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Abstract: We aimed to investigate the effects of maternal chewing on prenatal stress-induced cognitive
impairments in the offspring and to explore the molecular pathways of maternal chewing in a mice
model. Maternal chewing ameliorated spatial learning impairments in the offspring in a Morris
water maze test. Immunohistochemistry and Western blot findings revealed that maternal chewing
alleviated hippocampal neurogenesis impairment and increased the expression of hippocampal
brain-derived neurotrophic factor in the offspring. In addition, maternal chewing increased the
expression of glucocorticoid receptor (GR) and 11β-hydroxysteroid dehydrogenase isozyme 2
(11β-HSD2) and decreased the expression of 11β-HSD1 in the placenta, thereby attenuating the
increase of glucocorticoid in the offspring. Furthermore, maternal chewing increased the expression
of 11β-HSD2, FK506-binding protein 51 (FKBP51) and FKBP52 and decreased the expression
of 11β-HSD1, thereby increasing hippocampal nuclear GR level. In addition, maternal chewing
attenuated the increase in expression of DNMT1 and DNMT3a and the decrease in expression of
histone H3 methylation at lysine 4, 9, 27 and histone H3 acetylation at lysine 9 induced by prenatal
stress in the offspring. Our findings suggest that maternal chewing could ameliorate prenatal
stress-induced cognitive impairments in the offspring at least in part by protecting placenta barrier
function, alleviating hippocampal nuclear GR transport impairment and increasing the hippocampal
brain-derived neurotrophic factor (BDNF) level.
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1. Introduction

An increasing body of evidence indicates that the prenatal period is an extremely vital phase for
fetal neural development and thus a period of vulnerability for long-lasting and irreversible influences
on brain development and behavior. Epidemiologic studies reveal that exposure of pregnant women
to a stressful environment is associated with neurodevelopmental disturbances that increase the
susceptibility to cognitive impairments, emotional problems, abnormal motor behaviors, language
disorders and neuro-immuno-endocrine disturbances in their children [1–3]. Findings from animal
behavior studies confirm that prenatal stress markedly reduces learning and memory abilities and
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induces anxiety and depression-like behaviors in the offspring [4–6]. Animal morphologic studies
demonstrate that prenatal stress also induces structural changes in the offspring hippocampus,
including suppressed neurogenesis in the hippocampal dentate gyrus (DG) [7], bidirectional synaptic
plasticity impairment, hypomyelination in the hippocampal CA1 region [8,9] and altered hippocampal
cell tree size [10], which increases the susceptibility to neurodevelopmental disorders and results in
hippocampal-dependent learning and memory impairments [11–13]. Thus, ameliorating prenatal
stress is an enormous challenge in preventing cognitive impairments in the offspring, and effective
methods for coping with prenatal stress are urgently needed.

Chewing as a practical behavior for coping with stress has highly important functions correlated
with physical and mental health. In humans, gum chewing alleviates psychologic stress and improves
task performance [14,15]. In rodents, chewing during restraint stress alleviates anxiety-like behavior
and cognitive impairments induced by restraint stress [16,17]. Maternal chewing also ameliorates
prenatal stress-induced spatial learning impairment and deficiencies in hippocampal neurogenesis,
myelination and synaptic plasticity in the offspring [18–21], but the underlying mechanisms have
remained unclear.

Glucocorticoid (GC), as the end product of the hypothalamic–pituitary–adrenal (HPA) axis,
binds to glucocorticoid receptor (GR), and regulates the stress response [22,23]. Unliganded GR
primarily locates in the cytoplasm and translocates to the nucleus upon binding to a ligand [24].
The transport of GR between the cytosol and nucleus mainly depends on FK506-binding protein
51 (FKBP51) and FK506-binding protein 52 (FKBP52), which regulate steroid hormone receptor
signaling [25,26]. A markedly abnormal increase in GC disrupts the negative feedback system of the
HPA axis, leading to long-lasting and irreversible effects on brain development and behavior and
stress-related cognitive disorders [22,27–29]. During the fetal period, the placenta forms a barrier
to maternal GC depending on the activity of GR and 11β-hydroxysteroid dehydrogenase type 2
(11β-HSD2), which catalyzes the metabolism of GC into inactive metabolites [30–32]. The enzyme
11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), on the other hand, converts inactive GC to its
active forms [33,34]. Thus, one aim of the present study was to explore the effect of maternal chewing
during prenatal stress on deficiencies in placenta barrier function in dams and hippocampus nuclear
GR transport in the offspring induced by prenatal stress.

