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Background Capsule endoscopy (CE) is the first line for evaluation of patients with obscure 
gastrointestinal bleeding. A  wide range of small intestinal vascular lesions with different 
hemorrhagic potential are frequently found in these patients. Nevertheless, reading CE exams 
is time-consuming and prone to errors. Convolutional neural networks (CNN) are artificial 
intelligence tools with high performance levels in image analysis. This study aimed to develop 
a CNN-based model for identification and differentiation of vascular lesions with distinct 
hemorrhagic potential in CE images.

Methods The development of the CNN was based on a database of CE images. This database 
included images of normal small intestinal mucosa, red spots, and angiectasia/varices. The 
hemorrhagic risk was assessed by Saurin’s classification. For CNN development, 11,588 images 
(9525 normal mucosa, 1026 red spots, and 1037 angiectasia/varices) were ultimately extracted. 
Two image datasets were created for CNN training and testing.

Results The network was 91.8% sensitive and 95.9% specific for detection of vascular lesions, 
providing accurate predictions in 94.4% of cases. In particular, the CNN had a sensitivity and 
specificity of 97.1% and 95.3%, respectively, for detection of red spots. Detection of angiectasia/
varices occurred with a sensitivity of 94.1% and a specificity of 95.1%. The CNN had a frame 
reading rate of 145 frames/sec.

Conclusions The developed algorithm is the first CNN-based model to accurately detect and 
distinguish enteric vascular lesions with different hemorrhagic risk. CNN-assisted CE reading 
may improve the diagnosis of these lesions and overall CE efficiency.
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Abstract

Introduction

Capsule endoscopy (CE) has revolutionized the approach 
to patients with suspected small intestine disease, allowing 
noninvasive inspection of this portion of the gastrointestinal 

tract. The clinical value of CE has been demonstrated in a wide 
array of diseases, including the evaluation of patients with 
suspected small bowel hemorrhage, diagnosis and monitoring 
of Crohn’s disease activity, and detection of protruding small 
intestinal lesions [1-4].

Obscure gastrointestinal bleeding (OGIB), either overt or 
occult, is responsible for 5% of all gastrointestinal hemorrhage 
cases. OGIB is currently the most frequent indication for 
CE. The source of bleeding is located in the small intestine in 
most cases [5,6]. A classification of CE findings according to 
their bleeding potential has been proposed by Saurin et al [7]. 
This classification defines CE findings as having no bleeding 
potential (P0), uncertain bleeding potential (P1), or high 
bleeding potential (P2). Findings with high bleeding potential 
include large ulcers, angiectasia, and varices. Vascular lesions 
are among the most commonly diagnosed lesions during the 
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investigation of OGIB. Angiectasia is the most commonly 
found lesion with high bleeding potential among patients 
undergoing CE for OGIB [5]. These lesions are associated 
with chronic blood loss and are most commonly found in the 
elderly, patients with chronic kidney disease, cardiovascular 
disease and cirrhosis [8,9]. Other vascular lesions include 
enteric varices and red spots, which may be found in portal 
hypertension or diseases with systemic involvement [10-12]. In 
fact, OGIB is the most common indication for CE in patients 
with cirrhosis [13]. Furthermore, although the bleeding 
potential of mucosal red spots is uncertain, they are frequently 
found during CE for investigation of unexplained iron 
deficiency anemia and can occur as manifestations of several 
conditions, including portal hypertensive enteropathy and 
systemic vasculitis [11,12].

Evaluation of CE exams can be a burdensome task. Each 
CE video comprises approximately 50,000 frames, requiring an 
average of 30-120 min for reading [14]. Thus, this process is 
time-consuming for the clinical gastroenterologist. Moreover, 
mucosal lesions may be restricted to a small number of frames, 
increasing the risk of overlooking significant lesions.

