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Diabetic Retinopathy Assessment through
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Objective: To develop and validate an artificial intelligence (Al)-based system, Diabetic Retinopathy Analysis Model
Assistant (DRAMA), for diagnosing diabetic retinopathy (DR) across multisource heterogeneous datasets and aimed at
improving the diagnostic accuracy and efficiency.

Design: This was a cross-sectional study conducted at Zhejiang University Eye Hospital and approved by the ethics
committee.
Subjects: The study included 1500 retinal images from 957 participants aged 18 to 83 years. The dataset was

divided into 3 subdatasets: color fundus photography, ultra-widefield imaging, and portable fundus camera. Images
were annotated by 3 experienced ophthalmologists.

Methods: The Al system was built using EfficientNet-B2, pretrained on the ImageNet dataset. It performed 11
multilabel tasks, including image type identification, quality assessment, lesion detection, and diabetic macular edema
(DME) detection. The model used LabelSmoothingCrossEntropy and AdamP optimizer to enhance robustness and
convergence. The system'’s performance was evaluated using metrics such as accuracy, sensitivity, specificity, and area
under the curve (AUC). External validation was conducted using datasets from different clinical centers.

Main Outcome Measures: The primary outcomes measured were the accuracy, sensitivity, specificity, and AUC of
the Al system in diagnosing DR.

Results: After excluding 218 poor-quality images, DRAMA demonstrated high diagnostic accuracy, with
EfficientNet-B2 achieving 87.02% accuracy in quality assessment and 91.60% accuracy in lesion detection. Area under
the curves were >0.95 for most tasks, with 0.93 for grading and DME detection. External validation showed slightly
lower accuracy in some tasks but outperformed in identifying hemorrhages and DME. Diabetic Retinopathy Analysis
Model Assistant diagnosed the entire test set in 86 ms, significantly faster than the 90 to 100 minutes required by
humans.

Conclusions: Diabetic Retinopathy Analysis Model Assistant, an Al-based multitask model, showed high potential
for clinical integration, significantly improving the diagnostic efficiency and accuracy, particularly in resource-limited
settings.

Financial Disclosure(s): The author(s) have no proprietary or commercial interest in any materials discussed in this
article. Ophthalmology Science 2025;5:100755 © 2025 Published by Elsevier Inc. on behalf of the American Academy
of Ophthalmology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

Supplemental material available at www.ophthalmologyscience.org.
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Diabetic retinopathy (DR) is the leading cause of prevent-
able adult blindness all around the world. It is suggested that
DR will affect around an estimated 160.5 million people
worldwide by 2045." In China, where the diabetic
population is the largest in the world, the reported
prevalence of DR among these individuals is 16.3%.”
Early detection allows for interventions like glycemic
control, photocoagulation, or intravitreal injections to
prevent vision loss.” Consequently, annual dilated eye
examinations for regular DR and diabetic macular edema
(DME) screening are essential for individuals with
diabetes.” Fundus photography, an efficient and

© 2025 Published by Elsevier Inc. on behalf of the American
Academy of Ophthalmology. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/
by-nc-nd/4.0/).

noninvasive method, is commonly and extensively utilized
for DR screening.” However, in developing nations such
as China, the scarcity of ophthalmologists significantly
hinders the ability to meet the growing need for DR
screening and treatment.’

Artificial intelligence (AI) and deep learning algorithms
empower computers to surpass human performance in spe-
cific domains by leveraging extensive datasets.” Notably,
recent models on DR image recognition have
demonstrated exceptional sensitivity and specificity,
leading to their integration into clinical settings.””'> More-
over, human—AI synergy can manifest in various forms,
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optimizing performance and resource allocation to enhance
efficiency and reduce costs.* !5 However, there are still
several challenges in terms of the applications of Al in the
clinical practice.'®'” Most of the studies primarily
concentrate on classifying or detecting images from a
single device.'*™2° Tn addition, their scopes often extend
solely to specific facets of the diagnostic process, such as
image quality,”' diagnosis,”” or grading,” and not the entire
clinical diagnostic procedure. These limitations hinder their
applicability in factual clinical settings. Multitask learning
enables the model to learn shared representations that are
beneficial across multiple related tasks, such as lesion
detection, grading, and quality assessment.”* This shared
learning enhances the model’s ability to generalize across
different image types and patient populations, ultimately
improving diagnostic accuracy and efficiency in factual
clinical settings. For instance, by simultaneously learning
from tasks like lesion detection and image quality assess-
ment, the model becomes more robust, as it can leverage
information from multiple sources to make more informed
decisions, reducing the risk of overfitting to a single task.”

