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Abstract: Recognizing facial expression has attracted much more attention due to its broad range of
applications in human–computer interaction systems. Although facial representation is crucial to
final recognition accuracy, traditional handcrafted representations only reflect shallow characteristics
and it is uncertain whether the convolutional layer can extract better ones. In addition, the policy
that weights are shared across a whole image is improper for structured face images. To overcome
such limitations, a novel method based on patches of interest, the Patch Attention Layer (PAL) of
embedding handcrafted features, is proposed to learn the local shallow facial features of each patch on
face images. Firstly, a handcrafted feature, Gabor surface feature (GSF), is extracted by convolving the
input face image with a set of predefined Gabor filters. Secondly, the generated feature is segmented
as nonoverlapped patches that can capture local shallow features by the strategy of using different
local patches with different filters. Then, the weighted shallow features are fed into the remaining
convolutional layers to capture high-level features. Our method can be carried out directly on a static
image without facial landmark information, and the preprocessing step is very simple. Experiments
on four databases show that our method achieved very competitive performance (Extended Cohn–
Kanade database (CK+): 98.93%; Oulu-CASIA: 97.57%; Japanese Female Facial Expressions database
(JAFFE): 93.38%; and RAF-DB: 86.8%) compared to other state-of-the-art methods.

Keywords: facial expression recognition; patch attention; shallow feature; feature extraction; facial
representation; convolutional layer

1. Introduction

In our daily life, we communicate with each other not only in words, but also in
many other nonverbal ways such as body language, intonation, and facial expressions.
As the famous psychologist Mehrabian said, facial expressions convey 55% of a commu-
nicated message, which is more than the part conveyed by the combination of voices
and languages [1]. Therefore, understanding the unspoken words from a person’s facial
expression is a fundamental human trait. As people, we can presume the state of some-
one’s emotion by observing their face, but if we were machines, we only could utilize
an automatic algorithm for emotion recognition. For this reason, automatic facial expres-
sion recognition (FER), which has attracted much more attention in recent years, is an
interesting and challenging problem, and has become prevalent in a broad range of applica-
tions such as driver fatigue surveillance [2], smile or pain detection [3,4], social media [5],
interpersonal relation prediction [6], and human–computer interaction [7,8].

Facial expressions can be divided into six basic emotions, namely, anger (An); disgust
(Di); fear (Fe); happiness (Ha); sadness (Sa); surprise (Su); and one neutral (Ne) emotion [9],
contempt (Co), was subsequently added as one of the basic emotions [10]. Recognition
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of these emotions can be categorized into image-based [11–37] and video-based [38–43]
approaches. Image-based approaches only use information about the static input image
to determine the category of facial expression; on the other hand, except when the spatial
features extracted from a static image are available, video-based approaches can also
use temporal information of a dynamic image sequence to capture the temporal changes
of facial appearance when some facial expression occurs. Considering that video-based
approaches recognize facial expressions from large-scale image sequences, which inevitably
lead to higher computational complexity, this work will focus on the image-based approach.

FER can also be divided into the traditional method [15,27,30–32,38,40], deep learning
method [16–18,20,21,23–26,35,36,39,41–43], or a combination of the two [11,12,22,28,29,33,37].
Traditional FER systems usually involve facial representation and expression classification.
Facial representation is crucial to the final accuracy of expression classification, which
aims to make it more possible to distinguish the facial expressions. The majority of facial
representations use handcrafted features, such as local binary patterns (LBP) [15], Gabor
features [27], temporal patterns of oriented edge magnitudes (TPOEMs) [38], histogram of
oriented gradients (HOG) [40], and bag-of-words (BoW) features [31] for FER. For expres-
sion classification, support vector machines (SVMs) are the most effective and common
method, therefore, many studies [11,15,30–33,40] used SVM to build their classification
algorithm. In the last few years, research on deep learning, especially on convolutional
neural networks (CNNs), has made great progress in computer vision, including FER. Un-
like traditional approaches, where features are defined manually and only shallow features
can be obtained, deep learning methods stack a number of intermediate layers from input
data to a classification layer and can automatically learn high-level features from a large
amount of training data [44]. The high-level features are learned step-by-step for CNN,
e.g., the first layer of CNN is usually responsible for extracting shallow features, which
are then transformed into distinguishable mid-/high-level features through middle/rear
convolutional layers. Therefore, the extraction of shallow features is very important for the
CNN, as it can directly affect the accuracy of high-level features and the correctness of final
classification. However, it is uncertain whether the first convolutional layer can provide
complete and effective shallow features due to its huge number of uncertain parameters
and its back-propagation mechanism [45]. Taking into account the excellent performance
of traditional methods and uncertainty of the first convolutional layer of CNNs for shallow
features extraction, we will consider using Gabor surface feature (GSF) [46], a facial repre-
sentation method that combines the advantages of the LBP and Gabor algorithms instead
of the first convolutional layer of CNNs to enhance the extraction of facial shallow features.