One important target of GC is brain-derived neurotrophic factor (BDNF), which plays a critical
role in regulating hippocampal neurogenesis, synaptic plasticity and learning ability. Both GR and
BDNF receptor tropomyosin receptor kinase B are co-expressed in hippocampal neurons [35]. There is
a growing body of evidence that GC–BDNF crosstalk is essential for the early-life programming of
the HPA axis and neurotrophin signaling [36]. Emerging evidence indicates that epigenetic changes
regulate hippocampal memory formation and therefore mediate the development of cognitive disorders
induced by prenatal stress [37–39], but the mechanisms are not well understood. Hippocampal DNA
methylation, histone H3 methylation at lysine 4, 9, 27 and acetylation at lysine 9 are the most well
characterized epigenetic alterations affecting learning and memory [40–43] and might play a crucial
role in the behavioral and cognitive disorders in the offspring induced by maternal behavior. As such,
the present study also aimed to examine the effects of maternal chewing during prenatal stress on
characterized epigenetic alterations in the offspring hippocampus induced by prenatal stress.

In this study, we explored multiple molecular pathways underlying the effects of maternal
chewing on ameliorating prenatal stress-induced cognitive disorders in the offspring in a mouse
prenatal stress model.
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2. Results

2.1. Maternal Chewing during Prenatal Stress Ameliorated Spatial Learning Impairment in the Offspring
Induced by Prenatal Stress

As shown in Figure 1A, the escape latency in the stress group was significantly longer than that
in the control group (fourth day: F2,24 = 5.142, p = 0.014, post hoc, p = 0.008; fifth day: F2,24 = 5.794,
p = 0.009, post hoc, p = 0.003; sixth day: F2,24 = 7.407, p = 0.003, post hoc, p = 0.001; seventh day:
F2,24 = 8.751, p = 0.001, post hoc, p = 0.001), indicating that prenatal stress induced spatial learning
impairment in the offspring. The escape latency was significantly shorter in the stress+chewing group
compared with the stress group (fourth day: p = 0.015; fifth day: p = 0.030; sixth day: p = 0.013; seventh
day: p = 0.010), indicating that maternal chewing during prenatal stress ameliorated the prenatal
stress-induced spatial learning impairment in the offspring. Performance in the visible probe test did
not differ significantly among the three groups, indicating similar motor and visual capabilities among
all three groups (Figure 1B, F2,24 = 0.023, p = 0.977).
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cells in the hippocampal DG in the stress group was markedly lower than that in the control group 
(F2,24 = 8.422, p = 0.002, post hoc, p = 0.001), indicating that prenatal stress induced hippocampal 
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hippocampal DG in the stress+chewing group, however, was significantly greater than that in the 
stress group (p = 0.005), indicating that maternal chewing during prenatal stress alleviated 
hippocampal neurogenesis deficiency in the offspring (Figure 2B). 

Figure 1. Maternal chewing during prenatal stress ameliorated spatial learning impairments in the
offspring. (A) The Morris water maze test. (B) The visible probe test (** p < 0.01 vs. control group,
# p < 0.05 vs. stress group, ## p < 0.01 vs. stress group, n = 9 per group). All data are shown as
mean ± SEM.

2.2. Maternal Chewing during Prenatal Stress Ameliorated Hippocampal Neurogenesis Defects in Offspring
Induced by Prenatal Stress

Neurogenesis was measured by detecting the expression of doublecortin (a marker for
neurogenesis) in the hippocampus. Representative photomicrographs of doublecortin-positive cells in
the hippocampus in all three groups are shown in Figure 2A. The number of doublecortin-positive cells in
the hippocampal DG in the stress group was markedly lower than that in the control group (F2,24 = 8.422,
p = 0.002, post hoc, p = 0.001), indicating that prenatal stress induced hippocampal neurogenesis
deficiencies in the offspring. The number of doublecortin-positive cells in the hippocampal DG in
the stress+chewing group, however, was significantly greater than that in the stress group (p = 0.005),
indicating that maternal chewing during prenatal stress alleviated hippocampal neurogenesis deficiency
in the offspring (Figure 2B).
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Figure 2. Maternal chewing during prenatal stress ameliorated hippocampal neurogenesis impairments
in offspring. (A) Photomicrographs showing doublecortin-positive cells in the hippocampus. (B) The
number of doublecortin-positive cells in the hippocampal dentate gyrus (DG) region (** p < 0.01 vs.
control group, ## p < 0.01 vs. stress group, n = 9 per group). All data are shown as mean ± SEM.

2.3. Maternal Chewing during Prenatal Stress Increased BDNF Expression in the Hippocampus in
the Offspring

Microscopically, immunohistochemical staining revealed lower positive expression of hippocampal
BDNF in the stress group compared with the control group and higher positive expression in the
stress+chewing group than in the stress group (Figure 3A). Compared with the control group, prenatal
stress induced a significant decrease in the mRNA and protein expression of hippocampal BDNF in
the offspring (mRNA expression: F2,24 = 31.309, p < 0.001, post hoc, p < 0.001; protein expression:
F2,24 = 31.309, p < 0.001, post hoc, p < 0.001; Figure 3B,C). Maternal chewing during prenatal stress
significantly increased the mRNA and protein expression of hippocampal BDNF in the offspring
(mRNA expression: p < 0.001; protein expression: p < 0.001).
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Figure 3. Maternal chewing during prenatal stress increased brain-derived neurotrophic factor (BDNF)
expression in the hippocampus in offspring. (A) Photomicrographs showing positive BDNF expression
in the hippocampus. (B,C) (** p < 0.01 vs. control group, ## p < 0.01 vs. stress group, n = 9 per group).
All data are shown as mean ± SEM.

