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Macrophages are central players in immune response, manifesting divergent phenotypes to control
inflammation and innate immunity through release of cytokines and other signaling factors.
Recently, the focus on metabolism has been reemphasized as critical signaling and regulatory
pathways of human pathophysiology, ranging from cancer to aging, often converge on metabolic
responses. Here, we used genome-scale modeling and multi-omics (transcriptomics, proteomics,
and metabolomics) analysis to assess metabolic features that are critical for macrophage activation.
We constructed a genome-scale metabolic network for the RAW 264.7 cell line to determine
metabolic modulators of activation. Metabolites well-known to be associated with immunoactiva-
tion (glucose and arginine) and immunosuppression (tryptophan and vitamin D3) were among the
most critical effectors. Intracellular metabolic mechanisms were assessed, identifying a suppressive
role for de-novo nucleotide synthesis. Finally, underlying metabolic mechanisms of macrophage
activation are identified by analyzing multi-omic data obtained from LPS-stimulated RAW cells in
the context of our flux-based predictions. Our study demonstrates metabolism’s role in regulating
activation may be greater than previously anticipated and elucidates underlying connections
between activation and metabolic effectors.
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Introduction

Macrophages have a key role in coordinating immune
response in mammalian systems through the production of
regulatory cytokines, proteases, and coagulation factors. In
addition, they are critical for digesting pathogens, necrotic
cellular debris, and other foreign objects that are encountered
within the host. Growing evidence indicates that macrophages
manifest divergent metabolic phenotypes to mediate a variety
of alternative functions, including immunosuppression and
tissue repair (Mosser, 2003). While metabolic status can
greatly vary depending on macrophage type or stimulated
state, the murine leukemic monocyte macrophage cell line
RAW 264.7 has been an amenable in-vitro model of macro-
phage and monocyte functions as it exhibits key characteristics
representative of different macrophage types in vivo (Raschke
et al, 1978; Chapekar et al, 1996; Scheel et al, 2009). For that
reason, the RAW cell line has served as a host model to

experimentally probe macrophage phenotypes under various
exposure conditions (e.g., endotoxins and cytokines) as well
as during direct parasitic infection (Cirillo et al, 1998;
Gutierrez et al, 2004) and proliferative inflammatory response
states (Moeslinger et al, 1999).

The phenotypic responses that macrophages display have
been extensively studied and are generally categorized
according to activation status (Mosser and Edwards, 2008).
While macrophage activation functions at the front line of host
defense, improper control of its activation has also been
implicated to have major roles in disease progression. For
example, infiltration of activated macrophages in tissues has
been strongly associated with a number of pathological
disorders including diabetes, obesity, and renal injury
(Heilbronn and Campbell, 2008; Guo et al, 2011). The
recruitment of specific, activated macrophage sub-populations
in the tumor microenvironment is widely known to promote
chemoresistance by enabling cancer cells to effectively evade
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host immune responses (De Palma and Lewis, 2011). Macro-
phage activation states are also modulated by parasitic
organisms, which hijack host macrophage cells to promote
their long-term, intracellular survival (Stempin et al, 2010).
Macrophage activation is metabolically associated with the
amino-acid arginine that diverges into classical (M1) and
alternative (M2) pathways with the respective productions of:
(1) nitric oxide (NO) for microbicidal purposes via NOS2 and
(2) proline and polyamines for inducing local cell proliferation
and collagen remodeling via arginase (Mosser, 2003; Odegaard
and Chawla, 2011). These polarized functions are activated in
response to bacterial and viral infections in the M1 phenotype,
and to parasitic infection, tissue remodeling and angiogenesis
in the M2 phenotype (Mosser, 2003; Odegaard and Chawla,
2011). Although there is a growing interest in understanding
the interface between metabolism and immunity (Mathis and
Shoelson, 2011), little systems-based approaches have been
utilized in elucidating metabolic mechanisms that are linked to
macrophage activation to date.

Molecular systems biology has arisen as a discipline to meet
the challenges associated with the current era of high-
throughput, data-rich biology. Genome-scale reconstructions
provide mechanistic foundations for network-level modeling,
biological discovery, and analyzing high-throughput data sets
(Oberhardt et al, 2009). Metabolic networks bridge the gap
between genomic and biochemical information and form a
mechanistic context in which data sets can be incorporated to
evaluate causal phenotypic relationships. This approach has
been demonstrated in evaluating metabolic phenotypes for
microbial and eukaryotic systems, ranging from industrial
microbes to pathogens to human cells (Duarte et al, 2007; Feist
et al, 2007; Jamshidi and Palsson, 2007). Recently, algorithmic
approaches have leveraged genome-scale networks as a
mechanistic scaffold for interpreting condition- and tissue-
specific gene expression data (Bordbar et al, 2010; Chang et al,
2010; Jerby et al, 2010).

In this study, we present a genome-scale metabolic
reconstruction and analysis for the RAW 264.7 cell line to
evaluate metabolite effectors and mechanisms associated with
macrophage activation. Highly effective metabolites identified
by our analysis are richly supported in the published literature
for their immunomodulatory properties, in which several
predicted metabolites have been previously experimentally
verified. Mechanisms for activation and inhibition by pre-
dicted metabolic immunomodulators were investigated
through Monte Carlo sampling analysis. Finally, transcrip-
tomic, proteomic, and metabolomic analysis of LPS-stimulated
RAW cells demonstrates how model-based predictions
enhance the mechanistic interpretation of high-throughput
data to enable better understanding of macrophage metabolic
activation phenotypes.