The existence of large image databases and enhanced 
computational power have boosted the development of 
artificial intelligence (AI) tools for automatic image analysis. 
Among the different types of AI, convolutional neural networks 
(CNN) have delivered promising results in diverse fields of 
medicine [15-17]. Endoscopic imaging, and particularly CE, 
is one of the branches which can benefit the most from the 
development of CNN-based tools for the automatic detection 
of lesions [18]. These technological advances may increase 
diagnostic rates and optimize the reading process, including its 
time cost, which constitutes one of the main drawbacks of CE. 
Therefore, we aimed to create a CNN capable of automatically 
detecting and differentiating small intestinal vascular lesions 
of distinct bleeding potential, including red spots, angiectasias, 
and varices.

Patients and methods

Study design

Subjects who underwent CE during the period 2015-2020 
in a single tertiary center (São João University Hospital, Porto, 
Portugal), either as inpatients or outpatients, were approached 

for enrolment in this retrospective study (n=1229). A  total 
of 1483 CE exams were performed. Data retrieved from 
these examinations were used for development, training and 
validation of a CNN-based model aimed at detecting vascular 
lesions and differentiating their bleeding potential. The full-
length CE video of all participants was reviewed (total number 
of frames: 67,214,009). A total of 11,588 images of the enteric 
mucosa were ultimately extracted. The findings represented 
on the frames were labeled by 2 gastroenterologists (MMS, 
HC). Each of these researchers have read more than 1500 CE 
prior this study. The inclusion and final labeling of the frames 
was dependent on a double-validation method, requiring 
consensus between both researchers for final decision.

This study was approved by the ethics committee of São 
João University Hospital/Faculty of Medicine of the University 
of Porto (No. CE 407/2020). This study was retrospective 
and was of non-interventional nature, respecting the original 
and subsequent revisions of the declaration of Helsinki. 
Therefore, there was no interference in the conventional clinical 
management of each included patient. Any information deemed 
to potentially identify the subjects was omitted, and each patient 
was assigned a random number in order to guarantee effective 
data anonymization for researchers involved in CNN network 
development. A team with Data Protection Officer certification 
(Maastricht University) confirmed the non-traceability of data 
and conformity with the general data protection regulation.

CE protocol

In all patients, the procedures were conducted using the 
PillCam™ SB3 system (Medtronic, Minneapolis, MN, USA). The 
system includes 3 major components: the endoscopic capsule, 
an array of sensors connected to a data recorder, and a software 
for image revision. The capsule measures 26.2  mm in length 
and 11.4  mm in width. It has a high-resolution camera with 
reported 156° field of view. The capture frame rate automatically 
varies between 2 and 6 frames per second, depending on the 
speed of progression of the endoscopic capsule. The battery 
of the endoscopic capsule has an estimated life of ≥8  h. The 
images were reviewed using PillCam™  Software v9 (Medtronic, 
Minneapolis, MN, USA). Images were processed in order 
to remove possible patient identifying information (name, 
operating number, date of procedure). Each extracted frame 
was stored and assigned a consecutive number.

Each patient received bowel preparation, which globally 
conformed with previously published guidelines by the 
European Society of Gastrointestinal Endoscopy [19]. Briefly, 
patients were advised to have a clear liquid diet on the day 
preceding capsule ingestion, with fasting during the night 
before examination. A  bowel preparation consisting of 2  L 
of polyethylene glycol solution was used prior to the capsule 
ingestion. Simethicone was used as an anti-foaming agent. 
Prokinetic therapy (10  mg domperidone) was used if the 
capsule remained in the stomach 1  h after ingestion, upon 
image review on the data recorder worn by the patient. No 
eating was allowed for 4 h after the ingestion of the capsule.
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Categorization of lesions

Each frame was evaluated for the presence of vascular lesions or 
normal enteric mucosa. Images with vascular lesions were further 
categorized according to the specific type of lesion and respective 
bleeding potential. The presence of red spots, angiectasias and 
varices was noted. Red spots were defined as a punctuate (<1 mm) 
flat lesion with a bright red area, within the mucosal layer, without 
vessel appearance [20]. Angiectasias were defined as a well 
demarcated bright red lesion consisting of tortuous and clustered 
capillary dilatations, within the mucosal layer [20]. Varices were 
defined as raised venous dilatation with serpiginous appearance. 
The hemorrhagic potential of these lesions was ascertained 
according to Saurin’s classification [7]. This classification divides 
lesions into 3 levels of bleeding risk: P0 – no hemorrhagic 
potential; P1 – uncertain/intermediate hemorrhagic potential; 
P2 – high hemorrhagic potential. Red spots were classified as P1 
lesions, whereas angiectasias and varices were classified as P2 [7].