2.4. Maternal Chewing during Prenatal Stress Deceased the GC Level in the Offspring by Protecting the
Placenta Barrier Function

As shown in Figure 4A–F, compared with the control group, prenatal stress led to a significant
decrease in the mRNA and protein expression of GR and 11β-HSD2 (mRNA expression of GR:
F2,24 = 40.395, p < 0.001, post hoc, p < 0.001; protein expression of GR: F2,24 = 14.494, p < 0.001, post
hoc, p < 0.001; mRNA expression of 11β-HSD2: F2,24 = 25.410, p < 0.001, post hoc, p < 0.001; protein
expression of 11β-HSD2: F2,24 = 48.629, p < 0.001, post hoc, p < 0.001) and a significant increase in
the mRNA and protein expression of 11β-HSD1 in the placenta (mRNA expression of 11β-HSD1:
F2,24 = 43.839, p < 0.001, post hoc, p < 0.001; protein expression of 11β-HSD1: F2,24 = 13.636, p < 0.001,
post hoc, p < 0.001), thereby inducing a significant increase in the serum GC level in the offspring
(F2,24 = 55.244, p < 0.001, post hoc, p < 0.001), indicating that prenatal stress induced placenta barrier
function impairment. Maternal chewing during prenatal stress protected against the placenta barrier
function impairment on the basis of the significant increase in the mRNA and protein expression of
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GR and 11β-HSD2 and the significant decrease in the mRNA and protein expression of 11β-HSD1
in the placenta (mRNA expression of GR: p < 0.001; protein expression of GR: p < 0.001; mRNA
expression of 11β-HSD2: p < 0.001; protein expression of 11β-HSD2: p < 0.001; mRNA expression
of 11β-HSD1: p < 0.001; protein expression of 11β-HSD1: p < 0.001), leading to significantly lower
serum corticosterone levels in the offspring mice (p < 0.001; Figure 4G). These data together indicate
that maternal chewing during the prenatal stress period decreased the GC level in the offspring by
protecting placenta barrier function (Figure 4H).
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Figure 4. Maternal chewing during prenatal stress deceased the glucocorticoid (GC) level in the mouse
offspring by protecting the placenta barrier function. (A,B) The mRNA and protein expression of
glucocorticoid receptor (GR) in the placenta. (C,D) The mRNA and protein expression of 11β-HSD1 in
the placenta. (E,F) The mRNA and protein expression of 11β-HSD2 in the placenta. (G) The serum
corticosterone level in the mouse offspring. (H) Maternal chewing attenuated prenatal stress-induced
increase in GC level in the mouse offspring by protecting placenta barrier function (** p < 0.01 vs.
control group, ## p < 0.01 vs. stress group, n = 9 per group). All data are shown as mean ± SEM.

2.5. Maternal Chewing during Prenatal Stress Ameliorated the Nuclear GR Transport Impairment Induced by
Prenatal Stress

Immunohistochemical staining revealed lower positive expression of hippocampal GR in the DG
and CA1 in the stress group than in the control group and higher positive expression of hippocampal
GR in the DG and CA1 in the stress + chewing group than in the stress group (Figure 5A). As shown in
Figure 5B–M, compared with the control group, prenatal stress induced a significant decrease in mRNA,
total protein, nucleus protein expression of GR and mRNA and protein expression of 11β-HSD2,
FKBP51 and FKBP52 (mRNA expression of GR: F2,24 = 38.944, p < 0.001, post hoc, p < 0.001; total
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protein expression of GR: F2,24 = 33.602, p < 0.001, post hoc, p < 0.001; nucleus protein expression
of GR: F2,24 = 36.736, p < 0.001, post hoc, p < 0.001; mRNA expression of 11β-HSD2: F2,24 = 44.405,
p < 0.001, post hoc, p < 0.001; protein expression of 11β-HSD2: F2,24 = 15.110, p < 0.001, post hoc,
p < 0.001; mRNA expression of FKBP51: F2,24 = 36.641, p < 0.001, post hoc, p < 0.001; protein
expression of FKBP51: F2,24 = 48.942, p < 0.001, post hoc, p < 0.001; mRNA expression of FKBP52:
F2,24 = 71.790, p < 0.001, post hoc, p < 0.001; protein expression of FKBP52: F2,24 = 20.213, p < 0.001,
post hoc, p < 0.001) and a significant increase in the mRNA and protein expression of 11β-HSD1 in
the offspring (mRNA expression of 11β-HSD1: F2,24 = 37.964, p < 0.001, post hoc, p < 0.001; protein
expression of 11β-HSD2: F2,24 = 89.500, p < 0.001, post hoc, p < 0.001), indicating that prenatal stress
induced a hippocampal nuclear GR transport impairment in the offspring. Maternal chewing during
prenatal stress alleviated the hippocampal nuclear GR transport impairment in the offspring as the
mRNA and protein expression of 11β-HSD2, FKBP51 and FKBP52 were significantly increased (mRNA
expression of GR: p < 0.001; total protein expression of GR: p < 0.001; nucleus protein expression of
GR: p < 0.001; mRNA expression of 11β-HSD2: p < 0.001; protein expression of 11β-HSD2: p = 0.001;
mRNA expression of FKBP51: p < 0.001; protein expression of FKBP51: p < 0.001; mRNA expression of
FKBP52: p < 0.001; protein expression of FKBP52: p < 0.001), and the mRNA and protein expression of
11β-HSD1 were significantly decreased (mRNA expression of 11β-HSD1: p < 0.001; protein expression
of 11β-HSD2: p < 0.001), thereby inducing a significant increase in the hippocampal nucleus protein
expression of GR in the offspring.