Results

RAW 264.7 metabolic network reproduces
experimentally measured flux rates

A RAW 264.7 metabolic network was reconstructed based on
the global human metabolic network Recon 1 (Duarte et al,
2007) by integrating gene expression and proteomic data with

a Homologene-mapped metabolic network (see Materials and
methods for workflow and details). The physiological cap-
abilities of the network were evaluated using uptake rates
derived from in-vitro data sets. Rates of biomass growth, ATP
production, and NO synthesis were compared with experi-
mental values. The maximum doubling time for the imposed
in-vitro uptake rates was 16.99 h. Although the measured
growth rate tends to vary for different experimental conditions,
the calculated rate is consistent with the previously reported
range of 11 h (Sakagami et al, 2009), 18–22 h (Zhuang and
Wogan, 1997), and 24.7 h (Alldridge et al, 1999). For
subsequent ATP and NO rate calculations, the lower bound
on the biomass reaction was set to the lower experimental
growth rate of 0.0281/h to mimic minimal maintenance of the
macrophage. The maximum calculated ATP production rate
was 0.796 mmol/h/g DW, similarly to the in-vitro rate of
0.712 mmol/h/g DW (Newsholme et al, 1999). The NO
production rate (via NOS2) was 0.0399 mmol/h/g DW,
similarly to an in-vitro measured rate of 0.0365 mmol/h/g
DW (Griscavage et al, 1993). Overall, our results indicate
that the metabolic network is predictive of physiologically
relevant experimental rates when in-vitro uptake rates are
imposed. To further evaluate the physiological accuracy
of the cell-specific RAW 264.7 metabolic network compared
with the larger global model from which it was derived, we
calculated biomass growth, ATP production, and NO produc-
tion rates for the Recon 1 network. We also performed
sensitivity analyses presented in the later sections. For both
analyses, we found Recon 1 predictions on the quantitative
production rates to be considerably less accurate compared
with the RAW 264.7-specific network (see Supplementary
information).

Deletion analysis differentiates critically essential
reactions of M1 and M2 activation phenotypes

To metabolically characterize macrophage phenotypes, we
defined five metabolic objective functions associated with
general macrophage function and activation: (1) energy (ATP)
generation, (2) redox maintenance (NADH), (3) NO produc-
tion for M1 activation, (4) synthesis of extracellular matrix
precursors (proline), and (5) induction of local cell prolifera-
tion through polyamines (i.e., putrescine) to define M2
activation (Mosser, 2003). As a highly mobile and active cell,
macrophages require high glycolytic activity to generate ATP
and NADH for essential functional purposes (Newsholme et al,
1999). M1 and M2 activation phenotypes serve different
functions in immune response, with the primary difference
due to the differential upregulation of NOS2 and arginase
(Mosser, 2003; Odegaard and Chawla, 2011). We first evaluated
whether distinguishing M1 and M2 phenotypic features can be
demonstrated through the optimization of the respective M1-
and M2-associated objective functions without directly impos-
ing regulatory constraints on NOS2 and arginase reactions.

A single reaction deletion analysis was performed while
maximizing for M1 (NO production) and M2 activation
(proline and putrescine productions) to evaluate reactions
that are differentially critical, or essential, for M1 and M2
phenotypes. In general, the essential reactions between
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M1 and M2 functions were similar, as has been previously
demonstrated by the overall similarities between M1 and M2
metabolic flux distributions (Rodriguez-Prados et al, 2010).
This result is primarily due to the close network proximity of
NO, proline, and polyamine production. Of the 76 metabolic
subsystems in the RAW 264.7 network, only 4 had a large
difference in response to reaction deletions: alanine and
aspartate metabolism, arginine and proline metabolism,
oxidative phosphorylation, and urea cycle/amino group
metabolism (Figure 1). In all, there were 37 reaction deletions
that resulted in a large differential response (410% difference
from original objective function value) between M1 and M2
activation (Figure 1). As expected, reactions that were directly
involved in the respective production of NO (NOS1 and NOS2),
proline (G5SADrm), and putrescine (ORNDC) were critically
essential as their deletion resulted in the inability to produce
their respective products (i.e., value of 0).

Outside of the reactions that were directly involved in the
production of NO, proline, and putrescine, the majority of
differential reactions were involved in oxidative phosphoryla-
tion and the malate-aspartate shuttle. The deletion of oxidative
phosphorylation reactions (CYOR_u10, CYOOm3, and
ATPS4m) reduced proline and putrescine production to
63–76% of its maximum capacity. The effect on NO production
was far less detrimental at 88–96%, thus indicating oxidative
phosphorylation to be more important for the M2 activation
phenotype than for M1. Glycolysis-associated reaction dele-
tions (GAPD, PGK, PGM, PYK and ENO) led to a reduced NO
production of 73–74%, slightly lower than 75–78% for proline
and putrescine. However, alanine and aspartate metabolism
reactions (ASPTA, ASPGLUm) were significantly more impor-
tant for NO production as shown for the reduction to 83–85%,
compared with 93–96% for the M2-associated objective
functions.