In addition, most literatures [12,22,23,33] have used standard convolutional layers,
whose weights are shared across a whole face, to learn facial features. However, different
regions of an aligned face have different local statistics, and the spatial stationarity assump-
tion of convolution cannot hold [47]. To overcome this, the patch attention mechanism,
where the weights are shared only within a local facial region, is employed to capture the
local appearance changes of different facial regions.

To sum up, we propose a Patch Attention Layer (PAL) of embedding handcrafted GSF,
which can substitute the first convolutional layer of any standard CNN to capture certain
shallow features. Then, we feed these outstanding and clearly representative shallow facial
features to the remaining layers to achieve competitive results. Figure 1 illustrates the main
idea of the proposed method. Firstly, we obtain GSF through the convolution of an input
face image and Gabor filters; then, local features of GSF can be learned with the patch
attention mechanism; finally, the output feature maps of PAL are fed into the remaining
layers of standard CNNs for classification. In our experiment, we used ResNet50 [48] as
the backbone CNN. Our major unique contributions are as follows:
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• PAL, a simple plug-and-play module, is designed to learn relatively controllable
and certain shallow facial features, then, its output features can be fed into any
standard backbone CNN by skipping the first convolutional layer. This operation can
significantly improve the performance of the whole network.

• According to the patch attention mechanism, we divide all GSFs into uniform patches.
Unlike the traditional convolutional layer, where same weights are shared with whole
feature maps, we make each patch has its own convolutional module to learn better
distinguished local features for corresponding patches. In addition, we do not rely on
landmark information used in [17,18,36,43,49], so we can reduce the risk caused by
its accuracy.

• In terms of preprocessing, only face detection and alignment are done on the image,
which is not as complicated as in some studies [16,50,51].

• We conduct experiments on four leading databases (CK+ [52], Oulu-CASIA [53],
JAFFE [27], and RAF-DB [54]), which show that our approach has achieved competi-
tive results compared with state-of-the-art approaches.

V 
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Figure 1. Framework of the proposed Patch Attention Layer (PAL) with the backbone network. “*”
denotes that M and N are variable depending on the input Gabor parameters.

The remaining chapters are organized as follows. Section 2 reviews the most recent
related work. Section 3 gives a description of the proposed PAL in detail. Section 4 presents
the experimental settings, results, comparison with other approaches, and discussions. The
conclusion is presented in Section 5.

2. Related Work

In this section, we mainly present previous works considering two issues that are
related to ours, i.e., feature representation for FER and the patch attention mechanism.

2.1. Feature Representation for FER

FER performance highly depends on the quality of facial feature representation, which
has attracted much attention from researchers. Facial expression features can be roughly di-
vided into two categories: shallow features and high-level features. For the former, most of
the existing works used different types of handcrafted features. Shan et al. [15] empirically
evaluated facial representation based on a statistical local feature called LBP, experiments
had shown that the LBP feature has a better, stable, and robust performance when the
input facial images have different forms. To overcome the limitation that traditional LBP
can lose the neighboring pixels related to different scales that can affect the texture of facial
images, Yasmin et al. [30] proposed a new extended LBP method based on the bitwise
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“AND” operation of two rotational kernels to extract facial features. In view of satisfactory
performance of the LBP operator, the CNNs that integrate advantages of the LBP have
been developed [41,55,56]. Lyons et al. [27] used a multiscale, multiorientation set of Gabor
filters to code facial expression images through comparing the similarity space derived
from semantic ratings of the images by human observers with the one derived from Gabor
representation; authors believed that the latter shows a significant degree of psychological
plausibility. Cruz et al. [38] presented a novel descriptor TPOEM, which is an extension of
the patterns of oriented edge magnitudes, by adding temporal information to represent
facial images. Dahmane et al. [40] utilized dynamic dense grid-based HoG to extract facial
features; the experiment showed that these features perform better than static uniform LBP
implementation. Sikka et al. [31] applied a matured method, BoW—a technique highly
successful in object and scene recognition—to FER, results showed that it is a successful
method of knowledge transformation.