2.6. Maternal Chewing during Prenatal Stress Regulated Enzymes of DNA Methylation as Well as Histone H3
Methylation and Acetylation in the Offspring

As shown in Figure 6, compared with the control group, prenatal stress led to an observable increase
in the protein expression of DNMT1 and DNMT3a (protein expression of DNMT1: F2,24 = 11.751,
p < 0.001, post hoc, p < 0.001; protein expression of DNMT3a: F2,24 = 13.142, p < 0.001, post hoc,
p < 0.001) and an observable decrease in the protein expression of H3K4me3, H3K9me3, H3K27me3 and
H3K9ac in the hippocampus of the offspring (protein expression of H3K4me3: F2,24 = 5.290, p = 0.012,
post hoc, p = 0.004; protein expression of H3K9me3: F2,24 = 12.102, p < 0.001, post hoc, p < 0.001;
protein expression of H3K27me3: F2,24 = 7.607, p = 0.003, post hoc, p = 0.001; protein expression
of H3K9ac: F2,24 = 6.880, p = 0.004, post hoc, p = 0.001). Maternal chewing during prenatal stress
observably decreased the protein expression of DNMT1 and DNMT3a (protein expression of DNMT1:
p = 0.008; protein expression of DNMT3a: p = 0.001) and observably increased the protein expression of
H3K4me3, H3K9me3, H3K27me3 and H3K9ac in the hippocampus of the offspring (protein expression
of H3K4me3: p = 0.031; protein expression of H3K9me3: p = 0.001; protein expression of H3K27me3:
p = 0.005; protein expression of H3K9ac: p = 0.017).
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Figure 5. Maternal chewing during prenatal stress ameliorated the nuclear GR transport impairment
induced by prenatal stress. (A) Photomicrographs showing the positive GR expression in the
hippocampus. (B–E) The mRNA, total protein, nuclear and cytoplasmic protein expression of GR.
(F,G) The mRNA and protein expression of 11β-HSD1. (H,I) The mRNA and protein expression
of 11β-HSD2. (J,K) The mRNA and protein expression of FKBP51. (L,M) The mRNA and protein
expression of FKBP52 (** p < 0.01 vs. control group, ## p < 0.01 vs. stress group, n = 9 per group).
All data are shown as mean ± SEM.



Int. J. Mol. Sci. 2020, 21, 5627 9 of 17

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 9 of 18 

 

expression of FKBP52 (** p < 0.01 vs. control group, ## p < 0.01 vs. stress group, n = 9 per group). All 
data are shown as mean ± SEM. 

2.6. Maternal Chewing during Prenatal Stress Regulated Enzymes of DNA Methylation as Well as Histone 
H3 Methylation and Acetylation in the Offspring 

As shown in Figure 6, compared with the control group, prenatal stress led to an observable 
increase in the protein expression of DNMT1 and DNMT3a (protein expression of DNMT1: F2,24 = 

11.751, p < 0.001, post hoc, p < 0.001; protein expression of DNMT3a: F2,24 = 13.142, p < 0.001, post 
hoc, p < 0.001) and an observable decrease in the protein expression of H3K4me3, H3K9me3, 
H3K27me3 and H3K9ac in the hippocampus of the offspring (protein expression of H3K4me3: F2,24 = 

5.290, p = 0.012, post hoc, p = 0.004; protein expression of H3K9me3: F2,24 = 12.102, p < 0.001, post hoc, 
p < 0.001; protein expression of H3K27me3: F2,24 = 7.607, p = 0.003, post hoc, p = 0.001; protein 
expression of H3K9ac: F2,24 = 6.880, p = 0.004, post hoc, p = 0.001). Maternal chewing during prenatal 
stress observably decreased the protein expression of DNMT1 and DNMT3a (protein expression of 
DNMT1: p = 0.008; protein expression of DNMT3a: p = 0.001) and observably increased the protein 
expression of H3K4me3, H3K9me3, H3K27me3 and H3K9ac in the hippocampus of the offspring 
(protein expression of H3K4me3: p = 0.031; protein expression of H3K9me3: p = 0.001; protein 
expression of H3K27me3: p = 0.005; protein expression of H3K9ac: p = 0.017). 