The reaction deletion analysis indicates that the M1-
activation phenotype has a slightly higher dependency on

the shuttling of glycolysis-associated NADH equivalents from
the cytosol to the mitochondria. However, the removal of
oxidative phosphorylation reactions is more detrimental in M2
activation. These results are consistent with a recent study
showing that M1-activated macrophages have a higher
glycolytic capacity whereas M2-activated macrophages are
more dependent on oxidative phosphorylation (Rodriguez-
Prados et al, 2010).

Sensitivity analysis identifies immunomodulatory
metabolites of macrophage activation

To determine important metabolic immunomodulators of
macrophage activation, we performed a sensitivity analysis
on the metabolite exchanges in the RAW macrophage network
for each of the five activation-based objective functions. The
analysis quantifies metabolite exchanges that are strongly
associated with the maximization of each objective function
by prioritizing the slope values calculated from robustness
analysis (Edwards and Palsson, 2000; Figure 2). For example,
NO production is expected to be highly sensitive to L-arginine
uptake as L-arginine is its precursor metabolite. In general,
sensitivity scores for NO, proline, and putrescine did not vary
significantly as their respective productions are coupled with
arginine fate and their synthesis pathways are proximal to one
another, as previously discussed. These results are supportive
of the similarities in metabolic activation flux patterns of M1
and M2 phenotypes measured in murine peritoneal macro-
phages (Rodriguez-Prados et al, 2010).

Several computationally predicted activating metabolic
substrates are well established to be critical for macrophage
activation (Figure 2). Oxygen, glucose, and glutamine have all
been previously shown to be of great importance in macro-
phage metabolism and activation as they are key for cellular
respiration, energy production, and respiratory burst
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Figure 1 Reaction deletion analysis differentiates metabolic differences observed for M1 and M2 activation. The difference between reaction essentiality for M1 and
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(Newsholme et al, 1996). High consumption of glutamine is
particularly important for enhancing immunity (Newsholme
et al, 1999), as it is required for arginine biosynthesis and
nitrite/urea production (Murphy and Newsholme, 1998). The
uptake of arginine and the branched chain amino acids
(BCAAs) valine and isoleucine were also identified to be
important for ATP, NADH, proline, and putrescine production;
however, it was not found to be critical for NO production.
Arginine is among the most critical amino acid as it is a direct
precursor metabolite for NO (Baydoun et al, 1993) and its
transport increases up to five-fold during activation and
proliferation (Yeramian et al, 2006). Previous experiments
verify these predictions as higher arginine and glucose
concentrations of LPS- and LTA-activated macrophages
increased NO production above levels seen without supple-
mentation (Newsholme et al, 1999; de Souza et al, 2008).
Though BCAAs are not as well studied as arginine in
macrophages, supplementation of BCAAs has shown to help
improve immune response in long distance runners (Bassit
et al, 2002). During strenuous exercise, plasma glutamine
levels drop having a large effect on peripheral blood mono-
nuclear cells (PBMCs). Bassit et al, (2002) showed that BCAA
supplementation before strenuous exercise allowed PBMC to
retain their ability to proliferate. L-cystine was also found to be
selectively activating for NO production. While L-cystine was
not predicted to be an effective activator or suppressor of M2
activation, it has been previously shown that LPS-activated NO
production induces L-cystine uptake in murine macrophages
(Watanabe and Bannai, 1987).

Tryptophan and phenylalanine were highly ranked among
substrates in which its catabolism had a suppressive effect on
M1 and M2 metabolic activation phenotypes (Figure 2). Most
notably, indoleamine 2,3-dioxygenase (IDO), a key enzyme
in tryptophan catabolism, is a widely known suppressive
mechanism by which IDO-expressing monocytes and macro-
phages inhibit T-cell proliferation in mammals (Mellor and
Munn, 2004). Tryptophan catabolites have been widely
implicated in mediating immune tolerance (Moffett and
Namboodiri, 2003), and the tryptophan catabolite 3-hydro-
xyanthranilic acid has been directly shown to suppress NO
synthase expression (Oh et al, 2004). A similar catabolic
mechanism has been proposed for phenylalanine, by which
the immunosuppressive enzyme IL4I1 has been shown to
inhibit T-cell proliferation in vitro via L-phenylanine oxidase
(Carbonnelle-Puscian et al, 2009). It is important to note that
the uptake of threonine had the largest inhibitory effect on
activation objectives, but was not under consideration during
analysis. While constructing the model, it was noted that the
RAW 264.7 cell line lacked threonine degradation pathways,
confirmed through low threonine dehydrogenase transcript
levels. As threonine uptake increased in the sensitivity
analysis, the amino acid was being shuttled only to biomass

production that resulted in the diversion of precursor
metabolites away from M1 and M2 phenotypes, thus appear-
ing to be an immunosuppressive metabolite.

* * ***
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Produced metabolites were also found to have profound
effects on metabolic activation. Synthesis of most metabolites
had a suppressive effect on M1- and M2-associated metabolic
phenotypes (Figure 2), as there is a metabolic ‘cost’ by
diverting precursor metabolites and energy resources away
from the arginine-derived activation pathways. Vitamin D3
production was found to be the most effective at lowering flux
across all activation functions, a metabolite which has been
previously implicated as a critical negative feedback mechan-
ism to control activated macrophages through paracrine
signaling (Helming et al, 2005). A similar mechanism has
been found to be employed by the immunosuppressant
cyclosporine, which upregulates vitamin D3 synthesis via
1-a-hydroxylase (Overbergh et al, 2000). The production of
several nucleotides and deoxynucleotides was also indicated
to be negatively associated with macrophage activation as 8 of
the top 13 inhibiting metabolites involved in nucleotide
metabolism. In particular, adenosine is known to be released
in tissues during injurious stimuli to mitigate pro-inflamma-
tory responses across various immune cell types (Hasko and
Cronstein, 2004; Palmer and Trevethick, 2008). Interestingly,
the supply of purines and pyrimidines has previously been
found to be vital for intracellular pathogens to proliferate
within macrophages, as many pathogens have auxotrophies
for nucleotides (Appelberg, 2006).

