classes (Figure 2A). Conserved regions
from all three classes of transcripts showed a strong enrich-
ment in Ribo-Seq signatures and promoter elements when
compared to non-conserved ones (Figure 2B), indicating
that the observed trends were largely independent of the
lncRNA type. For comparative purposes, we classified the
genes annotated as coding in the same three categories as
the lncRNAs (Figure 2A). In this case, conserved regions
from codRNAs showed enrichment of Ribo-Seq signatures
but not of promoter elements (Figure 2B).

Conserved lncRNA sequences are under purifying selection

Although mice and humans are relatively distant species
(∼90 Million years) (75), some sequence segments may still
be sufficiently similar for homology to be detected even if
no purifying selection is operating. In order to estimate the
conservation expected in the absence of selection, we ran
sequence evolution simulations using Rose (50). First, we
simulated the evolution of lncRNAs along the mouse and
human branches under no evolutionary constraints. Sec-
ond, we performed BLASTN searches of the evolved mouse

sequences against the set of evolved human sequences (see
‘Materials and Methods’ section for more details). We could
find BLASTN homology hits for about 56.2% of the evolved
sequences. This fraction happened to be larger than the
fraction of real lncRNAs conserved between the two species
(40.9%), which is consistent with the idea that a substantial
number of mouse lncRNAs have originated after the split
with the human lineage (40).

Next, we used the sequence alignments obtained with
BLASTN to estimate a normalized observed to expected
substitution rate ko/ke in different sequence sets (see ‘Ma-
terials and Methods’ section for more details). The nor-
malized substitution rate, ko/ke, was significantly lower in
real lncRNAs than in neutrally evolving sequences for all
three lncRNA types (Additional File 1: Supplementary Fig-
ure S9, Wilcoxon test, P-value < 10−5). The number of ob-
served substitutions in conserved lncRNA segments was
about half the expected. This supports the conclusion that
the class of lncRNAs conserved between mice and humans
is under significant purifying selection, in accordance with
previous findings based on the density of single-nucleotide
polymorphisms in this type of lncRNAs (38).

Remarkably, the strength of purifying selection in
lncRNA conserved regions was similar for function-
ally characterized and uncharacterized lncRNAs (median
of ko/ke 0.49 and 0.50, respectively). This supports the idea
that there are hundreds of true bioactive lncRNAs whose
functions remain to be uncovered. Coding sequences and
ncRNA host transcripts showed somewhat lower ko/ke val-
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ues (median of 0.37 and 0.46, respectively). Conserved re-
gions overlapping promoters had lower ko/ke than the rest
of the conserved lncRNA sequences (median 0.47 versus
0.58). However, the difference was relatively small, and
when we eliminated the regions overlapping promoters the
differences in the substitution rates estimated for neutrally
evolving sequences and lncRNAs remained highly signifi-
cant (Wilcoxon test, P-value < 10−5).

Conserved lncRNAs regions are enriched in translated ORFs

Actively translated sequences show a characteristic three-
nucleotide read periodicity in ribosome profiling experi-
ments that allows for the identification of novel transla-
tion events (14,16,19). We used the program RibORF to
score read periodicity and uniformity in all ORFs of size
30 nucleotides or longer (18). Translated ORFs were de-
fined as those with a RibORF score equal to or higher than
0.7, as previously described (21) (Figure 3A). As expected,
nearly all codRNAs conserved between mice and humans
showed evidence of translation (Figure 3B). The percentage
of mouse lncRNAs that contained at least one translated
ORF was 52.05%, similar to previous estimates for human
lncRNAs (18). Overall, we identified 165 lncRNAs with one
or more translated ORFs, including several experimentally
characterized lncRNAs (Additional File 2: Supplementary
Table S3).