 
Figure 6. Maternal chewing during prenatal stress regulated enzymes of DNA methylation as well as 
histone 3 methylation and acetylation in the offspring. (A) Protein expression of DNMT1 in the 
hippocampus in the offspring. (B) Protein expression of DNMT3a in the hippocampus in the 
offspring. (C) Protein expression of H3K4me3 in the hippocampus in the offspring. (D) Protein 
expression of H3K9me3 in the hippocampus in the offspring. (E) Protein expression of H3K27me3 in 
the hippocampus in the offspring. (F) Protein expression of H3K9ac in the hippocampus in the 
offspring (** p < 0.01 vs. control group, ## p < 0.01 vs. stress group, n = 9 per group). All data are 
shown as mean ± SEM. 

Figure 6. Maternal chewing during prenatal stress regulated enzymes of DNA methylation as well
as histone 3 methylation and acetylation in the offspring. (A) Protein expression of DNMT1 in the
hippocampus in the offspring. (B) Protein expression of DNMT3a in the hippocampus in the offspring.
(C) Protein expression of H3K4me3 in the hippocampus in the offspring. (D) Protein expression of
H3K9me3 in the hippocampus in the offspring. (E) Protein expression of H3K27me3 in the hippocampus
in the offspring. (F) Protein expression of H3K9ac in the hippocampus in the offspring (** p < 0.01 vs.
control group, ## p < 0.01 vs. stress group, n = 9 per group). All data are shown as mean ± SEM.

3. Discussion

In the present study, we found that prenatal stress increased the blood corticosterone level,
decreased the hippocampal GR and BDNF expression and induced hippocampus-dependent cognitive
impairments in mouse offspring. Maternal chewing during prenatal stress attenuated elevated
circulating corticosterone level, increased the hippocampal GR and BDNF expression and ameliorated
cognitive impairments in the offspring induced by prenatal stress.

Consistent with previous reports, allowing pregnant mice to chew on a wooden stick during
prenatal restraint stress ameliorated the spatial learning impairment induced in the offspring [18,20,21].
Hippocampal neurogenesis highly modulates cognitive processes such as learning, memory and anxiety
by regulating information processing in the hippocampal DG [44,45]. Hippocampal neurogenesis
occurs throughout life and is susceptible to internal and external environmental changes, especially
during the fetal period [46,47]. Animal studies demonstrate that prenatal restraint stress suppresses
hippocampal neurogenesis and results in anxiety- and depressive-like behavior and learning disorders
in the offspring [48–50]. Our findings that maternal chewing during prenatal stress markedly
alleviated the neurogenesis impairment in the hippocampal DG in offspring mice are consistent with
previous findings [18,20]. BDNF, as the most abundant neurotrophin in the brain, contributes to
enhancing synaptic plasticity and improving cognitive functions such as learning, memory and higher
thinking [51]. The higher BDNF and lower GC levels are required for normal neuronal maintenance
during the prenatal period. BDNF–GC equilibrium is crucial throughout life as a major mechanism
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for stress response regulation [36]. Prenatal stress downregulates hippocampal BDNF [18] and GR
expression [19]. The combination of low BDNF and low GR expression results in vulnerability to
stress-related disorders. The present findings demonstrated that providing pregnant mice with a
wooden stick to chew on during prenatal restraint stress attenuated the prenatal stress-induced decrease
in hippocampal BDNF and GR expression in the offspring. We consider that maternal chewing could
protect against stress-induced steep GC elevation and has beneficial effects that are mediated via
upregulating BDNF and GR expression. Prenatal stress induces a conspicuous increase in GC levels
in dams, which may expose the fetus to excess GC during a vital period of fetal brain development,
producing long-lasting and irreversible effects on neonatal neurodevelopment, neuroendocrine and
cognitive function [52,53]. Fetal exposure to excess GC is also associated with increased HPA axis
activity and increased serum GC levels in childhood [54,55]. In the present study, prenatal stress led
to an increase in GC levels in the mouse offspring, which was attenuated by allowing pregnant mice
to chew on a wooden stick during prenatal stress, indicating that maternal chewing during prenatal
stress ameliorates the prenatal stress-induced cognitive impairment in the offspring by decreasing
GC levels. During development, GC, which is derived from the maternal system via the placenta,
is essential for the maturation, development and survival of the fetus. In general, most maternally
derived GC is metabolized and only 10–20% of maternal GC passes to the fetus due to the placenta
barrier function [56]. The enzyme 11β-HSD2 is thought to provide a barrier function by oxidizing active
GC to inactive steroids, protecting the fetus against exposure to excessive GC [57]. Recently, placental
GRs were also recognized as key regulators of placenta barrier function to reduce fetal GC levels [58].
Inversely, the enzyme 11β-HSD1 was identified as a reductase, converting inactive GC to its active
forms [59]. Here, we demonstrated that prenatal stress markedly decreased the expression of 11β-HSD2
and GR and increased the expression of 11β-HSD1 in the placenta. The abnormal changes were
significantly attenuated by maternal chewing during prenatal stress. Accordingly, it seems reasonable
to assume that maternal chewing during prenatal stress protects the placenta barrier function against
excessive GC induced by prenatal stress in the mouse offspring.