The complementary nature of a metabolite that causes
macrophage inactivation due to its production and shows
importance for pathogenic growth was also found for
hyaluronan. Hyaluronan production was one of the most
suppressive of macrophage activation and has been previously
been shown to be a critical substrate that enhances Mycobac-
terium tuberculosis proliferation (Hirayama et al, 2009). In
addition, our previous study indicated that hyaluronan
synthase is active only in pulmonary M. tuberculosis infections
versus latent infections (Bordbar et al, 2010). Finally, DOPEG
production that occurs via monoamine oxidase (MAO)-
mediated norepinephrine degradation was also suppressive
of macrophage activation. Our network finding of the
suppressive properties of DOPEG production is supported by
a recent study that demonstrated metabolic inactivation of
catecholamines occurs via upregulated MAO in LPS-stimu-
lated macrophages to regulate intensity of inflammatory injury
(Flierl et al, 2007).

In general, metabolite production is metabolically taxing to
macrophage activation phenotypes (Figure 2); however, it is
sometimes more efficient to secrete nitrogen by-products, such
as for urea, ammonia, and glutamate, the only metabolites
through which its production had a positive effect on
activation. In particular, urea and glutamate production arises
from the respective use of arginine and glutamine. It has been
experimentally shown that urea supplementation in the media
of RAW 264.7 cells inhibits NO production (Prabhakar et al,
1997). Prabhakar et al noted that the mechanism for NO
production inhibition is not related to transcription, as
inducible NO synthase mRNA levels are the same in control
and urea spiked samples. However, it is possible that the
addition of urea in the media perturbs homeostatic cycling of
arginine, thereby inhibiting NO production. In addition, the
inhibition of glutaminase, an enzyme that produces glutamate
from glutamine, is known to mediate activated immune

response in macrophages (Yawata et al, 2008). As demon-
strated later, proteomic data from LPS-activated RAW 264.7
cells indicate increased glutaminase activity during macro-
phage activation.

Overall, our results demonstrate that metabolite effectors
with the highest sensitivity scores across macrophage func-
tions and activation phenotypes are widely known to have an
immunomodulatory role. Supplementation of cell culture
media with glucose and arginine has been previously shown
to increase nitrite production. Predicted suppressive modula-
tors have also been previously confirmed experimentally
through signaling regulatory mechanisms. The high correla-
tion between our findings and experimental literature is of
particular interest as our network approach does not explicitly
account for signaling or regulation of metabolism. However, it
is highly possible that the converging changes in metabolism
during macrophage activation and suppression, as mediated
by regulatory and signaling factors, may in fact have an
important role in directing macrophage phenotypes.

Sampling analysis identifies potential intracellular
mechanisms linked to immunomodulatory
metabolites

The results of the sensitivity analysis demonstrated that
predicted metabolites were supported by previous experi-
mental studies on metabolic effectors. To understand the
underlying metabolic pathways that are associated with the
metabolic effectors, Monte Carlo sampling analysis was used
to identify intracellular reaction changes linked to metabolites
(i.e., metabolite uptake and production) with suppressive
properties. In particular, we studied the most effective
inhibitor (tryptophan) and the most demanding group of
produced metabolites (nucleotides and deoxynucleotides). In
total, 90 different conditions were sampled to determine the
perturbed metabolic pathways and reactions of 9 metabolic
exchanges on the 5 activating objectives, during uptake or
synthesis compared with those without such activities.

First, we evaluated the suppressive effects of tryptophan
uptake. Our sampling analysis indicates that the macrophage
enters a ketogenic-like state during increased tryptophan
uptake (Figure 3). Increased tryptophan catabolism (i.e., IDO
induction) results in an increase in the production of reduced
glutathione and the degradation of two ketogenic amino
acids, leucine and lysine, as shown by increased activity
of hydroxymethylglutaryl-CoA lyase, as well as decreased
pyruvate dehydrogenase and increased pyruvate carboxylase
activity, a switch characteristic of a ketogenic state (Wang and
De Vivo, 2011). Interestingly, rats that are fed a ketogenic diet
result in elevated levels of reduced glutathione (Jarrett et al,
2008), and fasting individuals in ketosis are known to have
decreased inflammation (Garai et al, 2005).

Due to the change in redox potential, there is a cellular
need to shuttle NADþ and NADH across the mitochondrial
membrane. Sampling analysis demonstrated a statistically
significant increase in use of the malate-aspartate shuttle.
The shuttle is dependent on glutamate, which in-silico
analysis shows is derived from glutamine. Thus, glutamine is
diverted from activation-associated metabolites (NO, proline,
and putrescine) to balance the redox potential across the
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mitochondrial membrane. In the M1- and M2-reaction deletion
analysis, we noticed a greater importance of the shuttle for M1
activation. With sampling, we saw the same result as the basal
level of the malate-aspartate shuttle in M1 activation was
greater than in M2 activation. However, forced tryptophan
uptake significantly increased shuttle activity for both M1 and
M2 activation.