We found that conserved regions in lncRNAs were
about nearly three times more covered by translated ORFs
than non-conserved regions (14.1% versus 5.65%). The en-
richment was consistently observed across the different
lncRNA subtypes (test of equal proportions, P-value <
10−5), with translation occurring more actively in antisense
genes than in other lncRNA classes. A similar result was ob-
served after discarding regions overlapping other genes on
the opposite strand (Additional File 1: Supplementary Fig-
ure S6). We also observed that the translated ORFs were
more abundant in the 5′ end than in the 3′ end of genes, in-
dependently of mouse–human sequence conservation (Ad-
ditional File 1: Supplementary Figure S4). This may be re-
lated to the ribosome scanning dynamics (starting at the 5′
end of transcripts) and perhaps also due to the higher GC
content in this first part of the gene (Additional File 1: Sup-
plementary Figure S10), which may result in an enrichment
of ORFs (76).

We investigated if the putative translated ORFs in
lncRNA conserved regions showed signatures of selection
at the protein level (Figure 3A), which would indicate that
they might be functional. We recovered and aligned the cor-
responding human sequences using genomic alignments for
93 cases. We then estimated the rate of non-synonymous
and synonymous substitutions (dN/dS) in the ORFs, and
tested for significant deviation from a dN/dS of 1 (no se-
lection) using a maximum-likelihood-based approach (see
‘Materials and Methods’ section). Despite the short size of
these ORFs (median 56 amino acids) that may limit the
identification of significant selection signatures, we identi-
fied nine cases in which dN/dS was significantly lower than
1 (chi-square test, P-value < 0.05). All of them were lo-
cated in uncharacterized lncRNAs, and the size of the pro-
teins ranged from 19 to 128 amino acids (Additional File 2:

Supplementary Table S4). There were seven cases that com-
pletely overlapped (in antisense orientation) annotated cod-
ing sequences; this indicates that this configuration may be
more common than previously suspected.

For comparison, we also analyzed the signatures of selec-
tion in 157 conserved codRNA genes encoding small pro-
teins (small CDSs, < 100 amino acids). In this case, a much
higher proportion of the cases showed significant negative
selection signatures (76 out of 124). These cases included a
number of known functional peptides that were found ‘hid-
den’ in transcripts previously annotated as lncRNAs such as
Myoregulin (77,78), NoBody (79) or CASIMO1 (80), and
other small functional peptides such as Stannin (81,82) or
Sarcolipin (83,84).

As an alternative method we inspected conservation at
the three different codon positions in the mouse genome
using PhyloP scores (65). The results showed that, as with
the dN/dS analysis, small CDSs had stronger purifying se-
lection signatures than conserved ORFs in lncRNAs (Ad-
ditional File 1: Supplementary Figure S11). We concluded
that only a subset of the translated ORFs in lncRNA con-
served regions is likely to encode proteins that are under
selective constraints.

Whereas ribosome profiling is used to identify transla-
tion events, protein-derived mass-spectrometry (MS) data
provide direct information on the abundance of the pro-
tein in the sample. The drawback is that this technique
is less sensitive than high-throughput sequencing methods
and many small proteins remain unseen (85). Using an avail-
able mouse hippocampus MS dataset, we could find pro-
teomics evidence for only 36.65% of the Swissprot pro-
teins with translation evidence (FDR < 1%, at least two
unique peptide matches). In the case of lncRNA ORFs with
translation evidence we found no significant hits in the pro-
teomics set. This is not surprising given the short size of the
lncRNA predicted peptides coupled with the low expres-
sion of the transcripts; when we subsampled the SwissProt
proteins by read coverage and length so that they resem-
bled the set of lncRNA ORFs (see ‘Materials and Methods’
section for more details), only 2.44% of them showed pro-
teomics evidence. A similar negligible proportion of positive
cases was observed for the set of small annotated proteins
(smCDS)––in this case only 0.83% of the translated ORFs
had hits to MS peptides. Given this low success rate, no in-
formation about the half-life of the peptides translated from
lncRNA ORFs when compared to other proteins could be
gathered.