The GR, as a part of the large superfamily of nuclear receptors, is a crucial segment of the HPA
axis and regulates hippocampal formation development, structure and functioning by translocating
to the nucleus after binding to an agonist [22]. FKBP51 and FKBP52 as chaperone proteins regulate
GR transport between the cytosol and nucleus [25,26]. Decreased expression of FKBP51 and FKBP52
leads to nuclear GR transport impairment in the hippocampus, thereby affecting the transcriptional
capacity of hippocampal neurons and resulting in HPA axis dysfunction related to anxiety, depressive
behaviors and learning and memory impairment [26,60]. Furthermore, the GR distribution between the
cytosol and nucleus is also regulated by the intracellular concentration of GC [61]. In the hippocampal
formation, the enzyme 11β-HSD1, also known as reductase, converts inactive GC to its active form,
whereas the enzyme 11β-HSD2 oxidizes active GC to inactive metabolites [34,62]. The balance between
11β-HSD1 and 11β-HSD2 largely regulates the intracellular GC concentration. In the present study, we
found that prenatal stress markedly increased the expression of hippocampal 11β-HSD1 and decreased
the expression of hippocampal 11β-HSD2, FKBP51 and FKBP52, thereby decreasing hippocampal
nuclear GRs in the offspring, indicating that prenatal stress impairs nuclear GR transport. The impaired
nuclear GR transport was ameliorated by maternal chewing during prenatal stress, decreasing the
expression of 11β-HSD1 and increasing expression of 11β-HSD2, FKBP51 and FKBP52. Overall, these
findings suggest that maternal chewing during prenatal stress ameliorates the impaired nuclear GR
transport induced by prenatal stress, at least in part, by upregulating 11β-HSD2, FKBP51 and FKBP52
levels and downregulating 11β-HSD1 levels.

Additionally, the prenatal environment is hypothesized to produce differences in the behavioral
phenotypes of the offspring by altering gene expression during the critical period of fetal brain
development, and these differences are thought to be associated with changes in histone H3 modification
or DNA methylation [63,64]. Evidence indicates that DNA methylation is required for hippocampal
function, but excess DNA methylation in the hippocampus is related to spatial memory impairment [65].
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The enzymes DNMT1 (a maintenance methyltransferase) and DNMT3a (a de novo methyltransferase)
are highly expressed in the brain, where they catalyze DNA methylation, and their levels are likely
to reflect the overall level of DNA methylation in the hippocampus. Histone H3 methylation
at lysine 4 (H3K4me3) and histone H3 acetylation at lysine 9 (H3K9ac) are considered “active”
modifications and are associated with transcriptional activation [66,67], while histone H3 methylation
at lysine 9 (H3K9me3) and lysine 27 (H3K27me3) are associated with heterochromatin formation
and transcriptional repression, respectively [68]. Increased expression of these genes is necessary for
synaptic plasticity in the hippocampus. Our results show that prenatal stress induced an increase in the
hippocampal DNMT1 and DNMT3a levels and a decrease in the hippocampal H3K4me3, H3K9me3,
H3K27me3 and H3K9ac levels in the offspring. These abnormal changes, however, were significantly
attenuated by maternal chewing during prenatal stress. These findings indicate that maternal chewing
during prenatal stress is associated with the regulation of the enzymes in hippocampal histone H3
methylation and acetylation as well as DNA methylation. Additionally, a growing body of evidence
indicates that maternal adversity stress during pregnancy could lead to epigenetic changes in fetal
tissues, which might contribute to heightened HPA reactivity among the offspring [69–71]. Further
studies are necessary to reveal the underlying mechanisms by which specific genes are selected for the
epigenetic regulation of hippocampus-dependent functions.

4. Materials and Methods

4.1. Animal Models

The experimental protocols used in this work were evaluated and approved by the Ethics Review
Committee for Animal Care and Experimentation of the University of Occupational and Environmental
Health, Japan (AE 17-013, permission code, 8 June, 2017). Female (n = 27) and sexually experienced
male (n = 27) Institute of Cancer Research (ICR) mice (810– weeks of age) were obtained from Japan
SLC (Hamamatsu, Japan) and housed under standard laboratory conditions (temperature: 23 ± 1
◦C, humidity: 55% ± 5%, light period: 7:00–19:00, dark period: 19:00–7:00, food and drinking water
available ad libitum).

One week after the mice arrived, female mice were placed with male mice for one night, and the
next day was specified as gestational day 0. Afterwards, the pregnant mice were singly housed in
individual cages and randomly assigned to the CONTROL, STRESS and STRESS+CHEWING groups
(n = 9/group).