Next, we evaluated eight nucleotides and deoxynucleotides
whose synthesis was predicted to be especially taxing on
activation properties. Intracellular changes induced by nucleo-
tide production are drastically different than those for
tryptophan uptake (Figure 3). As expected, de-novo purine
and pyrimidine synthesis pathways are activated, including
reactions pertaining to synthesis of IMP, UMP, and deoxynu-
cleotides. Purine and pyrimidine synthesis requires 5-Phos-
phoribosyl diphosphate (PRPP) and carbamoyl phosphate
(CBP), respectively. Sampling indicated that PRPP production
via pentose phosphate pathway was increased resulting in
suppression of glycolysis, pyruvate metabolism, and overall
ATP production. There was also an increase in CBP synthesis
from glutamine via CBP synthase; draining the availability of
glutamine toward the arginine-derived synthesis of NO,
proline, and putrescine.

We detected different inhibitory mechanisms for tryptophan
uptake and nucleotide production on macrophage activation.
However, the mechanisms often converged on glutamine and
overall energy production, thus implicating intracellular
metabolic shifts in glutamine utilization as a potential critical
junction for immunomodulatory mechanisms. To further
study and confirm the proposed mechanisms, we generated
multiple levels of high-throughput data sets from LPS-
activated RAW 264.7 cells.

Predicted metabolic activation phenotypes
enhance mechanistic interpretation of
experimental data for activated RAW 264.7 cells

Our network sensitivity and flux sampling analyses defined
potential metabolic mechanisms associated with macrophage

activation and inhibition. In particular, our results indicate
that macrophage activation may be dependent on the flux
divergence from glutamine/glutamate as a critical junction
(Figure 4A). To experimentally confirm our predictions, we
stimulated RAW 264.7 cells with LPS (derived from Salmonella
typhimurium), a TLR4 agonist associated with M1 activation,
to assess whether these mechanisms were associated with
similar changes at the transcript, protein (2, 4, and 24 h after
stimulation), and metabolite levels (24 h after stimulation)
following macrophage activation.

First, we performed a global, unbiased assessment of the
primary metabolic changes during activation by calculating
reporter metabolites based on the gene expression data in
accordance with a published method (Patil and Nielsen, 2005).
Reporter metabolites are nodes that are statistically enriched
with transcriptional changes in the metabolic network and
represent key regions that are significantly perturbed. A total
of 105 statistically significant reporter metabolites (Po0.05)
were identified for LPS-stimulated RAW cells. Reporter
metabolites for LPS-stimulated macrophages at 24 h are shown
(Figure 4A). Among the top 20 reporter metabolites, 12 are
related to the predicted activating and suppressive mechan-
isms previously discussed: urea cycle, NO and putrescine
production, and nucleotide biosynthesis. Thirteen extracellu-
lar reporter metabolites were also identified, eight of which
were predicted to be important metabolic effectors through
sensitivity analysis (including glutamine, arginine, glucose,
and phenylalanine). Hence, the reporter metabolite results
provide an unbiased confirmation that major transcriptional
changes in metabolism during macrophage activation are
highly correlated with the model-predicted regions of arginine
and urea metabolism as well as nucleotide biosynthesis.

We then evaluated the directional changes of reactions
involved with the most highly perturbed reporter metabolites
(Figure 4B). We compared sampling predictions during
activation and suppression with the associated genes and
proteins in the transcriptomic and proteomic data. We found
a highly significant (Po1e� 5 through a permutation test)
correlation between model predictions and high-throughput
data (Figure 4B; see Supplementary information). As
expected, LPS-stimulated cells showed significantly upregu-
lated (Po0.05) genes and proteins involved with NO, proline,
and putrescine production. In addition, metabolic pathways
associated with proline and putrescine degradation were
suppressed, suggesting accumulation of the characteristic
M2-associated metabolites. Gene expression data also showed
upregulated arginase (Arg2) and urea transporter (Slc14a2), as
well as several genes (Acadsb, Aldh6a1) associated with BCAA
degradation. In contrast with our predictions, we found that
glutaminase (Gls) and ornithine aminotransferase (Oat) were
significantly downregulated in the expression data. However,
at the protein level, both Gls and Oat were upregulated and a
previous study showed a respective 150% and 40% increase in
Gls and Oat enzyme activity in LPS-activated versus resident
macrophages (Newsholme et al, 1999). These experimental
results provide further support that arginine and BCAA
metabolism as well as urea and glutamate production are
highly active during macrophage activation.

Conversely, metabolic genes and proteins involved in the
predicted suppressive malate-aspartate shuttle and nucleotide
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Figure 3 Randomized sampling elucidates intracellular mechanisms for
observed macrophage activation and suppression. Tryptophan induces a shift
to a ketogenic-like state, increasing metabolic usage of leucine and lysine. To
balance the redox potential shift, there is a significantly greater use of the malate-
aspartate shuttle, diverting glutamate from activation pathways. In addition,
increased nucleotide synthesis shifts metabolic resources toward nucleotide
intermediates PRPP and CRP. PRPP and CRP are produced from glutamine and
glucose, respectively, diverting metabolic resources from nitric oxide, proline,
putrescine, and ATP generation.
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synthesis were found to be significantly downregulated during
LPS stimulation. The pentose phosphate pathway and nucleo-
tide synthesis, including PRPP and CBP utilizing genes (Ppat
and Cad), were significantly downregulated (Figure 4B). We
also observed a gene involved with the malate-aspartate
shuttle (Slc25a13) to be significantly downregulated.