Identification of protein–RNA interactions

Ribosome profiling experiments allow capturing protein–
RNA interactions other than ribosomal associations––the
two types of signals can be distinguished by their read
length distribution (17). When analyzing the regions cov-
ered by Ribo-Seq reads, we found that most codRNAs
were covered by reads with lengths of 30–32 nucleotides,
which correspond to ribosome associations. In lncRNAs
the length of the Ribo-Seq reads was more variable, con-
sistent with the presence of non-ribosomal ribonucleopro-
tein particles (RNPs) in addition to ribosomes. The ex-
cess of short (<30 nt) and long (>32 nt) reads could be
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Figure 3. Identification of translated open reading frames and ribonucleoproteins. (A) Workflow to identify translated open reading frames (ORFs),
putative functional proteins and ribonucleoproteins (RNPs). Ribosome profiling (Ribo-Seq) reads are mapped to candidate gene regions and ORFs with
a RibORF score ≥ 0.7 are defined as translated. Rest of regions with Rfoot uniformity score < 0.6 and FLOSS score ≥ 0.35 are defined as RNPs. Next,
human ORF syntenic regions are extracted with LiftOver and aligned with PRANK, when possible. Truncated alignments are those for which >50% of
the ORF was aligned, or the gap limit is exceeded (33% or 10-nt). Finally, non-truncated alignments are checked for purifying selection signatures with
Codeml to identify putative constrained peptides or proteins (dN/dS ratio < 1; Chi-square test of dN/dS ratio, P-value < 0.05). (B) Fraction and number
of conserved and not conserved codRNAs and lncRNAs that contain at least one translated open reading frame (ORF), ribonucleprotein (RNP), both
features (ORF+RNP), or neither of the two features. (C) Percentage of total sequence that is covered by translated ORFs and RNPs, for conserved and
non-conserved regions. Overall, about 14.1% of the total conserved region in lncRNAs contained ORFs predicted to be translated (122 ORFs), compared
to 5.65% for non-conserved regions (370 ORFs). Test of equal proportions: * P-value < 0.05; *** P-value < 10−5. Error bars represent the standard error
of the proportion. Categories: A: Antisense; I: Intergenic; H: ncRNA host. (D) Example of a functionally characterized lncRNA, Cyrano, with RNA-Seq,
Ribo-Seq and annotated CLIP-Seq peaks (RBFOX and CELF4). Predicted conserved regions (CONS), ORFs and RNPs are also displayed. There is a
high agreement between CLIP-Seq peaks and Ribo-Seq RNPs. * location of a previously described miRNA-binding site.
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Figure 4. LncRNAs have more heterogenous Ribo-Seq read lengths. (A)
Fraction of sequence covered by Ribo-Seq that contains reads from a spe-
cific length for conserved and not conserved regions in different categories
of lncRNAs. While antisense lncRNAs resemble codRNAs in the read dis-
tribution, intergenic and ncRNA host regions contain a higher propor-
tion of short and long reads corresponding to non-ribosome associates. (B)
Ribo-Seq read density for regions predicted as ribonucleoproteins (RNP),
translated sequences (ORF) and other regions covered by Ribo-Seq. ORFs
in codRNAs have a higher read density than the rest of the sequences (***.
Wilcoxon test, P-value < 10−5).

clearly observed in intergenic lncRNA and the ncRNA host
(Figure 4A). In contrast, the vast majority of Ribo-Seq
reads mapping to antisense lncRNAs had a size compatible
with ribosome-protected fragments (Figure 4A and Addi-
tional File 1: Supplementary Figure S12). Consistent pat-
terns were found using independent rat ribosome profil-
ing data for the corresponding syntenic regions (Additional
File 1: Supplementary Figure S13).