Development of the CNN

From the collected pool of images (n=11588), 9525 contained 
normal enteric mucosa, 1026 had evidence of red spots (P1 
lesions), and 1037 had angiectasia or varices (P2 lesions). This 
pool of images was split for the construction of training and 
validation image sets. The training dataset was composed by 
selecting 80% of the consecutively extracted images (n=9270). 
The remaining 20% were used as the validation dataset 
(n=2318). The validation dataset was used for assessing the 
performance of the CNN. A flowchart summarizing the study 
design and image selection for the development (training and 
validation) of the CNN is presented in Fig. 1.

To create the CNN, we used the Xception model with its 
weights trained on ImageNet (a large-scale image dataset 
aimed for use in development of object recognition software). 
To transfer this learning to our data, we kept the convolutional 
layers of the model. We removed the last fully connected layers 
and attached fully connected layers based on the number of 
classes we used to classify our endoscopic images. We used 
2 blocks, each having a fully connected layer followed by a 
Dropout layer of 0.3 drop rate. Following these 2 blocks, we 
added a Dense layer with a size defined as the number of 
categories (n=3) to classify. The learning rate of 0.0001, batch 
size of 32, and the number of epochs of 100 were set by trial and 
error. We used Tensorflow 2.3 and Keras libraries to prepare the 
data and run the model. The analyses were performed using a 
computer equipped with a 2.1 GHz Intel® Xeon® Gold 6130 
processor (Intel, Santa Clara, CA, USA) and a double NVIDIA 
Quadro® RTX™ 4000 graphic processing unit (NVIDIA 
Corporate, Santa Clara, CA, USA).

Statistical analysis

The primary outcome measures included sensitivity, 
specificity, precision, and the accuracy in differentiating 

between images containing normal mucosa, red spots 
and P2 lesions. In addition, we used receiver operating 
characteristic (ROC) curve analysis and area under the ROC 
curve (AUROC) to measure the performance of our model 
in the distinction between the 3 categories. The network’s 
classification was compared to the diagnosis provided by 
specialists’ analysis, the latter being considered the gold 
standard. In addition to its diagnostic performance, the 
computational speed of the network was determined using 
the validation image dataset by calculating the time required 
for the CNN to provide output for all images. For each image, 
the CNN calculated the probability for each of the 3 categories 
(normal mucosa, red spots and P2 lesions). A  higher 
probability value translated into a greater confidence in the 
CNN prediction. The category with the highest probability 
score was outputted as the CNN’s predicted classification 
(Fig.  2). Sensitivities, specificities, and precisions are 
presented as mean ± standard deviation. ROC curves were 
graphically represented and AUROC calculated as mean and 
95% confidence intervals (CI), assuming normal distribution 
of these variables. Statistical analysis was performed using 
Sci-Kit learn v0.22.2 [21].

Results

Construction of the network

A total of 1229 patients underwent CE and were enrolled 
in this study, from which 11,588 frames were extracted. 
The validation dataset comprised 2318 images (20% of the 
extracted frames). It was composed of 206 (8.9%) images with 
red spots, 207  (8.9%) images with P2 findings (angiectasia 
and varices), and 1905 (82.2%) images with normal mucosa. 
The CNN evaluated each image and predicted a classification 
(normal mucosa, red spots or P2 lesions) that was compared 
with the classification provided by the specialists. The 
network demonstrated its learning ability, with increasing 
accuracy as data were repeatedly input into the multi-layer 
CNN (Fig. 3).

Overall performance of the network

The distribution of results is displayed in Table 1. Overall, 
the mean sensitivity and specificity of the CNN were 91.8±2.2% 
and 95.9±1.2%. The network provided accurate predictions in 
94.4±3.7%. The positive predictive value was 91.3±3.7%. The 
negative predictive value was 95.7±2.1%.