Finally, we profiled B700 metabolites using GC–MS to
determine altered metabolite levels during LPS activation. In
all, 51 metabolites that were detected in both control and
activated conditions had significant changes (Po0.05). In
particular, we detected a significant increase in putrescine
(ptrc), in accordance with transcription and proteomic data
that suggested its accumulation (Figure 4A). Downstream
metabolites spermine (sprm) and spermidine (spmd) were
decreased, although an increase in 50-deoxy-50-(methylthio)a-
denosine (5mta), a by-product of spermine and spermidine
synthesis, was indicated. Most notably, 11 metabolites
associated with the model-predicted metabolic suppressors
were significantly decreased: nucleotide metabolism (adn,
amp, gmp, hxan, ins, ump), pentose phosphate pathway (r5p),
malate-aspartate shuttle (asp-L, glu-L, mal-L), and tryptophan

catabolism (kynate). Though metabolite level changes are not
directly linked to predicted flux changes, these results are
highly supportive of a systemic shift of metabolic resources
away from nucleotide metabolism and other predicted
suppressive pathways to activation-associated metabolic
functions.

To further verify the observed divergence of nucleotide
synthesis and activation functions, we re-evaluated time-
course quantitative proteomic data of RAW 264.7 cells infected
with Salmonella typhimurium from a previous study
(Shi et al, 2009). Based on time-course proteomic data, seven
detected proteins were associated with NO and proline
production (Nos2 and Pycr2), nucleotide biosynthesis (Atic
and Impdh2), and pentose phosphate pathway (G6pdx,
Pgls, and Tkt). We found a similar trend between the LPS-
stimulated and infection results (Supplementary Figure S3). In
addition, the protein abundance changes followed a clear time-
course trend, with the accumulation of activation proteins and
a continual decrease in proteins associated with suppressive
nucleotide pathways and pentose phosphate pathway during
infection.
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In summary, the intracellular metabolic signature predicted
for macrophage activation from the tailored genome-scale
metabolic network to the RAW cell line was significantly
correlated with and was highly supported by three levels of
high-throughput data sets. Our experimental results demon-
strate that the regulation of glutamine/glutamate towards
de-novo nucleotide synthesis and malate-aspartate shuttle may
be an effective mechanism for modulating macrophage meta-
bolic activation as the LPS-stimulated macrophage significantly
downregulated those pathways during activation. In addition,
we re-analyzed time-course proteomic data of infected RAW
264.7 cells, finding a similar trend as the LPS results. A
comparison of our model-predicted changes with the full time-
course transcriptomics and proteomics of LPS-stimulated
macrophages as well as a list of significantly altered metabolites
are available in Supplementary information.

Discussion

It is becoming clear that the two common denominators in
many pathophysiological states are metabolism and inflam-
mation (Mathis and Shoelson, 2011). Research areas, particu-
larly in the cancer field which previously focused heavily on
regulation and signaling controls, are now recognizing
metabolic reprogramming as a predominant characteristic
during disease progression. For example, well-established
tumor suppressors that regulate cancer cell proliferation, such
as p53, have been shown to converge on the control of central
metabolism (Cairns et al, 2011). In this study, we present a case
that metabolism similarly has a crucial role in the control of
macrophage activation and, consequently, immune response.
Notably, our systematic network analysis of macrophage
metabolism highlights metabolic effectors that were pre-
viously established in the experimental literature and proposes
potential mechanisms that are critically linked to activation.

In recent years, high-throughput technologies have empha-
sized the need to develop integrative data analysis tools with
improved biological relevance (Palsson and Zengler, 2010).
While most data-driven analysis approaches are purely
statistical in nature, metabolic network-based approaches
have demonstrated highly coherent dependencies at the gene
expression level that are functionally correlated based on flux
associations (Notebaart et al, 2008; Wessely et al, 2011). Our
study further supports the notion that predicted flux-based
associations provide a biologically accurate context for
elucidating metabolic mechanisms from multiple layers of
high-throughput data. By coupling model-based predictions
with transcriptomic, proteomic, and metabolomic analyses on
LPS-stimulated RAW 264.7 cells, we confirmed a consistent
trend by which glutamine is a critical junction for activation
and a possible contending link between nucleotide synthesis
and macrophage activation via pentose phosphate pathway
and CBP synthase exists. Our re-analysis of previously
published proteomic data from Salmonella-infected RAW
264.7 cells demonstrated a similar divergent trend, indicating
that metabolic network-based predictions can enhance the
mechanistic interpretation of omics data than previously
possible.