Researchers have used deep learning method to extract high-level features. Mol-
lahosseini et al. [44] presented a new deep neural network (DNN) architecture to deal
with the FER problem across seven well-known facial expression databases; the DNN has
a good generalizability and accuracy. Wang et al. [35] proposed an oriented attention
pseudo-siamese network that consists of a maintenance branch and an attention branch,
this network not only grabs a global picture but can also concentrate on important local
areas. Generally speaking, deep learning methods perform better than traditional ones, so
deep learning methods have gradually become mainstream.

In order to obtain better performance, some researchers have tried a combination of
the two features. Sun et al. [33] proposed a multichannel deep spatial–temporal feature
fusion neural network whose inputs are gray-level emotional-face and optical flow features
extracted from the changes between emotional-face and neural-face. References [11,12]
employed a multimodal feature that consists of shallow features (facial key points, SIFT)
and high-level features extracted by a CNN model, then SVM is applied to classification.
Considering that handcrafted features and high-level features may have some similarities,
references [22,28] proposed a general framework for embedding handcrafted feature con-
straints into a deep loss for feature learning. Hybrid methods, which can extract shallow
invariant features of face images and high-level semantic features, have a great advantage
for FER. Therefore, in this paper, a hybrid structure is used for recognition, i.e., PAL of
embedding handcrafted GSF is responsible for extracting shallow features and standard
CNN except first layer for high-level ones.

2.2. Patch Attention Mechanism

Humans have the ability to quickly filter out irrelevant information and lock in parts
of interest when recognizing objects. Recently, this kind of attention mechanism has been
successfully applied in FER [17,18,20,21,24–26,29,35,43,57]. Zhong et al. [21] divided a
facial image into nonoverlapped patches to discover the common and specific patches
that are important to discriminate all the expressions and only a particular expression,
respectively; then, they discussed how different numbers of patches affect recognition
performance. References [18,25] decomposed feature maps to sub-feature-maps to acquire
local patches and then weighted them, subsequently using weighted patches to obtain
the final feature representation, but these patches should be selected carefully. Instead of
cropping small fixed patches, Wang et al. [17] presented a novel region attention network,
which is fed to relatively large regions cropped in several ways to capture the importance
of facial region. Zhao et al. [24] proposed a deep region and multilabel learning that is
able to identify more specific regions for different Action Units (AUs) through a region
layer that uses feed-forward functions to capture structural information in different facial
regions. In a word, patch attention can increase the weight of the parts we are interested in,
then, a better performance will be achieved just by focusing on the weighted parts.
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3. Proposed Method

The proposed PAL contains two parts: GSF extraction model and patch attention
model. Firstly, we use a set of Gabor filters to extract multiscale and multiorientation Gabor
magnitude pictures (GMPs), which are then encoded to GSF. Secondly, GSF is divided into
uniform patches, and each patch has its own convolutional component to capture local
features. In this section, we will give a brief overview of the proposed PAL and then detail
each part of it.

3.1. Overview

The sketch of our proposed PAL is illustrated in Figure 1. The input is an aligned gray
face image, which is then convolved with 40 Gabor filters of size M × N × 1. It should be
noted that M and N are variable depending on the input Gabor parameters, just like the
calculation in Skimage toolbox (https://scikit-image.org/). In this paper, we use the notion
40 ×M × N × 1 @ 112 × 112, where 112 × 112 denotes the output size of feature maps.
After convolution, we can get 40 GMPs, which are then encoded to face representation
GSF. Subsequently, we divide GSF into 49 nonoverlapped patches that will be fed into a
patch attention to achieve local features. This part will be discussed in detail in Section 3.3.
Finally, the output feature maps of PAL are fed into layer1 of ResNet50 to replace the first
convolutional layer.