CNN performance for the detection and distinction of 
normal mucosa or enteric vascular lesions

We aimed to evaluate the CNN’s performance in the 
detection and distinction of enteric vascular lesions. The 
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Figure 1 Study flow chart for the training and validation phases
CNN, convolutional neural network; CE, capsule endoscopy; AUROC, area under the receiver operating characteristic curve

trained CNN had a sensitivity of 91.7%, specificity of 95.3%, 
and an accuracy of 94.1% for the detection of P1 lesions (red 
spots) (Table 2). The AUROC was 0.97. The network detected 
varices and angiectasia (P2 lesions) with a sensitivity, specificity 
and accuracy of 94.1%, 95.1% and 94.8%, respectively, and had 

an AUROC of 0.98. Classification as normal mucosa occurred 
with a sensitivity and specificity of 89.8% and 97.2% (Table 2), 
respectively, and an AUROC of 0.98. The ROC curves and 
respective AUROCs for detection of red spots, P2 lesions, and 
normal mucosa are represented in Fig. 4.
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N 93% (N) N P1 P2 N P1 P2

N P1 P2N P1 P2

N P1 P2 N P1 P2

P1 100% (P1)

P2 100% (P2)P2 97% (P2)

P1 73% (N) P2 100% (P2)

Figure 2 Output obtained from the application of the convolutional neural network. The bars represent the probability estimated by the network. 
The finding with the highest probability was output as the predicted classification. A blue bar represents a correct prediction. Red bars represent 
an incorrect prediction
N, normal mucosa; P1, red spots; P2, angiectasia and varices
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Figure 3 Evolution of the accuracy of the convolutional neural network 
during training and validation phases, as the training and validation 
datasets were repeatedly input into the neural network

Table 1 Confusion matrix of the automatic detection vs. expert 
classification

CNN classification Expert classification

P1 P2

Normal 254 9 3

P1 14 209 9

P2 15 10 190
CNN, convolutional neural network; Normal, normal mucosa; P1, lesions with 
uncertain/intermediate hemorrhagic risk (red spots); P2, high bleeding risk 
lesions (angiectasia/varices)

Computational performance of the CNN

The time required for production of outputs for the images 
in the validation dataset was calculated. The CNN completed 
the reading of the validation image set in 16 sec. This translates 
into an approximated reading rate of 145 frames/sec. At this 
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rate, revision of a full-length CE video containing an estimated 
50,000 frames would require approximately 6 min.

Discussion

In this study, we developed an accurate deep learning tool 
for detection and differentiation of enteric lesions with distinct 
hemorrhagic potential. To the best of our knowledge, this is the 
first study to evaluate the performance of a CNN for detection 
of a wide range of vascular lesions with different bleeding 
potential. Our network reached high levels of performance 
in the detection of findings with uncertain and high bleeding 
potential. We believe that these results are promising for the 
development and introduction into clinical practice of tools 
for the automatic detection and classification of small intestine 
vascular lesions.

CE has revolutionized the etiologic investigation of the 
patient presenting with non-emergent OGIB, either overt or 
occult. The diagnostic yield of CE for OGIB is superior to the 
generality of other noninvasive diagnostic methods and is 
comparable to the much more invasive device-assisted double-
balloon enteroscopy (DBE) [2]. The cost-effectiveness of CE in 
the setting of OGIB has been demonstrated [22,23]. Moreover, 
application of CE may synergistically enhance the diagnostic 
yield of deep enteroscopy techniques (e.g., DBE), thus selecting 
patients who may benefit from more invasive techniques with 
therapeutic potential [2,24].