In our prior work, we introduced a multisource hetero-
geneous fundus dataset,”® capturing intricate clinical
scenarios encompassing 3 distinct fundus image types.
Color fundus photography (CFP) is a widely adopted
method for screening various ocular pathologies. Ultra-
widefield imaging (UWF) is an advanced fundus imaging
technique capable of capturing intricate and comprehensive
images. The portable fundus camera (PC), a handheld de-
vice, proves to be convenient for deployment in rural set-
tings and plays a pivotal role in advancing telemedicine. In
this study, we have developed an Al-based automated sys-
tem for DR diagnosis. We evaluated its effectiveness as a
tool for accurately classifying 3 types of images and
assisting in multitask intelligent diagnosis of DR. We posit
that our study holds the potential to support ophthalmolo-
gists during specific stages of DR consultation and bears
generalization in diverse clinical settings.

Methods

Resource Availability

Materials Availability. This study did not generate new unique
reagents.

Data and Code Availability. All data reported in this paper will
be shared by the lead contact upon request. This paper does not
report the original code. Any additional information required to
reanalyze the data reported in this paper is available from the lead
contact upon request.

Study Design and Data Collection

This study was conducted with the approval of the Zhejiang Uni-
versity Eye Hospital (ZUEH) Ethics Committee (ClinicalTrials.gov
identifier: NCT04718532). All procedures adhered to the principles
outlined by the Declaration of Helsinki (No. Y2023-1073). Data
for this study were retrospectively collected from the electronic
medical records of patients who had previously provided informed
consent for their medical data to be used in research. All images
were preprocessed to ensure privacy prior to the commencement of
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the study. The workflow of the comprehensive study is shown in
Figure 1.

The primary dataset used for training, validation, and testing
was mainly sourced from the image quality study conducted by
ZUEH in 2023%° and supplemented with corresponding data.
Participants were eligible for the study if they were >18 years of
age and had been diagnosed with DR between January 2020 and
November 2023. External validation cohorts were prospectively
assembled from 4 independent ophthalmology centers,
establishing a multicenter validation framework reflecting diverse
clinical settings. Participants diagnosed with other fundus disor-
ders or with cataracts, refractive media clouding, or other condi-
tions that affect image quality were excluded. Images that met
clinically acceptable quality (clear refractive media, entire retinal
area, and blood vessels easily recognizable) were included.
Included patients were identified by retinal specialists based on
appropriate fundus characteristics. At the time of assessment, the
majority of the patients were diagnosed with different stages of
DR, ranging from mild nonproliferative DR to proliferative DR.
The presence of laser scars on some images indicated previous
panretinal photocoagulation treatments. Finally, we retrospectively
collected 1500 images from 957 patients and categorized them into
3 distinct subdatasets: CFP, UWF, and PC. Each subdataset
featured a distinct type of image. The CFP subdataset comprised
images obtained from patients diagnosed with DR at ZUEH. The
images were captured using the desktop TRC-NW8 fundus camera
(Top-Con Medical Systems), offering a field of view of 50° and a
resolution of 1924 x 1556 pixels. The UWF subdataset included
images of DR patients, which were acquired using the Optos UWF
System (Optos Plc Fife) at ZUEH. This imaging system boasts a
field of view of 200° and a resolution of 1924 x 1556 pixels. The
PC subdataset contained images of healthy volunteers from diverse
locations. Data collection was carried out by ZUEH using a
Handheld Retinal Camera (Mocular Medical), providing a field of
view of 60° and a resolution of 2560 x 1960 pixels.

Annotation

We established a labeling team of 3 ophthalmologists, including 2
certificated ophthalmologists (with >5 years of clinical experience)
and 1 retina specialist (with >15 years of clinical experience).
They all underwent standardized training and testing before
engaging in categorical labeling. The training involved multiple
sessions where they reviewed sample retinal images and were
guided through the diagnostic criteria for DR and its related fea-
tures. After the training, a testing phase was conducted where each
participant was required to annotate a set of 100 retinal images.
Their performance was evaluated based on consistency, accuracy,
and adherence to diagnostic guidelines. Discrepancies in annota-
tion were addressed through group discussions and additional
feedback from the retina specialist to ensure alignment with stan-
dardized diagnostic practices. Two certificated ophthalmologists
independently label all images to maintain consistent standards. If
both ophthalmologists’ labels for an image agree, that labeling is
deemed the ground truth. When labels differ, we consult a
seasoned retinal specialist for arbitration, and the specialist’s
assessment becomes the final ground truth.