3.2. GSF Extraction Model

Considering the advantages of Gabor filters in face recognition [58], we use a set of
Gabor filters [59] to extract multiscale and multiorientation face features. The definition of
the Gabor filters is presented as

ψ~k(~r) =
~k2

σ2 exp
(
−~k2~r2

2σ2

)[
exp
(

i~k~r
)
− exp

(
− σ2

2

)]
~k =

[
kx ky

]T
=
[
kv cos φu kv sin φu

]T

~r =
[

x′ y′
]
=
[

x cos φu + y sin φu −x sin φu + y cos φu

] , (1)

where kv = 2−
v+2

2 π gives the frequency, φu = u π
K gives the orientation, and (x, y) rep-

resents a pixel in the image. Note that, in Equation (1), u and v control the orientation
and scale of Gabor filters, respectively, and K represents the total number of orientation.
In this paper, the parameters of Gabor filters are as follows: σ = π

2 , v ∈ {0, 1, 2, 3, 4},
u ∈ {0, 1, 2, 3, 4, 5, 6, 7}, K = 8.

GSF, proposed in [46], which uses the 1st and 2nd derivatives information of GMPs,
is employed for facial representation, since it is an effective texture analysis method in
the spatial domain and takes advantage of both of Gabor and LBP. To extract GSF, firstly,
GMPs (called G for short) should be calculated by convolving a face image with each of the
40 predefined Gabor filters described in Equation (1). Secondly, G are filtered by symmetric
gradient operator along the two spatial dimensions x and y, then, the gradient pictures
Gx, Gy, Gxx, and Gyy can be obtained. Different from using [−1, 0, 1] as the gradient
operator in paper [46], we use the Sobel operator [[−1, 0, 1], [−2, 0, 2], [−1, 0, 1]] instead
because of its better performance on image denoising [60]. A set of Gs can be formulated
as follows: 

G = ∪40
1 (Input⊗ Gabori)

Gx = G⊗ sobelx

Gy = G⊗ sobely
Gxx = Gx ⊗ sobelx

Gyy = Gy ⊗ sobely

, (2)

https://scikit-image.org/
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where ⊗ denotes the convolution operator and sobelx = sobelT
y . Finally, G, Gx, Gy, Gxx,

and Gyy are, respectively, binarized to the binary pictures B, Bx, By, Bxx, and Byy. The GSF
function Fgs f , which is encoded by the way similar to LBP, can be formulated as follows:

Fgs f = 23B + 22Bx + 21By + 20B2, (3)

where B2 = Bxx + Byy. As an example, for each pixel z = (x, y) of G, its binary value is
defined as

Bz =

{
1, if Gz ≥ Thresholdg

0, otherwise
, (4)

where Thresholdg is the median of pixel value of G. Therefore, Fgs f is the feature map
with the value ranging from 0 to 16, which is further transformed to interval [0, 1] to make
neural networks easier to converge.

3.3. Patch Attention Model

In a classic convolutional layer, the convolutional filters are shared by all regions
of an entire input image and then generate feature maps. Under most conditions, this
method is effective for dealing with feature extraction. However, for some tasks, e.g., FER,
whose input is more structured and different regions follow different local statistics, the
effectiveness of sharing the same set of filters for an entire image will decrease. Therefore,
it would be better to process each local region with an independent filter because different
local regions have various structures and texture information. Instead of employing a
classic convolutional layer, the filters of region layer proposed in the paper [24] are shared
only within the local facial region, and local appearance changes will be captured for
different facial regions by adopting different filters for different regions. Nevertheless, the
input of region layer is the feature maps generated by a convolution operation, which can
only obtain uncertain shallow features. Thus, we use a traditional handcrafted texture face
representation GSF instead. In addition, Global Average Pooling (GAP) [61] is employed
in our method as it can effectively prevent overfitting and increase generalization ability.

Our patch attention model is illustrated in Figure 2. From the figure, we can know
that the patch attention model has two parts: patch feature extraction and channel trans-
formation. In the first part, we divide the GSF into uniform patches (a 7 × 7 grid), and
then each patch is fed into a convolutional layer to learn its own feature maps individually.
The feature maps are normalized using Batch Normalization (BN) [62] and passed through
Parametric Rectified Linear Unit (PReLU) [63]. To obtain a weight to express the impor-
tance of each patch, GAP is then used. Finally, each patch is weighted by the computed
weight with a residual structure to learn overcomplete features and avoid the vanishing
gradient problem. In the second part, we use a 1× 1 convolutional layer to match channels
of layer1 of standard ResNet50 [48]; another benefit of this part is to increase the nonlinear
ability of the network.