With a growing interest in metabolism as therapeutic
targets (Vander Heiden, 2011), the results of our study indicate

metabolic network-based approaches can be used to delineate
metabolic mechanisms as immunotherapeutic targets. In
particular, our study provides the framework for identifying
metabolic signatures of macrophage activation that serve
as potential therapeutic strategies during infectious states.
Interestingly, our previous work on differential metabolism
during M. tuberculosis infection in human alveolar macro-
phages showed that nucleotide synthesis, pentose phosphate
pathway, hyaluronan synthase, and Vitamin D3 metabolism
were solely active in macrophages with pulmonary and
meningeal tuberculosis infections versus latent infections
(Bordbar et al, 2010). Several macrophage-produced metabo-
lites that suppressed activation phenotypes, particularly
nucleotides and hyaluronan, have also been shown to be
important substrates for intracellular pathogen replication
and survival (Appelberg, 2006; Hirayama et al, 2009). Our
current analysis suggests a complementary nature between
pathogen auxotrophies and the mitigation of macrophage
activation due to the synthesis of metabolites required for
pathogen replication. These interactions are indicative of
potential virulence mechanisms by intracellular pathogens
that enable suppression of macrophage activation and serve as
possible therapeutic strategies to treat persistent infectious
states.

Regulation of immune cells has been traditionally
explored from a signaling perspective, but recent studies have
suggested that metabolic factors may influence the activities of
immune cell responses (Newell et al, 2006; Kominsky et al,
2010; Mathis and Shoelson, 2011; Osborn and Olefsky, 2012).
In particular, macrophage recruitment and activation has
drawn considerable interest from the scientific community
for its interfacing role between metabolism and immunity
(Chawla et al, 2011; Odegaard and Chawla, 2011). While the
relationship between metabolism and immunity has
been historically explored from a nutritional perspective
(Odegaard and Chawla, 2011), recent studies have demon-
strated and characterized immune cell-secreted metabolites to
be signaling modulators. For example, macrophage production
of both Vitamin D3 and DOPEG have been shown to have
potent immunosuppressive effects as a result of paracrine
regulatory control to mitigate pro-inflammatory response
(Helming et al, 2005; Flierl et al, 2007). While these regulatory
mechanisms are well established, our analysis indicates
alternative contributing factors that may be imposed by the
complementing metabolic capabilities of effector immune
cells. The ability to recapitulate most known metabolite
effectors with our metabolic network analysis strongly
suggests an underlying complementation in how metabolite
signals are biochemically processed (i.e., degraded or synthe-
sized) and its eventual immunomodulatory role (i.e., activat-
ing or suppressing). Hence, our study suggests metabolism as
a potential remote sensor that mediates the activation status of
macrophages through its metabolic capacities. Taken together,
our results lend support to the notion that understanding
reciprocity between metabolism and its regulatory signaling
state may be critical to decoding mechanisms in immunity
(Odegaard and Chawla, 2011) and other biological systems
(McKnight, 2010), thus establishing potential application of
metabolic systems biology toward the emerging field of
immunometabolism.
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Materials and methods

Tailoring the global human metabolic network to
RAW 264.7

A full workflow for generating the reconstruction is provided in
Supplementary information. The NCBI HomoloGene database was
used to replace Recon 1 genes with murine Entrez Gene IDs.
Expression data for untreated RAW 264.7 cells was obtained (Shell
et al, 2005). Present and absent calls were made according to a
probability distribution approximated for the log2-transformed,
averaged values using a Gaussian mixture model (Chang et al, 2010).
The processed data was integrated with reactions of the mouse
metabolic network according to the gene-protein-reaction associa-
tions. The biomass function was adopted from Bordbar et al (2010) as
the data used to construct it came mostly from mice. Two established
algorithms that integrate high-throughput data with metabolic net-
works (Becker and Palsson, 2008; Shlomi et al, 2008) were used to
construct the cell-specific networks. We also employed a new
algorithm that improves upon the original GIMME algorithm through
the integration of proteome-based objective functions called Gene
Inactivity Moderated by Metabolism and Expression by Proteome
(GIMMEp).

The GIMME algorithm (Becker and Palsson, 2008) was used to
construct the RAW 264.7 cell line model through an integrated
transcripto-proteomic approach. The original algorithm builds con-
text-specific models by utilizing expression data to minimally activate
a set of reactions that are necessary to fulfill a single user-defined
reaction objective. This can be problematic given that there is no clear
single objective in mammalian cells and tissues. To build the RAW
264.7-specific model, the GIMMEp algorithm integrated published
proteomic data of untreated RAW 264.7 cells (Shi et al, 2009) as
objective function cues that are evaluated separately with the original
GIMME algorithm in an interative fashion. Hence, separate subnet-
works are determined for each proteome-associated reaction objec-
tives that are active on the basis of satisfying each objective function in
turn. The subnetworks are then combined to create the finalized
GIMMEp-based model. iMat (Shlomi et al, 2008) was also used to
predict a flux distribution most consistent with the omics data. iMat
was used as it is not biased by a particular objective. A macrophage-
specific reaction subnetwork was derived from the iMat analysis.

The automated draft reconstruction process yielded three algor-
ithmically tailored models (GIMME, iMAT, and GIMMEp) that were
compared by their ability to perform the published 288 metabolic
functions of Recon 1. Differences in metabolic functional capability
were used as a classification system to target manual curation efforts in
the literature. The final reconciled model was used in the study.