In the simulation of a clinical treatment process, we established
11 label categories. Image quality was assessed using a compre-
hensive set of criteria to ensure consistency and reliability across
all images. Specifically, the criteria included factors such as focus
clarity, illumination, contrast, and the presence of artifacts. Images
were categorized as “poor,” “medium,” or “good” based on these
criteria. An image was considered “poor” if it exhibited significant
blur, low contrast, or severe artifacts that could interfere with lesion
detection. “Medium” quality images showed minor issues that
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Figure 1. The workflow of the overall study. A, Images were collected from 3 different devices and screened for quality. B, Annotations were performed by 2
ophthalmologists, and any discrepancies were resolved by a retinal specialist. C, Three CNN networks were used for training. D, Workflow of DRAMA. E,
Internal and external validation of models and human—machine comparisons. CFP = color fundus photography; CI-DME = center-involved diabetic
macular edema; CNN = convolutional neural network; DRAMA = Diabetic Retinopathy Analysis Model Assistant; PC = portable fundus camera; UWF =
ultra-widefield imaging; ZUEH = Zhejiang University Eye Hospital.

might affect the interpretation of subtle features but were generally identification involves defining a solitary red dot as micro-
sufficient for diagnosis. “Good” quality images were those that aneurysms (MAs) and multiple red dot-like lesions in an area as
displayed clear focus, proper illumination, and high contrast, with “hemorrhage (HE).” “Hard exudate (EX)” denotes deposits with a
no significant artifacts. Recognition of ocular laterality is based on white or yellowish-white color, distinct margins, and a shiny
the relative position of the optic disc and macula. Lesion appearance. In contrast, “soft exudate (SE)” features a grayish-
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white color, blurred margins, and a cottony texture. Prominent
features in fundus photos, like “neovascularization (NV),” “pro-
liferative membranes,” and various HEs, correspond to prolifera-
tive diabetic retinopathy (PDR) staging. In subsequent sections of
the article, for ease of presentation, we will use NV to refer to these
serious lesions. We grouped these lesions for classification. “Laser
scars” serves as a unique label for images of eyes treated with
photocoagulation. Adhering to the standard International Clinical
Diabetic Retinopathy Disease Severity Scale,”’ we sorted the
images into 5 severity categories: “normal (no apparent
retinopathy),” “mild nonproliferative  diabetic retinopathy
(NPDR),” “moderate NPDR,” “severe NPDR,” and “PDR.” For
center-involved DME, a positive identification corresponds to
focal EX deposits in the macula’s central depression.”® In addition,
we have established that referral is necessary for images lacking
laser scars and those showing severe NPDR and PDR or center-
involved DME.

The Development of DRAMA

The images were randomly divided into training, validation, and
test sets in an 8:1:1 ratio, ensuring that there was no overlap of
images between these sets. Diabetic Retinopathy Analysis Model
Assistant (DRAMA) was engineered to concurrently perform 11
multilabeling tasks: identifying image types, assessing image
quality, determining laterality, detecting lesions (MA, HE, EX, SE,
and NV), identifying laser scars, grading, and detecting center-
involved DME. The tasks “types,” “quality,” and “grading”
involved multiple categories, while all other tasks were binary.
EfficientNet-B2 was selected as the backbone model for our mul-
titask learning system due to its optimal balance between perfor-
mance and computational efficiency.”’ Compared with 2 additional
models, RegNetX-032"" and LegacyseResNet50,’" EfficientNet-
B2 offers a more efficient scaling of network depth, width, and
resolution, which leads to better accuracy with fewer parameters.
We conducted a comparative analysis where we trained
EfficientNet-B2, RegNetX-032, and LegacyseResNet50 on the
same dataset for the tasks of lesion detection, grading, and image
quality assessment. The results, as shown in Table 1, demonstrated
that EfficientNet-B2 achieved the highest accuracy across all tasks
while requiring less computational power and memory, making it a
more suitable choice for deployment in clinical settings where
computational resources may be limited.

To address the challenge of collecting data in the task, we
utilized 14 197 122 sheets of data from the Imagenet dataset’” to
pretrain the backbone network. EfficientNet was adapted for
multitask learning by modifying its architecture to support
multiple output branches corresponding to the different tasks.
Specifically, after the global feature extraction through the
EfficientNet backbone, the model was extended to include
separate task-specific output layers for each task, such as lesion
detection, image quality assessment, and grading. Each of these
branches consists of fully connected layers that are independently
trained to optimize for their respective tasks. The shared backbone
allows the model to learn generalized features from the input im-
ages, which are then fine-tuned by the task-specific layers to meet
the requirements of each individual task. We then incorporated
randomly initialized multitasking subheads, including multi-
branching and multilabeling classifiers, to process multiple tasks
simultaneously. Images were processed by a backbone network,
followed by the extraction of global features via an adaptive
average pooling layer. Finally, various information were classified
through multiple branches.

To ensure that each task is effectively combined in the multitask
learning framework, we used the LabelSmoothingCrossEntropy
loss function, which enhances model robustness and generalization
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through label smoothing.® Specifically, for each task, we
independently calculated the loss values. For example, cross-
entropy loss was used for classification tasks such as lesion
detection and grading, while other appropriate loss functions were
selected based on the nature of each task, such as for image quality
assessment. These individual losses were then combined into the
final total loss function by assigning weights to each task, reflecting
their relative importance and difficulty. The weighted combination
is expressed as follows:

Lina = Z AiLi

i=1
Additionally, we employed AdamP as our optimizer—an enhanced
version of the Adam optimizer.** AdamP introduces features like
weight decay ratio, Nesterovn momentum, and gradient
centralization, effectively preventing model overfitting and
accelerating convergence to the optimal solution.*”

By combining these methods, we were able to manage up to 11
tasks within a shared EfficientNet backbone, ensuring that the
model performed well across all tasks. The model structure is
shown in the Figure SI1 (available at www.ophthal
mologyscience.org).