Mathematically speaking, let us suppose that pi denotes the input 16× 16× 40 i-th
patch divided from 112× 112× 40 GSF; a corresponding weight αi, which represents the
patch i’s importance, can be formulated as

αi = f (pi), (5)

where f means the operations consist of a convolution, a BN, a PReLU, and a GAP operation.
Following the computation of attention weight, the i-th patch is then weighted, and

outputs its weighted feature φi as follows:

φi = αi ⊕ pi, (6)

where ⊕ is the element-wise addition.
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Finally, a weighted GSF is reassembled from the weighted patches in the original
order, which is then fed into a 1× 1 convolutional layer to obtain PAL’s output referred to
outpal , we can express outpal like this:

outpal = Conv(Reassemble(∪49
1 φ)). (7)

outpal is used as the final representation of the proposed PAL, we can feed it into any
standard CNN except for the first convolutional layer.

(1, 1)

(7, 7)

 
 

patch

@16×16×40

 conv

40×3×3×40

@16×16

@16×16×40

BN PReLU

@16×16×40

 GAP

@1×1×40

 (6, 5)

 
 

 
 

patch

@16×16×40
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40×3×3×40

@16×16

@16×16×40

BN PReLU

@16×16×40

 GAP

@1×1×40

 (2, 3)

 
 

@112×112×40 @112×112×40 64×1×1×40

@112×112

@112×112×64
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GSF

Patch attention

 PAL＇s outWeighted GSF

Figure 2. An illustration of the proposed patch attention model. GSF—Gabor Surface Feature; conv—Convolution operation;
BN—Batch Normalization; PReLU—Parametric Rectified Linear Unit; GAP—Global Average Pooling.

4. Experiments

We evaluate the performance of our method on four well-known publicly
available databases, namely, laboratory-controlled-condition databases such as CK+ [52],
Oulu-CASIA [53], and JAFFE [27], and also an in-the-wild-condition database like
RAF-DB [54]. The number of images per each expression used in our experiment is shown
in Table 1, and Figure 3 demonstrates samples of different expressions from four databases.
The details of the experiments and results will be expressed in the following sections.

An Co Di Fe Ha Ne Sa Su

Figure 3. Samples of different expressions from four databases. From top to bottom is the Extended
Cohn–Kanade database (CK+), Oulu-CASIA, Japanese Female Facial Expressions database (JAFFE),
and RAF-DB. An, Co, Di, Fe, Ha, Ne, Sa, and Su stand for Anger, Contempt, Disgust, Fear, Happiness,
Neutral, Sadness, and Surprise, respectively.
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Table 1. Number of images per each expression in the Extended Cohn–Kanade database (CK+),
Oulu-CASIA, Japanese Female Facial Expressions database (JAFFE), and RAF-DB. An, Co, Di, Fe, Ha,
Ne, Sa, and Su stand for Anger, Contempt, Disgust, Fear, Happiness, Neutral, Sadness, and Surprise,
respectively.

Databases An Co Di Fe Ha Ne Sa Su Total

CK+ 135 54 177 75 207 327 84 249 1308
JAFFE 30 - 29 32 31 30 31 30 213

Oulu-CASIA 240 - 240 240 240 - 240 240 1440
RAF-DB 867 - 877 355 5957 3204 2460 1619 15,339