We predicted the RNP positions by first identifying re-
gions with low Ribo-Seq read uniformity (<0.6) with the
program Rfoot (29), and then checking if the Ribo-Seq
reads spanning these regions had lengths that were not
compatible with ribosome associations using the FLOSS
method (Figure 3A). This resulted in 255 out of 707 lncR-
NAs with RNP signatures (36%) (Figure 3B; Additional
File 2: Supplementary Table S2). We analyzed the over-
lap between the RNPs and the annotated peaks from 39
CLIP-seq datasets, which corresponded to previously iden-
tified protein–RNA interactions. We found that RNPs were

significantly enriched in CLIP-Seq peaks (35.11% of the
RNP sequence was covered by peaks) when compared to all
lncRNA sequences (10.38% covered by CLIP-Seq peaks),
codRNAs (8.11% covered by CLIP-Seq peaks) or translated
ORFs (6.91% covered by CLIP-Seq peaks; test of equal pro-
portions P-value < 10−5 in all three comparisons). These
data confirmed that our pipeline was useful to identify pu-
tative protein–RNA interactions.

Furthermore, we found that conserved regions contained
a larger number of RNP signatures than non-conserved
ones (Figure 3C, conserved versus non-conserved). In terms
of the transcripts, 129 conserved lncRNAs (44.6%) con-
tained RNP signatures, compared to 126 non-conserved
ones (30.1%) (Figure 3B). Consistently, the conserved
RNPs were more extensively covered by CLIP-Seq signa-
tures than the non-conserved ones (53.54% versus 31.58%;
test of equal proportions, P-value < 10−5) or the UTR re-
gions from codRNAs (23%; Test of equal proportions, P-
value < 10−5). In the case of functionally characterized
lncRNAs, this percentage increased to 72.65% (in compar-
ison to 29.33% for the rest of the conserved lncRNA RNP
regions).

The majority of functionally characterized lcRNAs con-
tained RNP signatures in conserved sequences (21 out of
30) (Additional File 2: Supplementary Table S3). One ex-
ample was Cyrano; in this lncRNA, we identified a pre-
viously described highly conserved sequence that is nearly
identical to mir-7 microRNA (42), as well as several puta-
tive protein interaction sites that were scattered along the se-
quence (Figure 3D). Other cases were Malat, Neat1, Meg3,
Miat and Lncpint, known to interact with different pro-
tein and splicing factors, and TERC that acts as a scaffold
for the telomerase complex. We also found RNP signatures
in the non-conserved mouse transcript Firre, a functional
lncRNA that interacts with nuclear factors through a repet-
itive sequence (71). In this lncRNA, the predicted RNPs
matched the repetitive sequences. The study yielded novel
predictions for lncRNAs that remain uncharacterized. In
particular, we found RNPs in conserved sequences from 32
antisense lncRNAs, 12 intergenic lncRNAs and 19 ncRNA
host genes.

Conserved regions in intergenic lncRNAs were sig-
nificantly enriched in RNP signatures (Figure 3C). Ac-
cording to CLIP-seq data, two proteins were signifi-
cantly over-represented in these RNPs when compared
to non-conserved ones: CELF4 (12.05% versus 2.85%;
test of equal proportions, P-value < 10−5) and RB-
FOX (10.51% versus 2.98%; test of equal proportions,
P-value < 10−5). These protein–RNA interactions are
known to be important for neurosynaptic transmission and
cortical development (86,87). Both proteins were found
interacting with the functionally characterized lncRNA
Cyrano (Figure 3D) and two additional intergenic ncRNAs:
6330403K07Rik (ENSMUSG00000018451) and Gm7292
(ENSMUSG00000104222). In contrast, we could not find
any enriched CLIP-seq interactions in the small fraction of
antisense lncRNAs covered by RNPs.

In addition to lncRNAs, as many as 5,646 conserved co-
dRNAs had at least one RNP in the UTR regions (Fig-
ure 3B). Compared to the main translated ORF, this rep-
resented a very small fraction of the reads and had a negli-
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gible effect on the overall distribution of read lengths (Fig-
ure 4A and Additional File 1: Supplementary Figure S12).
In conserved lncRNA regions, RNPs and ORFs occupied a
similar percentage of the sequence (17.2% and 14.1%, re-
spectively; Additional File 1: Supplementary Figure S14)
and the density of reads in both elements was similar (Fig-
ure 4B). In the case of conserved codRNA regions RNPs
only occupied 1.7% of the sequence, whereas ORFs occu-
pied 65.5% (Additional File 1: Supplementary Figure S14)
and exhibited higher read density values than RNPs (Figure
4B).