Statistical Analysis

The performance of DRAMA in detecting DR across various types of
images was demonstrated by calculating the accuracy, sensitivity, and
specificity. We plotted the receiving operating characteristic curve,
with a larger area under the curve (AUC) indicative of superior model
performance. Furthermore, the utilization of confusion matrices for
improving the visual representation of false-positive and false-
negative rates will be incorporated. Statistical analysis was conduct-
ed using the specialized statistical software, Python 3.12 (64-bit).

Heatmap

Heatmap analysis was conducted to visualize the regions of interest
that contributed most to the model’s decision-making process. To
generate these heatmaps, we employed gradient-weighted class
activation mapping, a technique that calculates the gradients of the
target class scores with respect to the feature maps of the final
convolutional layer. These gradients are pooled and weighted to
highlight the areas of the image that had the greatest influence on
the model’s predictions. For each input image, we extracted the
feature maps from the final convolutional layer and computed the
corresponding gradients. These gradients were then applied to the
feature maps to create a heatmap that emphasized the most relevant
regions for the model’s decision.”

Once generated, the heatmaps were overlaid on the original
images to visually inspect where the model was focusing its
attention. We analyzed these heatmaps to assess whether the model
was accurately identifying lesions and other critical features, such
as the optic disc and macula. In cases where the model appeared to
be distracted by irrelevant features, such as image borders or ar-
tifacts, the heatmaps were instrumental in refining the model. This
refinement process involved adjusting the preprocessing steps or
retraining the model with additional data to ensure that the model
concentrated on clinically relevant regions. The insights gained
from the heatmap analysis were crucial for understanding and
improving the model’s decision-making process.

External Test Sets

Fundus photographs of diabetic patients were prospectively
collected from 4 distinct ophthalmology centers to ensure
comprehensive representation of factual scenarios. These images
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Table 1. The Performance of 3 CNNs on 11 Tasks

Task CNNs

Efficientnet_b2
Regnetx_032
Legacy_seresnet50
Efficientnet_b2
Regnetx_032
Legacy_seresnet50
Efficientnet_b2
Regnetx_032
Legacy_seresnet50
Efficientnet_b2
Regnetx_032
Legacy_seresnet50
Efficientnet_b2
Regnetx_032
Legacy_seresnet50
Efficientnet_b2
Regnetx_032
Legacy_seresnet50
Efficientnet_b2
Regnetx_032
Legacy_seresnet50
Efficientnet_b2
Regnetx_032
Legacy_seresnet50
Efficientnet_b2
Regnetx_032
Legacy_seresnet50
Efficientnet_b2
Regnetx_032
Legacy_seresnet50
Efficientnet_b2
Regnetx_032
Legacy_seresnet50

Quality

Laterality

Lesions

Microaneurysms

Hemorrhage

Hard exudate

Soft exudate

Neovascularization

Laser scars

Grading

Center-involved diabetic macular edema

AUC = area under the curve; CNN = convolutional neural network.
*Not calculable.

were collected by investigators at the study sites during a specific
time period and represent the DR cohort within their respective
regions. All hospitals participating in this study adhered to a uni-
form image acquisition protocol consistent with that employed for
the subdataset. All data were filtered and labeled in the same way
as the internal dataset. Specifically, datasets were obtained from the
following sources:

1. Anhui Provincial Hospital, China: This dataset included
150 images collected using the TRC-NW8 fundus camera
with a resolution of 1924 x 1556 pixels. The dataset
comprised patients with various stages of DR.

2. Institute for Research in Ophthalmology, Poland: This
dataset consisted of 133 fundus images, acquired using the
same TRC-NW8 system, ensuring consistency in image
quality and acquisition methods with the Anhui Provincial
Hospital dataset.

3. The Second Affiliated Hospital of Zhejiang University
School of Medicine, China: This dataset included 86 im-
ages captured using a handheld retinal camera with a res-
olution of 2560 x 1960 pixels.

4. The Affiliated People’s Hospital of Ningbo University,
China: This dataset contained 100 ultra-widefield images,
obtained using the Optos UWF System, which provides a
field of view of 200° at a resolution of 1924 x 1556 pixels.