4.1. Implementation Details

In our experiment, the HOG-based face detector in the Dlib toolbox (http://dlib.
net/) and the Affine-Transformation-based face aligner in the Imutils package (https:
//github.com/jrosebr1/imutils) are used to detect and align faces, respectively. The
aligned faces are then cropped and resized to the size of 224× 224. We implement our
method with a machine learning framework Pytorch 1.6 (https://pytorch.org/), and
Pytorch Lightning 1.02 [64] is employed to ensure quick building and organization of our
code. The experiments are carried out in the environment of Python 3.8 and operating
system of Windows 10, where we use an Inter Xeon Gold 6134 3.2 GHz CPU and a NVIDIA
QUADRO RTX8000 GPU with CUDA framework 10.2. For the backbone CNN, we use
ResNet50 [48], which is initialized with the weights pretrained on the ImageNet database.
To avoid overfitting, we apply a data augmentation during training that consists of random
horizontal flipping with probability of 0.5 and color jitter with brightness of 0.4, contrast of
0.3, saturation of 0.25, and hue of 0.05. We use the Adam optimizer with a momentum of 0.9;
a weight decay of 0.0005; a minibatch size of 32 for CK+, Oulu-CASIA, and RAF-DB, and 8
for JAFFE. The learning rate is initialized as 0.001 and decreased by a factor of 0.5 every
10 epochs. We stop training with 40 epochs in total. When training with Cross-Entropy
loss, the flooding lever [65] is set at 0.03 to avoid zero training loss.

4.2. Comparison with the State-of-the-Art

The Extended Cohn–Kanade database (CK+) [52] is a extended vision based on the
sCohn–Kanade database with 22% posed expression. The database includes 593 image
sequences recorded from 123 subjects ranging from 18 to 30 years old. For each sequence,
the intensity of expression starts from neutral to the peak. Among these sequences, only
327 sequences from 118 subjects have seven basic facial expressions and only the last
frame of each sequence is labeled. We select the last three frames and the first frame of
each sequence to compose our experimental database. We further split the sequences into
10 subject-independent subsets for 10-fold cross-validation by sampling in ID ascending
order, which is the same as the previous works [19,22,28,33]. In each time, we use nine
subsets for training and the remaining one is used for validation.

In Table 2, we compare our method with current state-of-the-art works, which used
traditional, deep learning, or a combination of the both methods. The average accuracy
of 10 runs for seven-class and eight-class are reported. Among the many previous works,
some works such as STRNN [42], LBVCNN [41], TPOEM [38], PHRNN-MSCNN [39], and
SAANet [43] used image sequence as their experimental data, while others used a static im-
age. Although Specific preprocessing [16], ALAW [22], Feature loss [28], OAENet [35], and
S-DSRN [23] used seven expressions, contempt expression is replaced with neural. Note
that, in order to make a fair comparison, seven basic expressions with and without neutral
are used for our experiment. The studies [43] and [33] achieved the best performance
for seven-class and eight-class, respectively. However, [43] employed image sequence as
input, which means a lot of computation. Extra temporal feature extraction in [33] needs a
much more complex and wider network structure. For both cases, our method significantly
outperforms all others, achieving 99.69% vs. the previous best of 99.54% for seven-class,

http://dlib.net/
http://dlib.net/
https://github.com/jrosebr1/imutils
https://github.com/jrosebr1/imutils
https://pytorch.org/
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and 98.93% vs. 98.38% for eight-class. These are now the new state-of-the-art performances
as far as we know.

Table 2. Performance comparison with different methods on the CK+. Symbol “-” denotes not reported. Symbol “*”
denotes that contempt expression is replaced with neural. “10F” denotes “10-fold cross-validation”. “T” and “DL” denote
“Traditional-based” and “Deep-learning-based”, respectively.

Method Data Classes Protocol Category Recognition Rate (%)

LDTP 2017 [32] Three peak 7 - T 94.2
SIFT-CNN 2019 [12] The peak 7 8F T + DL 94.13

STRNN 2018 [42] Video-based 7 10F DL 95.4
LBVCNN 2019 [41] Video-based 7 10F DL 97.38
TPOEM 2018 [38] Video-based 7 10F T 92.91

PHRNN-MSCNN 2017 [39] Video-based 7 10F DL 98.5
SAANet 2020 [43] Video-based 7 10F DL 99.54

Specific preprocessing 2017 [16] Three peak 7 * 8F DL 95.79
ALAW 2019 [22] Three peak 7 * 10F T + DL 97.35

Feature loss 2018 [28] Three peak 7 * 10F T + DL 97.35
OAENet 2020 [35] The peak 7 * 10F DL 98.5
S-DSRN 2018 [23] Five peak 7 * 15F DL 99.23
MSFLBP 2020 [30] Image-based 7 10F T 99.12

Multimodal feature 2020 [11] The peak 7 - T + DL 94.41
Attention-based CNN 2020 [37] Three peak 7 5F T + DL 98.68