The accurate and timely detection of small intestine lesions in 
CE is essential. Saurin et al have created a useful and pragmatic 
classification of the bleeding potential for lesions detected on 
CE [7]. Vascular lesions, including angiectasias and varices, 
present high bleeding risk (P2). Red spots have uncertain/
intermediate clinical significance [7]. Nevertheless, they are 
frequently found in patients with occult OGIB without other 
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Figure 4 ROC analyses of the network’s performance in the detection of normal mucosa, P1 vascular lesions (red spots) and P2 vascular lesions 
(angiectasia and varices)
ROC, receiver operating characteristic; AUC, area under the curve

Table 2 CNN performance for detection and differentiation of red spots (P1) and P2 lesions

CNN performance Sensitivity Specificity PPV NPV

Overall, mean % ± SD 91.8±2.2 95.9±1.2 91.3%±3.7% 95.7%±2.1%

P1 vs. all, % 91.7 95.3 90.1 96.1

P2 vs. all, % 94.1 95.1 88.4 97.6

Normal vs. all, % 89.8 97.2 95.5 93.5

P1 vs. Normal, % 95.9 94.8 93.7 96.6

P2 vs. Normal, % 98.4 94.4 92.7 98.8

P2 vs. P1, % 95.5 95.4 95.0 95.9
CNN, convolutional neural network; P1, lesions with uncertain/intermediate hemorrhagic risk (red spots); P2, high bleeding risk lesions (angiectasias/varices); 
normal, normal mucosa; SD, standard deviation; PPV, positive predictive value; NPV, negative predictive value
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high-risk lesions and may be a sign of systemic diseases [12]. 
However, the pleomorphism of these lesions as well as their 
frequent small size may increase the risk of missing lesions. To 
the best of our knowledge, this is the first CNN to specifically 
identify and distinguish red spots from other vascular lesions 
and normal mucosa.

Reading CE exams is a time-consuming task, and significant 
lesions may be restricted to a small number of frames, thus 
increasing the risk of overlooking significant lesions [25,26]. 
The application of AI tools to CE may allow these drawbacks 
to be overcome. Assistance of deep learning methods such 
as CNNs may improve detection of these lesions while 
shortening the time required for reading the images [27,28]. 
Recent application of these technologies has confirmed the 
high diagnostic performance of CNN-based models for small-
bowel CE, including for the detection of ulcers and erosions, 
protruding lesions, celiac disease, luminal blood content, and 
angiectasia [25,29-33].

This is the first study reporting the performance of a 
CNN-based model for the detection of lesions with distinct 
hemorrhagic potential on CE images. To date, the existing 
studies regarding automatic detection of vascular lesions have 
focused on the detection of angiectasia. Noya et al reported 
the development of a CNN for detection of angiectasia with 
a sensitivity of 90%, a specificity of 96.8% and an AUROC of 
0.93 [34]. Leenhardt et al developed a CNN capable of detecting 
angiectasia with a sensitivity of 100% and specificity of 96% [31]. 
However, that study was performed with frames extracted from 
the French national CE image database, which included only 
clean images. Therefore, their results may not be generalizable 
because of variations in bowel preparation and image artifacts. 
In 2019, Tsuboi et al developed a CNN-based system for 
automatic detection of angiectasia [35]. Their system proved 
to have a high diagnostic yield for the detection of angiectasia, 
with a sensitivity of 98.8% and specificity of 98.4%. However, 
this study failed to address the detection of lesions according 
to their hemorrhagic potential, which is clinically important, as 
lesions with different bleeding potential have distinct rebleeding 
rates [36]. More recently, a CNN model developed by Otani et al 
reported an AUROC of 0.95 for the detection of vascular lesions 
(angiectasias and venous malformations) [37].

A significant number of patients presenting with OGIB are 
concomitantly treated with antiplatelet or anticoagulant drugs 
for comorbid cardiovascular disease [38]. Special attention is 
required for these patients, as these therapies are associated with 
increased risk of mucosal injury or bleeding from preexistent 
vascular lesions [38,39]. The detection of these lesions in CE 
is important for the management of OGIB in this subset of 
patients. In this study, we developed a CNN-based model with 
high diagnostic yield for the detection of red spots (P1) and 
P2 lesions (angiectasias and varices). Indeed, this is the first 
published CNN to differentiate vascular lesions, rather than 
simply identifying them, as reported in previously published 
CNNs regarding vascular lesions. Furthermore, our CNN 
is able to stratify hemorrhagic risk, by accurately classifying 
frames according to Saurin’s classification. The development 
of sensitive AI tools for the automatic detection of vascular 
lesions in CE images may improve the diagnostic yield of CE 

for these lesions, thus decreasing the number of negative CE 
exams in the setting of OGIB. Moreover, the development of 
algorithms capable of foretelling the hemorrhagic potential of 
vascular lesions may help stratify patients who require further 
evaluation. This might translate into future gains regarding 
adequate management of healthcare resources.