Accuracy Sensitivity Specificity AUC
0.8702 * * 0.9622
0.8855 * 0.9615
0.8473 * * 0.9482
1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000
0.9695 0.9692 0.9692 0.9979
0.9160 0.9190 0.9190 0.9702
0.8931 0.8957 0.8957 0.9466
0.8779 0.8912 0.8912 0.9385
0.9313 0.9328 0.9328 0.9622
0.9008 0.9084 0.9084 0.9485
0.8702 0.8758 0.8758 0.9393
0.9237 0.9222 0.9222 0.9724
0.9084 09111 09111 0.9485
0.8855 0.8834 0.8834 0.9464
0.8626 0.8628 0.8628 0.9473
0.8779 0.8797 0.8797 0.9343
0.8550 0.8573 0.8573 0.9068
0.9008 0.7428 0.7428 0.9097
0.8779 0.5795 0.5795 0.8808
0.8931 0.6383 0.6383 0.8070
0.9695 0.8000 0.8000 0.9264
0.9847 0.9459 0.9459 0.9868
0.9618 0.8876 0.8876 0.9893
0.9542 0.9401 0.9401 0.9967
0.9618 0.9457 0.9457 0.9854
0.9466 0.9412 0.9412 0.9474
0.8015 0.7098 0.9275 0.9319
0.7252 0.6530 0.9132 0.9102
0.6870 0.6155 0.9039 0.8560
0.8702 0.8360 0.8360 0.9278
0.8473 0.7727 0.7727 0.9045
0.8092 0.7279 0.7279 0.8639

All patient-related information has been anonymized to
protect privacy. All images were annotated using a meth-
odology consistent with that of the internal dataset.

Comparison between Human and DRAMA

To evaluate the performance of the DRAMA system against
human expertise, we recruited 2 ophthalmologists who were not
involved in the initial annotation process to diagnose the images
in the test set. One of the ophthalmologists had <5 years of
clinical experience, while the other was a retina specialist with
>10 years of experience. The test set comprised a representative
subset of images covering various stages of DR and varying
levels of image quality. Each ophthalmologist independently
reviewed and diagnosed the images without any prior knowl-
edge of the patients’ clinical histories or the DRAMA system’s
predictions. The diagnostic process was conducted in a
controlled environment to ensure consistency, and the time
taken for each diagnosis was recorded using standardized timing
methods. The diagnostic labels provided by the ophthalmolo-
gists were then compared with the labels generated by the
DRAMA system. The comparison was based on standard met-
rics including accuracy, sensitivity, and specificity. Addition-
ally, the time required for diagnosis by each ophthalmologist
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was documented and compared to the time taken by the
DRAMA system to analyze the same images. To ensure a
comprehensive comparison, the accuracy of each diagnosis was
evaluated against pre-existing ground truth labels, which had
been verified by a panel of experienced ophthalmologists during
the initial dataset annotation phase. The results of the compar-
ison, including diagnostic accuracy and time efficiency, were
visually represented using histograms and other relevant statis-
tical charts, allowing for a clear interpretation of the DRAMA
system’s performance relative to human experts.

Results

Datasets and Annotation

In this study, a total of 1500 images were retrospectively
collected from 957 patients, with 218 images excluded due

Volume 5, Number 5, October 2025

to “poor” quality that precluded labeling. Table 2 shows the
characteristics of the primary and external test datasets for
the study participants. For image quality, in the CFP and
UWF datasets, the percentage of “good” images was
higher than the “medium” and lower quality images in
PC. Ocular laterality distribution was even. For lesions,
the percentage of CFP and PC images exhibiting lesions
was 53 and 41, respectively, whereas in UWF, this
percentage reached 98. Among all lesions, MA had the
highest positivity rate (the probability of occurrence),
followed by HE, EX, SE, and NV, which corresponded to
the progression of DR. For laser scars, the positivity rates
for CFP and PC were 5% and 4%, respectively, while
UWF had a positivity rate of 73.5%. For grading, similar
to lesions, the overall number decreased as the staging
increased. For center-involved DME, CFP and PC had
lower positivity rates of 14% and 11%, respectively, while

Table 2. Summary of Internal and External Datasets for Training, Validating, and Testing the DRAMA

ZUEH
Labels CFP UWF

Quality

Poor 41 2

Medium 156 95

Good 303 403
Laterality

OD 247 253

(ON) 248 247
Lesions

Positive 244 487

Negative 215 11
Microaneurysms

Positive 229 471

Negative 230 27
Hemorrhage

Positive 164 418

Negative 295 80
Hard exudate

Positive 132 326

Negative 327 172
Soft exudate

Positive 43 125

Negative 416 373
Neovascularization

Positive 25 88

Negative 434 410
Laser scars

Positive 22 366

Negative 437 132
Grading

0 215 11

1 56 42

2 94 203

3 69 154

4 25 88
Center-involved diabetic macular edema

Positive 64 200

Negative 395 298

PC APH 1RO SAHZJU APHNU
175 0 0 0 2
223 15 9 26 29
102 26 124 60 69
240 15 64 25 52
236 26 69 61 47
134 41 57 22 87
191 0 76 64 12
101 40 56 19 85
224 1 1 67 14
105 39 17 20 79
220 2 116 66 20
85 36 16 11 60
240 5 117 75 39
7 9 0 0 8
318 32 133 86 91
31 9 1 4 12
294 32 132 82 87
13 6 3 11 38
311 35 130 75 61
191 0 76 64 12
10 0 34 2 4
57 10 14 8 34
35 22 8 8 36
31 9 1 4 12
36 24 8 5 32
288 17 125 81 67