DeRL 2018 [34] Three peak 7 10F DL 97.3
Ours (RAL) Three peak 7 10F T + DL 99.69

BDBN 2014 [14] Three peak 8 8F DL 96.7
FN2EN 2017 [19] Three peak 8 10F DL 96.8

MDSTFN 2019 [33] Three images 8 10F T + DL 98.38
MFP-CNN 2020 [36] Image-based 8 10F DL 98.07

Ours (RAL) Three peak 8 10F T + DL 98.93

Figure 4a is the confusion matrix on the CK+; here, we only express the eight-class
FER problem. From Figure 4a, we can know that our method performs well on anger,
disgust, fear, and happiness; contempt expression is the most difficult to classify due to
having the lowest recognition rate. One possible reason is that contempt expression has
the least amount in CK+, in addition, the way people express it is very elusive.

The Oulu-CASIA database [53] contains data captured under three different illumina-
tion conditions (dark, strong, and weak) using two types of cameras (near infrared and
visible light). It consists of six basic facial expressions (apart from contempt) from 2880
image sequences of 80 subjects between 23 to 58 years old. Similar to the CK+, all sequences
begin with neutral expression and end with the peak one. We only apply the 480 sequences
with strong condition captured by a visible light camera to our experiment. The last three
frames of each sequence are selected for our experiment. Similar to the experimental setting
in CK+, a 10-fold subject-independent cross-validation method is performed.

Table 3 reports the comparison between our method with state-of-the-art algorithms
on Oulu-CASIA. Our PAL method achieves the best performance and outperforms the
previous best video-based work SAANet [43] by 9.24%. For the image-based method,
Attention-based CNN [37], our model outperforms it by 2.94%. The confusion matrix in
Figure 4b expresses that happiness expression is very easy to be recognized, while anger
and sadness show relatively low performance.

The RAF-DB [54] is a large-scale in-the-wild expression database collected from the
internet. It is annotated with basic or compound expressions by 40 independent trained
human coders. In our experiment, only images with six basic facial expressions (apart from
contempt) as well as neutral are used. We employ the specified training and testing sets
provided by the database, including 12,271 training and 3068 test images.
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Table 3. Performance comparison with different methods on the Oulu-CASIA. Symbol “-” denotes not reported.

Method Data Protocol Category Recognition Rate (%)

LBVCNN 2019 [41] Video-based (-) 10F DL 82.41
PHRNN-MSCNN 2017 [39] Video-based (Strong -) 10F DL 86.25

SAANet 2020 [43] Video-based (-) 10F DL 88.33
ALAW 2019 [22] Three peak (Strong VIS) 10F T + DL 85.83
FN2EN 2017 [19] Three peak (Strong VIS) 10F DL 87.71
DeRL 2018 [34] Three peak (Strong VIS) 10F DL 88

Attention-based CNN 2020 [37] Three peak (-) 5F T + DL 94.63
Ours (RAL) Three peak (Strong VIS) 10F T + DL 97.57
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Figure 4. The confusion matrices of our PAL on the (a) CK+ for the eight-class and (b) Oulu-CASIA. The darker the color,
the higher the accuracy.

The performance comparison with RAF-DB is shown in Table 4, one can see that the
proposed method has slight deterioration compared with the SCN [66], which outperforms
other algorithms in terms of accuracy by suppressing the uncertainties of facial expression
data. However, compared to the backbone ResNet50 in the same setting, our method
surpasses it by 4.43% because PAL can enhance the model’s ability of focusing on local
patches of interest. Figure 5a shows the confusion matrix of our method, it indicates that
happiness has the highest accuracy and disgust is the most difficult to classify.

Table 4. Performance comparison with different methods on the RAF-DB.