DISCUSSION

Here, we have shown that lncRNA regions that are con-
served between mice and humans are enriched in translated
ORFs and protein–RNA interactions (RNPs). The patterns
are quite distinct in different lncRNA classes: antisense
lncRNA regions contain more translated ORFs than inter-
genic or host ncRNAs. RNP signatures are very frequent in
host ncRNAs but also in conserved intergenic lncRNA re-
gions. Most antisense lncRNAs overlap coding sequences in
the other strand, which may favor the formation of translat-
able ORFs. Some of these ORFs showed signatures of pu-
rifying selection, encouraging future studies to search for
functional antisense ORFs. This study also identified many
conserved regions in intergenic lncRNAs that may mediate
protein–RNA interactions, both in lncRNAs known to be
functional and in uncharacterized lncRNAs, providing tens
of novel functional candidates.

A number of studies have attempted to identify homolo-
gous lncRNAs between species employing blocks of prede-
fined genomic synteny (48,88–94). However, lncRNAs have
a high expression turnover (39,46,95), and syntenic conser-
vation does not necessarily imply that the sequence is ex-
pressed in the two species. In order to circumvent these lim-
itations, we focused on sequences that showed significant
sequence similarity (denoting common ancestry) but that
were also expressed in both mice and humans. We identi-
fied 289 mouse lncRNAs expressed in the hippocampus that
showed homology to human transcripts. Conserved regions
in these lncRNAs were usually small; they occupied 8.50%
of the total mouse lncRNA sequence length. We observed
that, despite their small size, these regions carried signatures
of purifying selection, indicating that they are likely to be
functionally relevant. This would be in line with previous
observations that short regions in lncRNAs are often suffi-
cient to emulate the complete RNA function (48,96).

There are only a limited number of studies on the evo-
lutionary patterns of mammalian lncRNAs (39,94,97–99).
These works have shown that transcripts that are conserved
across different species evolve more slowly than those that
are species-specific, consistent with the existence of selec-
tive constraints. However, none of these studies have es-
timated how much conservation we expect in the absence
of selection. In order to investigate this, we simulated the
evolution of lncRNAs starting from sequences that would
have been present in a common mouse–human ancestor
and that would have evolved along the two lineages with
no selection. The simulations indicated that over half of
the mouse evolved sequences should still show detectable

sequence similarity to human sequences. This fraction is
higher than that found for real sequences, indicating that
many mouse lncRNAs have actually originated after the
split from the common mouse–human ancestor and that
the very large number of observed lineage-specific lncR-
NAs cannot be solely explained by rapid sequence evolu-
tion. A second interesting observation was that, for aligned
lncRNAs, the number of substitutions per site was about
half the amount expected under neutral evolution. This in-
dicates that roughly half of the substitutions in conserved
lncRNA sequences might be deleterious, providing strong
evidence that these regions are functionally relevant. Al-
though we observed a significant association between con-
servation and the presence of translation and RNP signa-
tures, we cannot exclude the possibility that some may be
important at the DNA level, e.g. hosting promoter or en-
hancer regions.

Our results support the idea that there are a substantial
number of small proteins that remain to be characterized
(100–103). We detected several ORFs likely to encode mi-
cropeptides in transcripts that have only recently been an-
notated as coding, such as Nbdy (79), and nine new putative
cases, which remain to be investigated experimentally. The
micropeptide ORFs were detected by a combination of ri-
bosome profiling and the analysis of non-synonymous to
synonymous substitutions. The analysis of ribosome pro-
filing data from additional tissues is likely to result in the
expansion of this list.