APH = Anhui Provincial Hospital; APHNU = The Affiliated People’s Hospital of Ningbo University; CFP = color fundus photography; DRAMA =
Diabetic Retinopathy Analysis Model Assistant; IRO = Institute for Research in Ophthalmology; OD = oculus dexter; OS = oculus sinister; PC = portable
fundus camera; SAHZJU = The Second Affiliated Hospital of Zhejiang University School of Medicine; UWF = ultra-widefield imaging; ZUEH = Zhejiang

University Eye Hospital.
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Figure 2. Receiver operating characteristic curve for each task of 3 CNNs. AUC = area under the curve; CNN = convolutional neural network; ROC =

receiver operating characteristic.

UWF had a higher rate of 40%. Finally, the proportion of
images requiring referral was 23.3%, 24.3%, and 18.1%,
respectively.

Performance of DRAMA

The 3 convolutional neural networks we used and their
accuracy, sensitivity, specificity, and AUC are shown in
Table 1. The model can perform 12 classification tasks
simultaneously. Among the convolutional neural network
models developed, EfficientNet-B2 demonstrated the best
performance. In the “quality” task, EfficientNet-B2 achieved
an accuracy of 87.02%, which is comparable to the other 2
models. In both the “laterality” and “laser scars” tasks, all 3
models  achieved  approximately 95%  accuracy.
EfficientNet-B2 outperformed the other 2 models in terms of
“lesions” accuracy, achieving 91.60%. All 3 models
exhibited robust performance in recognizing “MA, HE, SE,
NV,” with peak accuracy around 95%. Furthermore, all 3
models achieved accuracies exceeding 80% in detecting
“center-involved DME.” Regarding the “grading” task, the
top-performing model, EfficientNet-B2, attained an accu-
racy rate of 80.15%. The receiver operating characteristic
curves for each task were illustrated in Figure 2. Among the
3 convolutional neural networks, EfficientNet-B2 performed

best in terms of AUC, with quality, laterality, lesions, and
laser scars all having AUCs >0.95 and grading and center-
involved DME both having AUCs of 0.93.

The confusion matrix of EfficientNet-B2 containing the
results of all tasks is shown in Figure 3. In the “laterality”
task, the classification was 100% correct, and in the
“quality” task, 22.50% of the “medium” images were
classified as “good.” In this case, the sensitivity and
specificity of “quality” could not be calculated because
images of poor quality were excluded from the follow-up
study. The performance for “lesions” and for detecting
“MA, HE, EX” and laser scars was excellent. However,
47.06% of SE-positive images were identified as negative,
and 40.00% of NV-positive images were identified as
negative for SE and NV. In the “grading” task, the correct
recognition rate was low for images with staging 0 and 4,
while the performance was acceptable for images with other
staging. Finally, in the “center-involved DME” task,
25.53% of the lesion images were considered negative.

The Assessment and Validation of DRAMA

To visualize the most significant regions in DRAMA, we
created a heatmap, overlaying a visualization layer atop the
original image. Because the selected images may not

7
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Figure 3. Confusion matrix for each task of DRAMA. CFP = color fundus photography; DRAMA = Diabetic Retinopathy Analysis Model Assistant; OD
= oculus dexter; OS = oculus sinister; PC = portable fundus camera; UWF = ultra-widefield imaging.

contain a specific lesion, we only chose the heatmap for the
“lesions” task. The heatmap clearly displayed the features
employed to differentiate between different types of labels.
As shown in Figure 4A, the model located the optic disc to
determine the eye’s laterality. It also correctly recognized
the lesion area and its relevant features for lesion
detection and DR classification. The lesion areas in the
image were pointed out with arrows. However, some
heatmaps were inaccurate because the model was
distracted by more salient features (such as eyelids or
noises) near the image edge. Moreover, the heatmaps
revealed normal fundus structures including the optic disc
or macula.

Table 3 displays the performance of DRAMA on
multicentric datasets. For the identification of “quality,”
“laterality,” and some lesions, the external datasets
performed slightly worse than the ZUEH dataset.
However, the external datasets outperformed the ZUEH
dataset in the identification of “HE,” “SE,” and ‘“center-
involved DME.” The results indicated that the

performance on external datasets is good. Notably, the
accuracy of the external datasets in the “grading” task is
much lower than that of the ZUEH dataset, with a score
of 68.16% compared to 80.15%.