Method Classes Category Recognition Rate (%)

gACNN 2018 [18] 7 DL 85.07
DLP-CNN 2019 [67] 7 DL 84.13

Soft-label CNN 2019 [68] 7 DL 86.31
SCN 2020 [66] 7 DL 87.03
RAN 2020 [17] 7 DL 86.9

OAENet 2020 [35] 7 DL 86.5

Backbone (ResNet50) 7 DL 82.37
Ours (PAL) 7 T + DL 86.8

The Japanese Female Facial Expressions database (JAFFE) [27] consists of 213 images
from 10 Japanese female subjects. In this database, each image is labeled as one of six
basic (except contempt) and neutral facial expressions. The size of each image is 256× 256
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with 8-bit precision for gray-scale values. Similar to the experimental setting in the CK+, a
10-fold subject-independent cross-validation method is performed.
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Figure 5. The confusion matrices of our PAL on the (a) RAF-DB and (b) JAFFE. The darker the color, the higher the accuracy.

As shown in Table 5, our method achieves better performance and shows high results
on JAFFE for seven-class. The Attention-based CNN method [37], which features the
highest accuracy of the methods shown in Table 5, is not as good as ours for the CK+
and Oulu-CASIA. Note that the work [32] achieved an accuracy of 94.8% for six-class
by a new face descriptor, namely, local directional ternary pattern; however, for seven-
class, we achieved an 0.18% improvement compared to theirs. The confusion matrix is
reported in Figure 5b, which indicates that our method performs well in anger, disgust, and
surprise, while fear expression has the lowest recognition rate, which is mostly confused
with surprise.

Table 5. Performance comparison with different methods on the JAFFE. Symbol “-” denotes not
reported. “LOSO” denotes “Leave One Subject Out”.

Method Classes Protocol Category Recognition Rate (%)

LDTP 2017 [32] 6 - T 94.8
7 93.2

Specific preprocessing 2017 [16] 6 LOSO DL 56.44
7 53.57

Feature loss 2018 [28] 7 10F T + DL 83.57
Attention-based CNN 2020 [37] 7 5F T + DL 98.52

Multimodal feature 2020 [11] 7 LOSO T + DL 91.8
Ours (PAL) 7 10F T + DL 93.38

4.3. Cross-Database Evaluation

The best way to evaluate generalization ability is the cross-database experiment. To
perform such an experiment, we train the model on the CK+ and test it on the JAFFE.
The result in a cross-database experiment is computed as an average of the ten runs. In
this experiment, no images from the JAFFE are used during the training. The recognition
results compared with other methods for cross-database experiment are shown in Table 6.

Although our proposed method achieves a competitive recognition accuracy of 46.48%,
one can see that generalization performance is much lower than the results obtained
within the CK+ experiment. The same situations were encountered in previous pa-
pers [12,16,29,38]. The low accuracy reported in Table 6 can be explained in terms of
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difference between knowledge, i.e., there is a big gap in the learnable features of images for
the two databases.

Table 6. Cross-database evaluation on the JAFFE with models trained on the CK+.

Method Classes Recognition Rate (%)

SVM based on LBP 2009 [38] 7 41.3
Specific preprocessing 2017 [16] 7 37.36

SIFT-CNN 2019 [12] 7 48.90
Feature optimization model 2017 [29] 7 46.01

Ours (PAL) 7 46.48

5. Conclusions

In this paper, we put forward a novel method based on patches of interest for automatic
FER. We designed the Patch Attention Layer (PAL) with embedded handcrafted GSF to
learn certain local shallow facial features of each patch on face images. Considering its
excellent performances for face representation, a multiscale and multiorientation GSF is
first obtained with a set of Gabor filters for extracting shallow features. Motivated by
humans’ ability to quickly filter out irrelevant information and lock in parts of interest,
patch attention mechanism, whose weights are shared only within a local facial patch,
is employed to capture local appearance changes of different facial patches for GSF. The
strategy that each patch has its own convolutional module to learn distinguishable local
features for corresponding patches can increase the weight of parts we are interested in
and achieve better performance just by focusing on weighted parts. Lastly, the weighted
shallow features are fed into the remaining convolutional layers to capture high-level
features. Our method can be carried out directly on a static image without relying on facial
landmarks, and only a simple preprocessing method with face detection and the alignment
is executed. We evaluate our method on ideal-condition databases such as the CK+,
Oulu-CASIA, and JAFFE, and an in-the-wild-condition database, RAF-DB, experimental
results show that our method is competitive or even better compared to the state-of-the-art
approaches. Although competitive results can be obtained with the proposed model, there
is still much room for improvement. In the future, we plan to investigate more generalized
pattern recognition methods for FER in the wild and consider real-time requirements in
practical applications.
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