The prenatal restraint stress procedure was performed as previously described [18,20,21]. Briefly,
pregnant mice in the STRESS and STRESS + CHEWING groups were placed in a ventilated plastic
transparent cylinder (4.5 cm diameter, 10.3 cm long), in which the pregnant mice could move back and
forth but not turn around, 3 times daily for 45 min each at 09:00, 13:00 and 17:00, from gestational day
12 until parturition. The pregnant mice in the STRESS+CHEWING group were given a wooden stick
(2 mm diameter) placed in front of the nose to chew on during the period of prenatal restraint stress,
as previously described [18,20,21]. At the end of each restraint stress procedure, the wooden sticks
were examined and counted, and the number of chewed wooden sticks did not differ significantly
among the mice in the STRESS + CHEWING group. The pregnant mice in the CONTROL group were
neither restrained nor provided with a stick to chew and remained in their home cages.

At weaning (3 weeks after birth), male mice were randomly selected from the CONTROL,
STRESS and STRESS + CHEWING groups and assigned to a control, stress or stress + chewing group,
respectively (lowercase group names represent offspring groups). Male mice at 1 month of age were
used for behavioral, immunohistochemical and molecular experiments, and only one mouse from each
litter was used in the same assay. All efforts were made to minimize both the suffering and number of
animals used.
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4.2. Morris Water Maze Test

The Morris water maze test is a behavioral task mostly used with rodents that directly reflects
spatial learning ability, and it was performed in this study as previously described [20]. Briefly,
a stainless-steel circular pool with a diameter of 90 cm and height of 30 cm was filled with water
at a temperature of 23 ◦C to 23 cm. A mouse was placed in the water at one of four evenly spaced
starting locations around the pool and allowed 90 s to locate a platform (12 × 12 cm) hidden just 1 cm
underneath the surface. If the mouse failed to find the hidden platform within 90 s, it was manually
guided to the platform. Each mouse was given 4 acquisition trials per day for 7 days. A charge-coupled
device camera linked to a computer system (Move-tr/2D, Library Co., Ltd., Tokyo, Japan) was used to
record the escape latency (the time it took for the mouse to swim from 1 of the 4 starting locations to
find and climb onto the platform) and the swim path. On the last day of training, 2 h after the last
training trial, the mice were given a probe test in which the platform was visible.

4.3. Corticosterone Assay

Blood samples were collected at the canthus of 1-month old male mice between 10:00 and 11:00 a.m.
in accordance with Institutional Animal Care and Use Committee (IACUC) guidelines and centrifuged
at 3000 rpm for 10 min at 4 ◦C to separate the sera, and the serum corticosterone levels were detected
using an enzyme-linked immunosorbent assay kit, according to the manufacturer’s instructions
(Assaypro Co. Ltd., St Charles, MO, USA). Light absorbance was detected by an absorbance microplate
reader (Corona Electric Co. Ltd., Ibaraki, Japan).

4.4. Real-Time PCR

RNA was extracted from isolated hippocampus or placenta tissues and reverse-transcribed
into first-strand cDNA with a GoScript Reverse Transcription System kit (Promega, Madison,
WI, USA). The cDNA was used in quantitative polymerase chain reactions (PCR) to assess
the mRNA expression of BDNF, GR, 11β-HSD1, 11β-HSD2, FKBP51 and FKBP52 in the
hippocampus or placenta tissues. Quantitative real-time PCR analysis was performed on
an ABI StepOnePlus System (Applied Biosystems, Foster City, CA, USA) with GoTaq qPCR
Master Mix (Promega). The nucleotide sequences of the primers used were as follows:
β-actin (forward, GGAGATTACTGCCCTGGCTCCTA, reverse, GACTCATCGTACTCCTGCTTGCTG);
BDNF (forward, TCATACTTCGGTTGCATGAAGG, reverse, ACACCTGGGTAGGCCAAGTT), GR
(forward, GACTCCAAAGAATCCTTAGCTCC, reverse, CTCCACCCCTCAGGGTTTTAT), 11β-HSD1
(forward, GGAGCCCATGTGGTATTGACT, reverse, CCGCAAATGTCATGTCTTCCAT), 11β-HSD2
(GCCCTAGAACTGCGTGACC, reverse, AGAACACGGCTGATGTCCTCT), FKBP51 (forward,
GATGAGGGCACCAGTAACAATG, reverse, CAACATCCCTTTGTAGTGGACAT), FKBP52 (forward,
CCTCTCGAAGGAGTGGACATC, reverse, TCCCCGATCATGGGTGTCT), which were designed using
Primer3 software and synthesized at Life Technologies Japan Ltd. (Tokyo, Japan). The mRNA
expression levels were normalized with β-actin mRNA expression levels and expressed as relative
values (fold-change) to the expression levels in the control mice.