The results of the human—computer comparison are shown
in Figure 4B. A randomly generated test dataset of 126 images
was given independently to a junior ophthalmologist, retinal
specialist, and the DRAMA for analysis. The obtained
accuracy rates were 83.32%, 83.64%, and 90.91%,
respectively. The Al outperformed the ophthalmologists in
terms of accuracy in the tasks of “quality” and “grading,” as
well as in recognizing “MA,” “SE,” and “NV.” The Al
performed worse than both ophthalmologists in the tasks of
"lesions" and "laser scars." In the other tasks, the Al
performance was comparable to that of the ophthalmologists.
In addition, junior ophthalmologists and retina specialists are
labeled for 100 minutes and 90 minutes respectively. In
contrast, DRAMA took only 86 ms. It follows that Al
demonstrated significantly higher efficiency compared to the
2 ophthalmologists.
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Discussion

Artificial intelligence has progressed rapidly in ophthal-
mology, moving from theoretical to practical applications
and from imitating diagnosis of single diseases to partici-
pating in clinical setting medical process.”’*® Several
previous studies have explored the application of deep
learning models in the diagnosis and grading of DR. For
instance, Gulshan et al’ developed a deep learning
algorithm that demonstrated high sensitivity and
specificity in detecting DR from retinal fundus
photographs. Similarly, Ting et al and Dai et al validated
deep learning systems for DR and related eye dlseases
with robust performance in multiethnic populations.'” .11
Our study builds on these foundations by incorporating
multitask learning and heterogeneous datasets to improve
generalization across diverse clinical settings. Moreover,

the performance of DRAMA in lesion detection, quality
assessment, and grading is consistent with the high
accuracy levels reported in these prior works. Our study
is the first to automatically discriminate and clinically
evaluate fundus photographs taken with 3 different
devices, solving the generalizability problem that
previously plagued AI. Diabetic Retinopathy Analysis
Model Assistant was developed on a multisource
heterogeneous fundus dataset’® and performs the entire
process of DR image analysis, including image category
differentiation, quality assessment, laterality
identification, lesion diagnosis, and DR grading. Based
on grading, laser scars, and center-involved DME,
DRAMA can provide referral recommendations with great
potential for patient triage. The model has promising
prospects for clinical applications, as it can improve the
diagnostic ability of junior ophthalmologists and contribute
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Table 3. The Performance of the Model on Multicentric Datasets

Task Metrics ZUEH APH

Quality Accuracy 0.8702 0.6829

AUC 0.9622 0.8242

Laterality Accuracy 1.0000 1.0000

AUC 1.0000 1.0000

Lesions Accuracy 0.9160 1.0000
AUC 0.9702 *

Microaneurysms Accuracy 0.9313 0.9756

AUC 0.9622 0.9250

Hemorrhage Accuracy 0.9237 0.9512

AUC 0.9724 0.7949

Hard exudate Accuracy 0.8626 0.9024

AUC 0.9473 0.9944

Soft exudate Accuracy 0.9008 0.8049

AUC 0.9097 0.7674

Neovascularization Accuracy 0.9695 0.7561

AUC 0.9264 0.7812

Laser scars Accuracy 0.9542 0.8293

AUC 0.9967 0.6857

Grading Accuracy 0.8015 0.5610

AUC 0.9319 0.8473

Center-involved diabetic macular edema Accuracy 0.8702 0.7073

AUC 0.9278 0.7819

IRO SAHZJU NYPH Average in External Datasets
0.9624 0.8488 0.7347 0.8408
0.9869 0.9125 0.8972 0.9374
0.9925 0.9884 0.9796 0.9888
0.9959 1.0000 0.9962 0.9980
0.8045 0.9419 0.8776 0.8799
0.8153 0.9652 0.7771 0.9071
0.7970 0.9419 0.8980 0.8977
0.8224 0.9819 0.9014 0.9191
0.9398 0.9302 0.8469 0.9134
0.9762 0.9909 0.8474 0.9724
0.9248 0.8837 0.7245 0.8575
0.9621 0.9891 0.8680 0.9609
0.9925 0.9767 0.8673 0.9330

* * 0.8694 0.9025
0.9925 1.0000 0.9184 0.9469
0.7879 1.0000 0.7326 0.8699
0.9774 0.9884 0.8878 0.9385
0.7436 1.0000 0.9715 0.9577
0.6692 0.8837 0.5714 0.6816
0.8756 0.9681 0.8308 0.8868
0.9850 0.8837 0.8163 0.8827
0.9910 0.8790 0.9143 0.9410

APH = Anhui Provincial Hospital; AUC = area under the curve; IRO = Institute for Research in Ophthalmology; NYPH = The Affiliated People’s
Hospital of Ningbo University; SAHZJU = The Second Affiliated Hospital of Zhejiang University School of Medicine; ZUEH = Zhejiang University Eye

Hospital.
*Not calculable.

to the homogenization of medical standards across different
regions.