We could not recover significant proteomics support for
the small ORFs identified by ribosome profiling. This low
success rate was true for small ORFs in lncRNAs but also
for small annotated coding sequences. This large gap be-
tween ribosome profiling and proteomics-based results is
the object of current debate (103). A recent study argues
that biases in the lncRNA ORFs, including short ORF size
or low expression level, cannot explain the lack of pro-
teomics evidence for lncRNA ORFs, concluding that the
transcripts are essentially non-coding (104). However, the
three-nucleotide periodicity of the reads observed in many
lncRNA ORFs seems difficult to explain if there is no trans-
lation activity. Here, we investigated what the effect is of
ORF small size and low expression level taken together, not
separately as in the previously mentioned study, for obtain-
ing mass-spectrometry hits for a given protein. This is more
realistic than considering the biases separately, as the ORFs
in lncRNAs are both small and expressed at low levels. By
doing this, we concluded that virtually no peptide hits in
mass-spectrometry should be expected even if the proteins
encoded in the small ORFs were produced. So, lack of pro-
teomics evidence does not preclude the possibility that the
proteins actually exist; the experiments are simply not sensi-
tive enough to provide an answer to this question. For this,
novel targeted proteomics strategies will need to be devel-
oped.

Although we found evidence of purifying selection for
some of the conserved translated ORFs in lncRNAs, in
many other cases there was not a clear pattern of selection.
There are different possible explanations: one possibility is
that translation of some ORFs has a regulatory function
that is independent of the protein sequence. For example,
it has been suggested that the association of lncRNAs with
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polysomes may favor their degradation (105). Another pos-
sibility is that these ORFs overlap other DNA or RNA el-
ements that are under selection and that their translation is
just a consequence of the presence of the RNA in the cy-
toplasm. In this direction, we found that conserved regions
often overlapped gene expression regulatory sequences or
‘promoters’, which could be important for the expression
of the same or other transcripts. Similarly, lncRNA up-
stream promoter regions were previously noted to have low
sequence divergence (106). However, we have to be careful
when interpreting these data, as homology detection is not
independent of promoter conservation. This is because, in
the absence of selection, some transcripts may still retain
their ancestral regulatory sequence by chance, and these
transcripts will be more easily classified as conserved than
the rest.

In some transcript regions there were peaks of Ribo-Seq
reads with no three-frame periodicity, suggesting RNA pro-
tection by complexes other than ribosomes. Two different
methods have been proposed for the identification of ri-
bonucleoprotein particles (RNP) signatures: FLOSS that is
based on deviations from the expected RNA length cov-
ered by ribosomes (17) and Rfoot that selects regions on
the basis of low read uniformity and absence of periodic-
ity (29). We reasoned that protein–RNA interactions should
display the two types of signatures to be sufficiently reliable,
and designed a specific pipeline that integrated the two ap-
proaches. We found a significant association between our
method and the regions identified by CLIP-Seq, further val-
idating our approach. We identified putative protein inter-
actions in already characterized lncRNAs, such as Cyrano,
Malat1, Neat1 and TERC, as well as RNPs in conserved
regions of uncharacterized lncRNAs, which should encour-
age future studies. Although at a relatively lower frequency,
many non-conserved regions also contained RNP signa-
tures; these cases may be due to promiscuous protein–RNA
interactions (107), the existence of young functional lncR-
NAs that interact with specific proteins (108–110), or lncR-
NAs that only contain repetitive, very small or poorly con-
served sequences. Examples of the latter include the func-
tional repeats described in Firre (71) or specific secondary
structure elements detected in Neat1 (111).

The detection of RNP signatures was not incompatible
with the existence of translated ORFs in other parts of
the transcript. In annotated coding transcripts (codRNAs),
there were plenty of RNP signatures in the UTRs, and
about 75% of the lncRNAs with RNPs also contained pu-
tatively translated small ORFs (Figure 3B). Some of these
could be truly bifunctional transcripts; recently described
cases are Lncpint (112) and TERC (113), which have been
reported to translate small functional peptides in addition
to having a non-coding function.

In conclusion, our study indicates that lncRNAs that
have been retained at least since the common ancestor of
mice and humans are more likely to encode proteins, and
interact with proteins or protein complexes, than lineage-
species lncRNAs. The study illustrates the power of com-
bining evolutionary inferences and large-scale experimental
measurements to advance our understanding of the tran-
scriptome.
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