4.5. Western Blot Analyses

Protein was extracted from hippocampus or placenta tissue using a cold modified
radioimmunoprecipitation assay (RIPA) lysis buffer system (Millipore, Burlington, MA, USA), and
nuclear protein and cytoplasmic protein were extracted from the hippocampus using a NucBuster
protein extraction kit (Novagen, Darmstadt, Germany). The concentrations of hippocampal protein
and placenta protein were detected using a BCA protein assay kit (Thermo Scientific, Waltham, MA,
USA). Proteins (30 µg) were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(Invitrogen, Carlsbad, CA, USA) and blotted onto polyvinylidene difluoride membranes (Millipore).
After blocking, immunoblotting was performed with the following rabbit polyclonal antibodies at 4 ◦C
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overnight: anti-GAPDH (37 kDa, 1:1000), anti-Lamin B1 (68 kDa, 1:1000), anti-BDNF (15 kDa, 1:1000),
anti-11β-HSD1 (35 kDa, 1:1000), anti-11β-HSD2(44 kDa, 1:1000), anti-GR (91 kDa, 1:1000), anti-FKBP51
(51 kDa, 1:1000), anti-FKBP52 (56 kDa, 1:1000), anti-DNMT1 (200 kDa, 1:1000), anti-DNMT3a (130 kDa,
1:1000), anti-H3K4me3 (17 kDa, 1:1000), anti-H3K9me3 (17 kDa, 1:1000), anti-H3K27me3 (17 kDa,
1:1000), anti-H3K9ac (17 kDa, 1:1000) and anti-histone H3 (17 kDa, 1:1000). The GAPDH, GR, FKBP51,
FKBP52, DNMT1, DNMT3a, H3K4me3, H3K9me3, H3K27me3, H3K9ac and histone H3 antibodies were
obtained from Cell Signaling Technology (Danvers, MA, USA), and the Lamin B1, BDNF, 11β-HSD1 and
11β-HSD2 antibodies were obtained from Abcam (Cambridge, UK). The next day, the immunoblotting
membranes were incubated in a secondary antibody (1:1000, Cell Signaling Technology, Danvers, MA,
USA) for 60 min and then visualized with an ECL kit (GE Healthcare Bio-Science, Chicago, IL, USA).
The bands of target protein on the Western blots were measured using an Ez-Capture MG System (Atto
Corporation, Tokyo, Japan), and densitometric analyses of the bands were performed using the Scion
Image software program (version 4.0.2; Scion Corp., Frederick, MD, USA). In the Western blot analyses,
GAPDH was used as a loading control to normalize the protein levels of BDNF, GR, 11β-HSD1,
11β-HSD2, FKBP51, FKBP52, DNA methyltransferase 1 (DNMT1) and DNMT3a, and cytoplasmic
protein of GR, Lamin B1, was used as a loading control to normalize the levels of nuclear protein of GR,
and histone H3 was used as a loading control to normalize the protein levels of H3K4me3, H3K9me3,
H3K27me3 and H3K27ac.

4.6. Immunohistochemical Staining

Brain tissues were fixed in 4% neutral buffered paraformaldehyde (pH = 7.4) and embedded in
paraffin. The paraffin sections (5 µm) were deparaffinized in xylene and rehydrated in ethanol; then,
antigen retrieval was performed by incubating in oiled 0.01 M sodium citrate buffer (pH = 6) and
blocking endogenous peroxidase activity using 10% H2O2. To reduce nonspecific staining, the slides
were immersed in Protein Block, Serum Free (Dako, Tokyo, Japan) for 15 min. For immunohistochemical
staining, the sections (5 µm) were incubated with anti-BDNF (1:100, Abcam, Cambridge, UK), anti-GR
(1:400, Cell Signaling Technology, Danvers, MA, USA) or anti-doublecortin (1:1000, Abcam, Cambridge,
UK) and then incubated with biotinylated goat anti-rabbit IgG and streptavidin peroxidase complex
(Nichirei Biosciences Inc., Tokyo, Japan) for 30 min at room temperature, stained with diaminobenzidine
and then counterstained with hematoxylin. A light microscope (Olympus, BX50, Tokyo, Japan)
connected to a digital camera was used for examining and photographing the slides. For quantification
of doublecortin-positive cells in the DG of both hippocampal lobes, the number of immunopositive
cells was counted in 10 randomly selected fields of sections, original magnification ×400, as previously
described [72].

4.7. Statistical Analysis

All experimental data are expressed as the mean ± SEM. The data were analyzed by one-way
analysis of variance (ANOVA), followed by Tukey’s post-hoc test for multiple comparisons between
groups, using SPSS software (Version22.0, Chicago, IL, USA). Differences were considered statistically
significant at p < 0.05.

5. Conclusions

The present study demonstrates that maternal chewing during prenatal stress could ameliorate
prenatal stress-induced cognitive impairments in the offspring, at least in part, by protecting the
placenta barrier function, alleviating hippocampal nuclear GR transport impairment and increasing
hippocampal BDNF level.
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