Our study is a multitask study for fundus image classi-
fication. The image type reflects the device used to capture
the image, which varies in range, brightness, contrast, and
sharpness. These variations pose challenges for clinical
work and require accurate identification. Quality evaluation
enables screening of images for recapture or further evalu-
ation. This approach reflects the dynamic and diverse nature
of clinical settings. Doctors may have subjective judgments
of image quality and tolerate some disturbances that do not
affect lesion diagnosis, while Al may not. Therefore, a
unified and generalizable quality assessment standard for
DR fundus images is needed. Ocular laterality is also a basic
information of fundus images that can support clinical
diagnosis. Lesions are an important component of fundus
images, including “MA,” “HE,” “EX,” “SE,” and “NV.”
Microaneurysm is the earliest lesion in DR and plays a
crucial role in early screening for DR. The identification of
MA facilitates the early diagnosis of DR. Grading de-
termines the treatment of DR; patients with DR staged at
severe NPDR or above need interventional therapy. Laser
scars are the marks left by retinal photocoagulation. Their
presence indicates that the patient has received treatment,
which influences the subsequent treatment options. Center-
involved DME is a common complication of DR. It
significantly impairs vision and requires timely treatment.””
The detection of lesions not only helps to track disease
progression and identify complications such as PDR or
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DME but also increases the interpretability of the model
and reduces the black-box effect. This transparency helps
clinicians understand the reasons behind Al decisions and
increases trust in the use of Al for referral decisions.
Tables 1 and 3 demonstrate the excellent performance of
DRAMA on both internal and external datasets. The
external dataset contains images collected from different
centers, different races/ethnicities, and different environ-
ments, which demonstrates the good generalization of
DRAMA. However, DRAMA also exhibits some weak-
nesses in certain tasks, as shown in Table 2 and Figure 3.
For example, it achieves only 80% accuracy in DR
grading and confuses the images of stage 1 and stage 4
with other stages. This may be due to the difficulty of the
DR grading task, the small difference among different
grades, and the requirement to focus on a specific type of
characteristic lesions to judge. Future studies can train the
Al model with the criteria of DR grading beforehand to
improve the accuracy. Upon further analysis, the model
demonstrated higher accuracy in detecting NPDR and
grading compared to PDR; we attribute this to the small
sample size of the PDR image. Furthermore, SE- and NV-
positive images are likely (>40%) to be misclassified as
negative, which can be explained by 2 factors: (1) the subtle
features of these 2 types of lesions, the resemblance between
SE and EX on fundus photographs, and the challenge in
differentiating some NV lesions from normal blood vessels;
and (2) the limited sample sizes of these 2 types of lesions
compared to others due to the constraint of the dataset.
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Hence, future studies need to increase the sample size to
lower the false-positive and false-negative rates. The heat-
map in Figure 4A indicates that the model’s attention aligns
with the lesion-driven grading logic (e.g., MA clusters for
mild NPDR, NV foci for PDR). However, the model also
pays attention to the black areas of the borders in CFP and
PC images, or the eyelid parts of the edges in UWF images,
which hinders the model’s judgment. Therefore, eliminating
these borders in the image preprocessing stage and keeping
only the fundus image can enhance the model’s perfor-
mance. The human—computer comparison experiment in
Figure 4B also demonstrates that the model outperforms the
ophthalmologist in most of the tasks and has high clinical
application value.

Fundus photography, the most widely used and cost-
effective screening modality for DR, has been a subject
of research in Al In this study, multimodal images are
recognized by a single model, which addresses the issue of
generalizability in the use of Al. Compared with traditional
Al models, it can reduce the cost of integration with
hardware in the process of clinical implementation, which
follows the new trend of the development of Al
technology.
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Limitation and Future Consideration

While analyzing the above results, we should also consider
the following limitations. Firstly, the image acquisition was
challenging due to the inclusion of 3 different types of data,
resulting in a small dataset—the inclusion of only Asian and
European data. Future studies should collect more relevant
data to enlarge the dataset and improve the representative-
ness of samples across countries and ethnic groups. Sec-
ondly, diagnostic accuracy for DME using fundus
photography alone was low, and OCT imaging should be
incorporated for improved diagnosis. Thirdly, this study
focused on image assessment without including clinical
information about the patients. Additional data like age,
blood glucose, glycated hemoglobin, and disease duration
could potentially be integrated into the medical large lan-
guage model for further analysis.

In conclusion, our study developed and validated
DRAMA, a multitask model based on multisource hetero-
geneous fundus datasets. The external validation study
demonstrated that the system performed well in various
clinical scenarios. Therefore, DRAMA has great potential to
be integrated into clinical hardware for more efficient
diagnosis of DR.
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