Functional characterization using flux balance
analysis

A genome-scale reconstruction is converted into a mathematical
format by representing the reactions and metabolites in a stoichio-
metric matrix (S). The rows of the matrix represent the metabolites in
the network, while the columns represent the reactions. Flux
balance analysis (FBA) is used to characterize the system. FBA is a
linear programming-based mathematical operation to calculate the
maximum flux through a particular reaction objective under mass
balance (S .v¼0) and thermodynamic/capacity constraints (lb,ub)
(Equation 1) without the need for kinetic parameters. The objective
vector (c) is a zero vector with a value of 1 corresponding to the
reaction that is being maximized. An FBA primer is now available
(Orth et al, 2010).

maxðcT � vÞ
subject to S � v¼ 0

lbo voub

ð1Þ

Uptake rates for major carbon sources (glucose, glutamine,
pyruvate, and fatty acids) and oxygen were set from murine
macrophage literature (Newsholme et al, 1986; Sato et al, 1987; Curi
et al, 1988; Newsholme et al, 1999). Minimal supplementation of

essential amino acids and choline of 0.1 mmol/cell gDW/h was
required to generate biomass. In addition, sodium, chlorine,
bicarbonate, and ammonia were allowed to enter the network freely.

Reaction deletion analysis

Deletion analysis was completed by iteratively removing a reaction
from the network and determining the maximum value of the three
objective functions associated with M1 and M2 activation. The two
objective functions for M2 activation (proline and putrescine genera-
tion) were averaged and compared with M1 activation (NO produc-
tion). Large differences (410% difference from the original objective
value) in reaction deletion for M1 and M2 were analyzed. Within the
two M2 activation functions, some reactions had large differences
(410%) and were ignored in this analysis as they are not characteristic
of M2 activation but rather specifically of proline or putrescine
generation. There were only six such reactions.

Sensitivity and sampling analysis of metabolite
exchanges

For each exchanged metabolite and objective function, sensitivity
analysis was completed by iteratively fixing the exchange flux at 20
different flux values ranging from the minimum to maximum
allowable flux and calculating the maximum objective value. To
compare the effects on each of the objectives, we calculated the slope
of the sensitivity curves. The sensitivity of metabolites to the objective
functions was typically monotonic. However, 8 of the 355 tests were
not monotonic (L-cysteine production on ATP, L-glutamate production
on NADH, L-cystine uptake on NOS, NH4 uptake on PTRC, and NH4

production on ATP, NADH, NOS, PRO functions) where a change in
direction of the function occurs at large non-physiological exchange
values (40.1 mmol/h/g cell DW). For these cases, the sensitivity slope
was calculated for the monotonic region closer to an exchange of 0.
Though threonine was predicted to be the most effective suppressant,
the result is due to an artifact of the network analysis and those results
were removed.

Randomized Monte Carlo sampling of the solution space con-
strained by metabolite exchanges and objective function value was
used to identify reaction activity changes pertaining to the different
phenotypes calculated from sensitivity analysis. Sampling was
performed for both the first and last points by fixing the exchange
flux and the objective, thus alternate solutions were inherently
accounted for. The sampling procedure and differential reaction
activity detection was done similarly to a previous study (Bordbar
et al, 2010). Reactions that were differential in activity across a
minimum of three objectives were only considered to filter out
objective biased changes.

Quantitative analysis of stimulated RAW 264.7
macrophages

The RAW 264.7 (ATTC) cell line was stimulated for 0, 2, 4, and 24 h
with LPS (from Salmonella enterica Serovar Typhimurium). Treated
cells were washed twice with Dulbecco’s PBS and harvested for high-
throughput analyses. Quantitative proteomics was done with accurate
mass and time (AMT) tag. After digesting the proteins with trypsin,
peptides were analyzed by liquid chromatography-tandem mass
spectrometry on an LTQ XL (Thermo Scientific) (to build the mass
tag (MT database) or an LTQ Orbitrap XL (Thermo Scientific) (for the
quantitative measurements) mass spectrometer. Tandem mass spectra
were searched with SEQUEST (Yates et al, 1995) against mouse IPI
database and the reliable identifications were used to build the MT
database, which was further matched to the orbitrap data using the
VIPER tool (Monroe et al, 2007). Abundance values were processed
and submitted to statistical test using DAnTE (Polpitiya et al, 2008).

Labeled cDNA was prepared as described (Jones et al, 2010). A
mixture Cy3-labeled control cDNA and Cy5-labeled were hybridized to
Agilent Mouse GE 4� 44K v2 Microarray (Agilent Technologies) and
processed. Image analysis and intra-chip normalization were
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performed with Feature Extraction 9.5.3.1 (Agilent). Data were
analyzed with MeV (tm4.org) or with custom python scripts.

For metabolomics, cell suspensions were centrifuged. Ammonium
bicarbonate was added to the cell pellet and metabolites were extracted
with a chloroform/methanol mixture. Extracted metabolites were
successively derivatized by two chemical reagents to enhance stability
and volatility for gas chromatography-mass spectrometry (GC–MS)
analysis (Kim et al, 2011). Samples were analyzed in biological
triplicates and technical duplicates in a GC–MS system (Agilent GC
7890A coupled with a single quadrupole MSD 5975C) connected to
HP-5 MS column (30 m� 0.25 mm� 0.25mm; Agilent).

Omics data are available to the larger scientific community. The
SysBEP.org project website provides links to each of the disseminated
materials with the transcriptomics data disseminated via GEO (Barrett
et al, 2011) under the accession number GSE35237 and proteomics
data via (http://omics.pnl.gov; Auberry et al, 2010). More detailed
methods on experimental conditions and data generation are provided
in Supplementary information.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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