This work has several highlights. First, to our knowledge, 
this is the first study to evaluate the performance of CNN for 
the detection of several vascular lesions. Moreover, we tested 
the ability of our model in the detection and discrimination 
of lesions with different bleeding potential. Second, our 
algorithm demonstrated high levels of performance in the 
detection and differentiation of such lesions. The sensitivity, 
specificity and AUROC for the detection of red spots and 
P2 lesions (angiectasias/varices) were, respectively, 91.7%, 
65.3% and 0.97, and 94.1%, 95.1% and 0.98. Third, the 
architecture of our network demonstrated a high image 
processing performance, with approximate reading rates of 
145 frames/sec. This performance is superior to most studies 
regarding automatic detection of lesions, including vascular 
abnormalities [25,29-31,35]. We believe that this performance 
may, in the near future, translate into shorter reading times, 
thus overcoming one of the main drawbacks of CE. Further 
prospective multicentric studies are required to assess whether 
AI-assisted CE image reading translates into enhanced time 
efficiency compared to conventional reading.

This study had several limitations. First, our study focused 
on patients evaluated in a single center and was conducted 
in a retrospective manner. Thus, these promising results 
must be confirmed by robust prospective multicenter studies 
before application to clinical practice. Second, this model was 
developed using PillCam SB3. Therefore, our results may not 
be generalizable for other CE systems. Third, our system was 
developed using still frames. Assessing the performance of this 
technology using full-length videos is required before the clinical 
implementation of this model. Third, although our network 
demonstrated high processing speed, we did not assess whether 
CNN-assisted image review reduces the reading time compared 
to conventional reading. Finally, the number of included patients 
was relatively small. Moreover, the number of images in the 
validation dataset was small, thus limiting the interpretation of 
our results. Therefore, prospective investigation in larger patient 
sets is required to confirm these results before the introduction 
of these tools into clinical practice.

The implementation of AI tools in routine clinical practice 
is expected to grow in the near future. CE is a fertile ground 
for the development of deep learning-based tools for enhanced 
image processing. These tools may help reduce CE reading 
times, thus overcoming one of its main downsides, as well as 
improving the diagnostic accuracy of CE for multiple lesions.

In conclusion, we developed a CNN-based model capable 
of detecting and discriminating vascular lesions with distinct 
hemorrhagic potential. Our model achieved high levels of 
accuracy and excellent image processing performance. We 
believe that our results may help lay the foundations for the 
widespread application of AI technology in the field of CE.
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Summary Box

What is already known:

•	 Capsule	 endoscopy	 (CE)	 is	 the	 first	 line	
approach for patients presenting with obscure 
gastrointestinal bleeding, as the bleeding source is 
located in the small bowel in most cases

•	 Reading	 CE	 images	 is	 a	 monotonous,	 time-
consuming and error-prone task

•	 Small	bowel	vascular	lesions	are	common	causes	of	
gastrointestinal bleeding and their identification in 
CE is often difficult

•	 Artificial	 intelligence	 (AI)	 has	 shown	 promising	
diagnostic capacity across several medical fields

What the new findings are:

•	 An	 AI	 tool	 based	 on	 a	 convolutional	 neural	
network detected and differentiated vascular 
lesions with distinct hemorrhagic potential with 
high sensitivity, specificity and accuracy

•	 The	 AI	 algorithm	 demonstrated	 high	 image	
processing performance

•	 Application	of	AI	technologies	to	CE	may	improve	
its diagnostic performance as well as its time 
efficiency
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